Brown Dog Tick (Rhipicephalus sanguineus Sensu Lato) Infection with Endosymbiont and Human Pathogenic Rickettsia spp., in Northeastern México
Abstract
:1. Introduction
2. Methods
2.1. Sample Collection
2.2. Tick Identification
2.3. DNA Extractions
2.4. PCR for the Genus Rickettsia and DNA Sequencing
2.5. Statistical Analysis
3. Results
3.1. Sample Collection
3.2. Molecular Testing for Rickettsiae
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swei, A.; Couper, L.I.; Coffey, L.L.; Kapan, D.; Bennett, S. Patterns, drivers, and challenges of vector-borne disease emergence. Vector-Borne Zoonotic Dis. 2020, 20, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Biggs, H.M. Diagnosis and management of tickborne rickettsial diseases: Rocky Mountain spotted fever and other spotted fever group rickettsioses, ehrlichioses, and anaplasmosis—United States. MMWR Recomm. Rep. 2019, 65, 1–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdad, M.Y.; Abdallah, R.A.; Fournier, P.-E.; Stenos, J.; Vasoo, S. A Concise Review of the Epidemiology and Diagnostics of Rickettsioses: Rickettsia and Orientia spp. J. Clin. Microbiol. 2018, 56, e01728-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Montes, S.; Colunga-Salas, P.; Lozano-Sardaneta, Y.N.; Zazueta-Islas, H.M.; Ballados-González, G.G.; Salceda-Sánchez, B.; Huerta-Jiménez, H.; Torres-Castro, M.; Panti-May, J.A.; Peniche-Lara, G.; et al. The genus Rickettsia in Mexico: Current knowledge and perspectives. Ticks Tick. Borne. Dis. 2021, 12, 101633. [Google Scholar] [CrossRef] [PubMed]
- Dantas-Torres, F.; Figueredo, L.A.; Brandão-Filho, S.P. Rhipicephalus sanguineus (Acari: Ixodidae), the brown dog tick, parasitizing humans in Brazil. Rev. Soc. Bras. Med. Trop. 2006, 39, 64–67. [Google Scholar] [CrossRef] [Green Version]
- Goddard, J. Focus of human parasitism by the brown dog tick, Rhipicephalus sanguineus (Acari: Ixodidae). J. Med. Entomol. 1989, 26, 628–629. [Google Scholar] [CrossRef]
- Gordillo-Pérez, G.; Torres, J.; Solórzano-Santos, F.; De Martino, S.; Lipsker, D.; Velázquez, E.; Ramon, G.; Onofre, M.; Jaulhac, B. Borrelia burgdorferi infection and cutaneous Lyme disease, Mexico. Emerg. Infect. Dis. 2007, 13, 1556–1558. [Google Scholar] [CrossRef]
- Eremeeva, M.E.; Zambrano, M.L.; Anaya, L.; Beati, L.; Karpathy, S.E.; Santos-Silva, M.M.; Salceda, B.; Macbeth, D.; Olguin, H.; Dasch, G.A.; et al. Rickettsia rickettsii in Rhipicephalus Ticks, Mexicali, Mexico. J. Med. Entomol. 2011, 48, 418–421. [Google Scholar] [CrossRef]
- Reyes-Clímaco, L.; Romero-Núñez, C.; Heredia-Cardenas, R. Evaluation of vector-borne diseases in dogs in a sub-cold climate area of Mexico. Acta Biol. Colomb. 2020, 25, 219–224. [Google Scholar] [CrossRef]
- Colunga-Salasid, P.; Sá Nchez-Montes, S.; Volkow, P.; Ruíz-Remigio, A.; Beckerid, I. Lyme disease and relapsing fever in Mexico: An overview of human and wildlife infections. PLoS ONE 2020, 5, e0238496. [Google Scholar] [CrossRef]
- Movilla, R.; García, C.; Siebert, S.; Roura, X. Countrywide serological evaluation of canine prevalence for Anaplasma spp., Borrelia burgdorferi (sensu lato), Dirofilaria immitis and Ehrlichia canis in Mexico. Parasites Vectors 2016, 9, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez-Hernández, G.; Roldán, J.F.G.; Milan, N.S.H.; Lash, R.R.; Behravesh, C.B.; Paddock, C.D. Rocky Mountain spotted fever in Mexico: Past, present, and future. Lancet Infect. Dis. 2017, 17, e189–e196. [Google Scholar] [CrossRef]
- Zazueta, O.E.; Armstrong, P.A.; Márquez-Elguea, A.; Hernández Milán, N.S.; Peterson, A.E.; Ovalle-Marroquín, D.F.; Fierro, M.; Arroyo-Machado, R.; Rodriguez-Lomeli, M.; Trejo-Dozal, G.; et al. Rocky Mountain spotted fever in a large metropolitan center, Mexico–United States border, 2009–2019. Emerg. Infect. Dis. 2021, 27, 1567–1576. [Google Scholar] [CrossRef]
- Alvarez-Hernandez, G.; Murillo-Benitez, C.; Del Carmen Candia-Plata, M.; Moro, M. Clinical profile and predictors of fatal rocky mountain spotted fever in children from Sonora, Mexico. J. Pediatr. Infect. Dis. 2015, 34, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Demma, L.J.; Traeger, M.S.; Nicholson, W.L.; Paddock, C.D.; Blau, D.M.; Eremeeva, M.E.; Dasch, G.A.; Levin, M.L.; Singleton, J.; Zaki, S.R.; et al. Rocky Mountain spotted fever from an unexpected tick vector in Arizona. N. Engl. J. Med. 2005, 353, 587–594. [Google Scholar] [CrossRef]
- Murray, G.G.R.; Weinert, L.A.; Rhule, E.L.; Welch, J.J. The phylogeny of Rickettsia using different evolutionary signatures: How tree-like is bacterial evolution? Syst. Biol. 2016, 65, 265–279. [Google Scholar] [CrossRef] [Green Version]
- El Karkouri, K.; Ghigo, E.; Raoult, D.; Fournier, P.-E. Genomic evolution and adaptation of arthropod-associated Rickettsia. Sci. Rep. 2022, 12, 3807. [Google Scholar] [CrossRef] [PubMed]
- Secretaría De Salud. Programa De Acción Específico Prevención y Control De Las Rickettsiosis. Available online: https://www.gob.mx/salud/documentos/programa-de-accion-especifico-prevencion-y-control-de-las-rickettsiosis (accessed on 8 September 2021).
- Sánchez-Montes, S.; López-Pérez, A.M.; Guzmán-Cornejo, C.; Colunga-Salas, P.; Becker, I.; Mora, J.D.; Licona-Enríquez, J.D.; Mora, D.D.; Karpathy, S.E.; Paddock, C.D.; et al. Rickettsia parkeri in Dermacentor parumapertus ticks, Mexico. Emerg. Infect. Dis. CDC 2018, 24, 1108–1111. [Google Scholar] [CrossRef] [Green Version]
- López-Pérez, A.M.; Sánchez-Montes, S.; Maya-Badillo, B.A.; Orta-Pineda, G.; Reveles-Félix, S.; Becker, I.; Bárcenas-Barreto, K.; Torres-Monroy, A.; Ojeda-Flores, R.; Sánchez-Betancourt, J.I. Molecular detection of Rickettsia amblyommatis and Rickettsia parkeri in ticks collected from wild pigs in Campeche, Mexico. Ticks Tick. Borne. Dis. 2021, 13, 101844. [Google Scholar] [CrossRef]
- Sánchez-Montes, S.; Blum-Domínguez, S.; Lozano-Sardaneta, Y.N.; Zazueta-Islas, H.M.; Solís-Cortés, M.; Ovando-Márquez, O.; Colunga-Salas, P.; Tamay-Segovia, P.; Becker, I.; Fernández-Figueroa, E.; et al. Molecular detection of Rickettsia sp. cf. Rickettsia monacensis in Ixodes sp. cf. Ixodes affinis collected from white-tailed deer in Campeche, Mexico. Parasitol. Res. 2021, 120, 1891–1895. [Google Scholar] [CrossRef]
- Peniche-Lara, G.; Lara-Perera, V. Rickettsiosis caused by Rickettsia parkeri, Mexico. Emerg. Infect. Dis. 2022, 28, 478–479. [Google Scholar] [CrossRef] [PubMed]
- Torres-Chable, O.M.; Jimenez-Delgadillo, B.G.; Alvarado-Kantún, Y.N.; Zaragoza-Vera, C.V.; Arjona-Jimenez, G.; Zaragoza-Vera, M.; Baak-Baak, C.M.; Cigarroa-Toledo, N.; Brito-Argaez, L.G.; Machain-Williams, C.; et al. Rickettsia parkeri (Rickettsiales: Rickettsiaceae) detected in Amblyomma maculatum ticks collected on dogs in Tabasco, Mexico. Exp. Appl. Acarol. 2020, 82, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Cornejo, C.; Sánchez-Montes, S.; Caso, A.; Rendón-Franco, E.; Muñoz-García, C.I. Molecular detection of Rickettsia rickettsii in ticks associated with the bobcat (Lynx rufus) in northeast Mexico. Ticks Tick. Borne Dis. 2019, 10, 1105–1108. [Google Scholar] [CrossRef] [PubMed]
- Sosa-Gutierrez, C.G.; Vargas-Sandoval, M.; Torres, J.; Gordillo-Pérez, G. Tick-borne rickettsial pathogens in questing ticks, removed from humans and animals in Mexico. J. Vet. Sci. 2016, 17, 353. [Google Scholar] [CrossRef]
- Merino, O.; De La Cruz, N.I.; Martinez, J.; Pérez De León, A.A.; Romero-Salas, D.; Esteve-Gassent, M.D.; Lagunes-Quintanilla, R. Molecular detection of Rickettsia species in ticks collected in the Mexico-USA transboundary region. Exper. Appl. Acarol. 2020, 80, 559–567. [Google Scholar] [CrossRef]
- Ortega-Morales, A.I.; Nava-Reyna, E.; Ávila-Rodríguez, V.; González-Álvarez, V.H.; Castillo-Martínez, A.; Siller-Rodríguez, Q.K.; Cabezas-Cruz, A.; Dantas-Torres, F.; Almazán, C. Detection of Rickettsia spp. in Rhipicephalus sanguineus (sensu lato) collected from free-roaming dogs in Coahuila state, northern Mexico. Parasites Vectors 2019, 12, 130. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Hernandez, G.; Drexler, N.; Paddock, C.D.; Licona-Enriquez, J.D.; la Mora, J.D.; Straily, A.; del Carmen Candia-Plata, M.; Cruz-Loustaunau, D.I.; Arteaga-Cardenas, V.A. Community-based prevention of epidemic Rocky Mountain spotted fever among minority populations in Sonora, Mexico, using a One Health approach. Trans. R. Soc. Trop. Med. Hyg. 2020, 114, 293–300. [Google Scholar] [CrossRef]
- Drexler, N.; Miller, M.; Gerding, J.; Todd, S.; Adams, L. Community-based control of the brown dog tick in a region with high rates of Rocky Mountain spotted fever. PLoS ONE 2014, 9, 112368. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.; Tinoco-Gracia, L.; Rodriguez-Lomelí, M.; Estrada-Guzmán, J.; Fierro, M.; Mattar-Lopez, E.; Peterson, A.; Pascoe, E.; Gonzalez, Y.; Hori-Oshima, S.; et al. Unbiased assessment of abundance of Rhipicephalus sanguineus sensu lato ticks, canine exposure to spotted fever group rickettsia, and risk factors in Mexicali, México. Am. J. Trop. Med. Hyg. 2019, 101, 22–32. [Google Scholar] [CrossRef]
- Tinoco-Gracia, L.; Lomelí, M.R.; Hori-Oshima, S.; Stephenson, N.; Foley, J. Molecular confirmation of Rocky Mountain spotted fever epidemic agent in Mexicali, Mexico. Emerg. Infect. Dis. 2018, 24, 1723–1725. [Google Scholar] [CrossRef]
- López-Pérez, A.M.; Orozco, L.; Zazueta, O.E.; Fierro, M.; Gomez, P.; Foley, J. An exploratory analysis of demography and movement patterns of dogs: New insights in the ecology of endemic Rocky Mountain spotted fever in Mexicali, Mexico. PLoS ONE 2020, 15, e0233567. [Google Scholar] [CrossRef]
- Karpathy, S.E.; Slater, K.S.; Goldsmith, C.S.; Nicholson, W.L.; Paddock, C.D. Rickettsia amblyommatis sp. Nov., a spotted fever group Rickettsia associated with multiple species of Amblyomma ticks in north, Central and South America. Int. J. Syst. Evol. Microbiol. 2016, 66, 5236–5243. [Google Scholar] [CrossRef] [PubMed]
- Moo-Llanes, D.A.; de Oca-Aguilar, A.C.M.; Romero-Salas, D.; Sánchez-Montes, S. Inferring the potential distribution of an emerging rickettsiosis in America: The case of Rickettsia parkeri. Pathogens 2021, 10, 592. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Pacheco, A.; Carlos Rodriguez-Buenfil, J.; Bolio-Gonzalez, M.E.; Sauri-Arceo, C.H.; Jiménez-Coello, M.; Forsberg, C.L. A survey of dog populations in urban and rural areas of Yucatan, Mexico. Anthrozoos 2007, 20, 261–274. [Google Scholar] [CrossRef]
- Levin, M.L.; Killmaster, L.F.; Zemtsova, G.E. Domestic dogs (Canis familiaris) as reservoir hosts for Rickettsia conorii. Vector-Borne Zoonotic Dis. 2012, 12, 28–33. [Google Scholar] [CrossRef]
- Alvarez-Hernandez, G.; Trejo, A.V.; Ratti, V.; Teglas, M.; Wallace, D.I. Modeling of control efforts against, the vector of Rocky Mountain spotted fever in Sonora, Mexico. Insects 2022, 13, 263. [Google Scholar] [CrossRef]
- Davila, E.; Fernández-Santos, N.; Estrada-Franco, J.; Wei, L.; Aguilar-Durán, J.; López-López, M.; Solís-Hernández, R.; García-Miranda, R.; Velázquez-Ramírez, D.; Torres-Romero, J.; et al. Utility of domestic dogs as sentinels for West Nile virus, but not Aedes-borne flaviviruses, in Mexico. Emerg. Infect. Dis. 2022, 28, 1071–1074. [Google Scholar] [CrossRef]
- Lane, R.S.; Emmons, R.W.; Dondero, D.V.; Nelson, B.C. Ecology of tick-borne agents in California. I. Spotted fever group rickettsiae. Am. J. Trop. Med. Hyg. 1981, 30, 239–252. [Google Scholar] [CrossRef]
- Philip, R.N.; Lane, R.S.; Casper, E.A. Serotypes of tick-borne spotted fever group rickettsiae from Western California. Am. J. Trop. Med. Hyg. 1981, 30, 722–727. [Google Scholar] [CrossRef]
- Wikswo, M.E.; Hu, R.; Dasch, G.A.; Krueger, L.; Arugay, A.; Jones, K.; Hess, B.; Bennett, S.; Kramer, V.; Eremeeva, M.E. Detection and identification of spotted fever group rickettsiae in Dermacentor species from southern California. J. Med. Entomol. 2008, 45, 509–516. [Google Scholar] [CrossRef]
- Sahni, A.; Fang, R.; Sahni, S.; Walker, D.H. Pathogenesis of rickettsial diseases: Pathogenic and immune mechanisms of an endotheliotropic infection. Annu. Rev. Pathol. 2019, 24, 127–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidstedt, M.; Hedman, J.; Romsos, E.L.; Waitara, L.; Wadsö, L.; Steffen, C.R.; Vallone, P.M.; Rådström, P. Inhibition mechanisms of hemoglobin, immunoglobulin G, and whole blood in digital and real-time PCR. Anal. Bioanal. Chem. 2018, 410, 2569–2583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Soud, W.A.; Rådström, P. Purification and characterization of PCR-inhibitory components in blood cells. J. Clin. Microbiol. 2001, 39, 485–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, E.B.; Auckland, L.D.; Marra, P.P.; Hamer, S.A. Avian migrants facilitate invasions of neotropical ticks and tick-borne pathogens into the United States. Appl. Environ. Microbiol. 2015, 81, 8366–8378. [Google Scholar] [CrossRef] [Green Version]
- Castellanos, A.A.; Medeiros, M.C.I.; Hamer, G.L.; Morrow, M.E.; Eubanks, M.D.; Teel, P.D.; Hamer, S.A.; Light, J.E. Decreased small mammal and on-host tick abundance in association with invasive red imported fire ants (Solenopsis invicta). Biol. Lett. 2016, 12, 20160463. [Google Scholar] [CrossRef] [Green Version]
- Kollars, T.M.; Kengluecha, A. Spotted fever group Rickettsia in Dermacentor variabilis (Acari: Ixodidae) infesting raccoons (Carnivora: Procyonidae) and opossums (Marsupialia: Didelphimorphidae) in Tennessee. J. Med. Entomol. 2001, 38, 601–602. [Google Scholar] [CrossRef]
- Regnery, R.L.; Spruill, C.L.; Plikaytis, B.D. Genotypic Identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial gene. J. Bacteriol. 1991, 173, 1576–1589. [Google Scholar] [CrossRef] [Green Version]
- Raoult, D.; La Scola, B.; Enea, M.; Fournier, P.E.; Roux, V.; Fenollar, F.; Galvao, M.A.M.; De Lamballerie, X. A flea-associated Rickettsia pathogenic for humans. Emerg. Infect. Dis. 2001, 7, 73–81. [Google Scholar] [CrossRef]
- Roux, V.; Raoult, D. Phylogenetic analysis of members of the genus Rickettsia using the gene encoding the outer-membrane protein rOmpB (ompB). Int. J. Syst. Evol. Microbiol. 2000, 50 Pt 4, 1449–1455. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.J.; Jin, J.L.; Fu, X.P.; Raoult, D.; Fournier, P.E. Genetic differentiation of Chinese isolates of Rickettsia sibirica by partial ompA gene sequencing and multispacer typing. J. Clin. Microbiol. 2006, 44, 2465–2467. [Google Scholar] [CrossRef] [Green Version]
- Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2016, 44, 67–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinno, A. Dunn.test: Dunn’s Test of Multiple Comparisons Using Rank Sums; R Package Version 1.3.5. 2017. Available online: https://cran.r-project.org/web/packages/dunn.test/dunn.test.pdf (accessed on 16 May 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0. [Google Scholar]
- Fox, J.; Weisberg, S.; Price, B.; Adler, D.; Bates, D.; Baud-Bovy, G.; Bolker, B.; Ellison, S.; Firth, S.; Friendly, M.; et al. Companion to Applied Regression- Package “Car”. 2020. Available online: https://cran.r-project.org/web/packages/car/car.pdf (accessed on 16 May 2022).
- Shih, C.M.; Chao, L.L. First detection and genetic identification of Rickettsia infection in Rhipicephalus sanguineus (Acari: Ixodidae) ticks collected from Southern Taiwan. Exp. Appl. Acarol. 2021, 85, 291–304. [Google Scholar] [CrossRef]
- Paddock, C.D.; Finley, R.W.; Wright, C.S.; Robinson, H.N.; Schrodt, B.J.; Lane, C.C.; Ekenna, O.; Blass, M.A.; Tamminga, C.L.; Ohl, C.A.; et al. Rickettsia parkeri rickettsiosis and its clinical distinction from Rocky Mountain spotted fever. Clin. Infect. Dis. 2008, 47, 1188–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, C.L.; Gaff, H.D.; Sonenshine, D.E.; Hynes, W.L. Experimental vertical transmission of Rickettsia parkeri in the Gulf Coast tick, Amblyomma maculatum. Ticks Tick. Borne Dis. 2015, 6, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Greene, C.E.; Kidd, L.; Breitschwerdt, E.B. Rocky Mountain and Mediterranean spotted fevers, cat-flea typhus-like Illness, rickettsialpox, and typhus. In Infectious Diseases of the Dog and Cat; Elsevier: Amsterdam, The Netherlands, 2012; pp. 259–270. [Google Scholar]
- Denison, A.M.; Amin, B.D.; Nicholson, W.L.; Paddock, C.D. Detection of Rickettsia rickettsii, Rickettsia parkeri, and Rickettsia akari in skin biopsy specimens using a multiplex real-time polymerase chain reaction assay. Clin. Infect. Dis. 2014, 59, 635–642. [Google Scholar] [CrossRef] [Green Version]
- López-Pérez, A.M.; Chaves, A.; Sánchez-Montes, S.; Foley, P.; Uhart, M.; Barrón-Rodríguez, J.; Becker, I.; Suzán, G.; Foley, J. Diversity of rickettsiae in domestic, synanthropic, and sylvatic mammals and their ectoparasites in a spotted fever-epidemic region at the western US-Mexico border. Transbound. Emerg. Dis. 2021, 69, 609–622. [Google Scholar] [CrossRef]
- Ribeiro, J.M.C.; Makoul, G.T.; Levine, J.; Robinson, D.R.; Spielman, A. Antihemostatic, antiinflammatory, and immunosuppressive properties of the saliva of a tick, Ixodes dammini. J. Exp. Med. 1985, 161, 332–344. [Google Scholar] [CrossRef] [Green Version]
- Levin, M.L.; Snellgrove, A.N.; Zemtsova, G.E. Comparative value of blood and skin samples for diagnosis of spotted fever group rickettsial infection in model animals. Ticks Tick. Borne Dis. 2016, 7, 1029–1034. [Google Scholar] [CrossRef] [Green Version]
- Levin, M.L.; Ford, S.L.; Hartzer, K.; Krapiunaya, L.; Stanley, H.; Snellgrove, A.N. Minimal duration of tick attachment sufficient for transmission of infectious Rickettsia rickettsii (Rickettsiales: Rickettsiaceae) by its primary vector Dermacentor variabilis (Acari: Ixodidae): Duration of rickettsial reactivation in the vector revisited. J. Med. Entomol. 2020, 57, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, D.G.; Nieri-Bastos, F.A.; Horta, M.C.; Soares, H.S.; Nicola, P.A.; Pereira, L.C.M.; Labruna, M.B. Rickettsia amblyommii infecting Amblyomma auricularium ticks in Pernambuco, Northeastern Brazil: Isolation, transovarial transmission, and transstadial perpetuation. Vector-Borne Zoonotic Dis. 2013, 13, 615–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores-Mendoza, C.; Florin, D.; Felices, V.; Pozo, E.J.; Graf, P.C.F.; Burrus, R.G.; Richards, A.L. Detection of Rickettsia parkeri from within Piura, Peru, and the first reported presence of Candidatus Rickettsia andeanae in the tick Rhipicephalus sanguineus. Vector-Borne Zoonotic Dis. 2013, 13, 505–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Stromdahl, E.Y.; Richards, A.L. Detection of Rickettsia parkeri and Candidatus Rickettsia andeanae in Amblyomma maculatum gulf coast ticks collected from humans in the United States. Vector-Borne Zoonotic Dis. 2012, 12, 175–182. [Google Scholar] [CrossRef]
- Nieri-Bastos, F.A.; Lopes, M.G.; Cançado, P.H.D.; Rossa, G.A.R.; Faccini, J.L.H.; Gennari, S.M.; Labruna, M.B. Candidatus Rickettsia andeanae a spotted fever group agent infecting Amblyomma parvum ticks in two Brazilian biomes. Mem. Inst. Oswaldo Cruz 2014, 109, 259–261. [Google Scholar] [CrossRef] [Green Version]
- Delgado-de la Mora, J.; Sánchez-Montes, S.; Licona-enríquez, J.D.; Delgado-de la Mora, D.; Paddock, C.D.; Beati, L.; Colunga-Salas, P.; Guzmán-Cornejo, C.; Zambrano, M.L.; Karpathy, S.E.; et al. Rickettsia parkeri and Candidatus Rickettsia andeanae in ticks of the Amblyomma maculatum Group, Mexico. Emerg. Infect. Dis. CDC 2019, 25, 836–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paddock, C.D.; Denison, A.M.; Dryden, M.W.; Noden, B.H.; Lash, R.R.; Abdelghani, S.S.; Evans, A.E.; Kelly, A.R.; Hecht, J.A.; Karpathy, S.E.; et al. High prevalence of “Candidatus Rickettsia andeanae” and apparent exclusion of Rickettsia parkeri in adult Amblyomma maculatum (Acari: Ixodidae) from Kansas and Oklahoma. Ticks Tick. Borne Dis. 2015, 6, 297–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodo, C.L.; Forgacs, D.; Auckland, L.D.; Bass, K.; Lindsay, C.; Bingaman, M.; Sani, T.; Colwell, K.; Hamer, G.L.; Hamer, S.A. Presence of diverse Rickettsia spp. and absence of Borrelia burgdorferi sensu lato in ticks in an East Texas forest with reduced tick density associated with controlled burns. Ticks Tick. Borne Dis. 2020, 11, 101310. [Google Scholar] [CrossRef]
- Yen, W.Y.; Stern, K.; Mishra, S.; Helminiak, L.; Sanchez-Vicente, S.; Kim, H.K. Virulence potential of Rickettsia amblyommatis for spotted fever pathogenesis in mice. Pathog. Dis. 2021, 79, ftab024. [Google Scholar] [CrossRef]
- Delisle, J.; Mendell, N.L.; Stull-Lane, A.; Bloch, K.C.; Bouyer, D.H.; Moncayo, A.C. Human infections by multiple spotted fever group rickettsiae in Tennessee. Am. J. Trop. Med. Hyg. 2016, 94, 1212–1217. [Google Scholar] [CrossRef]
- Billeter, S.A.; Blanton, H.L.; Little, S.E.; Levy, M.G.; Breitschwerdt, E.B. Detection of “Rickettsia amblyommii” in association with a tick bite rash. Vector-Borne Zoonotic Dis. 2007, 7, 607–610. [Google Scholar] [CrossRef]
- Rivas, J.J.; Moreira-Soto, A.; Alvarado, G.; Taylor, L.; Calderón-Arguedas, O.; Hun, L.; Corrales-Aguilar, E.; Morales, J.A.; Troyo, A. Pathogenic potential of a Costa Rican strain of “Candidatus Rickettsia amblyommii” in guinea pigs (Cavia porcellus) and protective immunity against Rickettsia rickettsii. Ticks Tick. Borne. Dis. 2015, 6, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Apperson, C.S.; Engber, B.; Nicholson, W.L.; Mead, D.G.; Engel, J.; Yabsley, M.J.; Dail, K.; Johnson, J.; Watson, D.W. Tick-borne diseases in North Carolina: Is “Rickettsia amblyommii” a possible cause of rickettsiosis reported as Rocky mountain spotted fever? Vector-Borne Zoonotic Dis. 2008, 8, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Sayler, K.A.; Wamsley, H.L.; Pate, M.; Barbet, A.F.; Alleman, A.R. Cultivation of Rickettsia amblyommii in tick cells, prevalence in Florida lone star ticks (Amblyomma americanum). Parasites Vectors 2014, 7, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Springer, A.; Montenegro, V.M.; Schicht, S.; Wölfel, S.; Schaper, S.R.; Chitimia-Dobler, L.; Siebert, S.; Strube, C. Detection of Rickettsia monacensis and Rickettsia amblyommatis in ticks collected from dogs in Costa Rica and Nicaragua. Ticks Tick. Borne. Dis. 2018, 9, 1565–1572. [Google Scholar] [CrossRef]
- Tinoco-Gracia, L.; Quiroz-Romero, H.; Quintero-Martínez, M.T.; Rentería-Evangelista, T.B.; González-Medina, Y.; Barreras-Serrano, A.; Hori-Oshima, S.; Moro, M.H.; Vinasco, J. Prevalence of Rhipicepholus sanguineus ticks on dogs in a region on the Mexico-USA border. Vet. Rec. 2009, 164, 59–61. [Google Scholar] [CrossRef]
- Woolhouse, M.E.J.; Dye, C.; Etard, J.-F.; Smith, T.; Charlwood, J.D.; Garnett, G.P.; Hagan, P.; Hii, J.L.K.; Ndhlovu, P.D.; Quinnell, R.J.; et al. Heterogeneities in the transmission of infectious agents: Implications for the design of control programs. Proc. Natl. Acad. Sci. USA 1997, 94, 338–342. [Google Scholar] [CrossRef] [Green Version]
- Secretaría de Salud. Histórico Boletín Epidemiológico de la Dirección General de Epidemiología. Available online: https://www.gob.mx/salud/acciones-y-programas/historico-boletin-epidemiologico (accessed on 16 May 2022).
- Parola, P.; Socolovschi, C.; Jeanjean, L.; Bitam, I.; Fournier, P.E.; Sotto, A.; Labauge, P.; Raoult, D. Warmer weather linked to tick attack and emergence of severe rickettsioses. PLoS Negl. Trop. Dis. 2008, 2, e338. [Google Scholar] [CrossRef] [Green Version]
Gene | Primers | Nucleotide Sequence (5′-3′) | Amplicon Size | Reference |
---|---|---|---|---|
Citrate synthase | RrCS.372 RrCS.989 | TTTGTAGCTCTTCTCATCCTATGGC CCCAAGTTC CTTTAATACTTCTTTGC | 617 bp | [47] |
Citrate synthase | RpCs.877p RpCs.1258n | GGGGGCCTGCTCACGGCGG ATTGCAAAAAGTACAGTGAACA | 381 bp | [48] |
rOmpB | 120-M59 120-807 | CCGCAGGGTTGGTAACTGC CCTTTTAGATTACCGCCTAA | 862 bp | [49,50] |
OmpA | Rr190-70 Rr190-701 | ATGGCGAATATTTCTCCAAAA GTTCCGTTAATGGCAGCATCT | 632 bp | [51] |
OmpA | Rr190-70 Rr190-701 Rr190-602 | ATGGCGAATATTTCTCCAAAA GTTCCGTTAATGGCAGCATCT AGTGCAGCATTCGCTCCCCCT | 550 bp | [41] (modified for touchdown PCR in this study) |
Neighborhood | Dogs | Total Ticks | Mean Tick Burden | Dog Infestation Prevalence | Rickettsiae Prevalence of Ticks | Rickettsiae Species |
---|---|---|---|---|---|---|
15 de Enero | 21 | 497 | 23.67 | 67% (14/21) | 9.38% (6/64) | R. amblyommii, R. andeanae |
Aquiles Serdán | 22 | 84 | 3.82 | 36% (8/22) | 5.88% (1/17) | R. amblyommii |
La Cima | 45 | 939 | 20.87 | 60% (27/45) | 0 | NA |
Col. Margarita Maza de Juárez | 9 | 18 | 2.00 | 67% (6/9) | 16.67% (1/6) | R. andeanae |
Pedro J. Méndez | 19 | 347 | 18.26 | 63% (12/19) | 3.45% (2/58) | R. parkeri, R. andeanae |
Villa Florida | 52 | 285 | 5.48 | 37% (19/52) | 1.69% (1/59) | R. andeanae |
Overall | 168 | 2170 | 12.92 | 51% (86/168) | 4.11 % (12/292) |
Dog Identification | Dog Sex | Dog Age (Years) | Dog Breed | Dog Tick Burden | No. Ticks Processed | Tick Infection Prevalence | Life Stage | Sex | Engorgement | Rickettsiae |
---|---|---|---|---|---|---|---|---|---|---|
19PJMD1 | F | 2 | Mix | 22 | 4 | 25% (1/4) | N | NA | 5 | R. parkeri |
19PJMD6 | M | 1 | Mix | 88 | 10 | 20% (2/10) | A | F | 3 | R. andeanae |
N | NA | 4 | R. andeanae | |||||||
19MMJD01 | F | 2 | Mix | 2 | 1 | 100% (1/1) | A | F | 1 | R. andeanae |
19VFD30 | F | 4 | Chihuahua | 7 | 1 | 100% (1/1) | L | NA | 4 | R. andeanae |
190615DED1 | M | 5 | Mix | 75 | 10 | 10% (1/10) | A | M | NA | R. andeanae |
1915DED10 | F | 1 | Mix | 10 | 40% (4/10) | A | F | 3 | R. andeanae | |
A | F | 2 | R. andeanae | |||||||
N | NA | 3 | R. andeanae | |||||||
A | F | 5 | R. amblyommii | |||||||
190615DED4 | F | 0.33 | Mix | 13 | 3 | 33% (1/3) | A | F | 0 | R. amblyommii |
19ASD11 | F | 0.83 | Mix | 74 | 10 | 10% (1/10) | N | NA | 4 | R. amblyommii |
Engorgement Score | Adult Females | Adult Males | Nymphs | Larvae | Total Ticks (%) |
---|---|---|---|---|---|
0 | 119 | na | 226 | 42 | 387 (18%) |
1 | 94 | na | 68 | 11 | 173 (8%) |
2 | 107 | na | 122 | 46 | 275 (13%) |
3 | 64 | na | 180 | 71 | 315 (15%) |
4 | 32 | na | 128 | 18 | 178 (8%) |
5 | 22 | na | 115 | 20 | 157 (7.3%) |
Engorgement not scored | 13 | 621 | 32 | 9 | 675 (31%) |
Total ticks | 451 | 621 | 871 | 217 | 2160 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salomon, J.; Fernandez Santos, N.A.; Zecca, I.B.; Estrada-Franco, J.G.; Davila, E.; Hamer, G.L.; Rodriguez Perez, M.A.; Hamer, S.A. Brown Dog Tick (Rhipicephalus sanguineus Sensu Lato) Infection with Endosymbiont and Human Pathogenic Rickettsia spp., in Northeastern México. Int. J. Environ. Res. Public Health 2022, 19, 6249. https://doi.org/10.3390/ijerph19106249
Salomon J, Fernandez Santos NA, Zecca IB, Estrada-Franco JG, Davila E, Hamer GL, Rodriguez Perez MA, Hamer SA. Brown Dog Tick (Rhipicephalus sanguineus Sensu Lato) Infection with Endosymbiont and Human Pathogenic Rickettsia spp., in Northeastern México. International Journal of Environmental Research and Public Health. 2022; 19(10):6249. https://doi.org/10.3390/ijerph19106249
Chicago/Turabian StyleSalomon, Jordan, Nadia Angelica Fernandez Santos, Italo B. Zecca, Jose G. Estrada-Franco, Edward Davila, Gabriel L. Hamer, Mario Alberto Rodriguez Perez, and Sarah A. Hamer. 2022. "Brown Dog Tick (Rhipicephalus sanguineus Sensu Lato) Infection with Endosymbiont and Human Pathogenic Rickettsia spp., in Northeastern México" International Journal of Environmental Research and Public Health 19, no. 10: 6249. https://doi.org/10.3390/ijerph19106249
APA StyleSalomon, J., Fernandez Santos, N. A., Zecca, I. B., Estrada-Franco, J. G., Davila, E., Hamer, G. L., Rodriguez Perez, M. A., & Hamer, S. A. (2022). Brown Dog Tick (Rhipicephalus sanguineus Sensu Lato) Infection with Endosymbiont and Human Pathogenic Rickettsia spp., in Northeastern México. International Journal of Environmental Research and Public Health, 19(10), 6249. https://doi.org/10.3390/ijerph19106249