Precision Behavioral Management (PBM) and Cognitive Control as a Potential Therapeutic and Prophylactic Modality for Reward Deficiency Syndrome (RDS): Is There Enough Evidence?
Abstract
:1. Precision Behavioral Management
2. The Brain Reward Cascade
3. Genetic Addiction Risk Severity (GARS)
4. Precision Behavioral Management (PBM) System
5. Cognitive Control of Reward Processing
6. Summary
- No matter what therapeutic strategy the clinical team chooses, a beneficial practice for treatment and recovery is genetic addiction risk testing and personalized induction of dopamine homeostasis based on genetic test results.
- Indeed, the use of any treatment that reduces stress and enhances resting-state functional connectivity along the brain reward circuitry seems prudent.
- From pre-authorization of very short-term use of opioids to reduce harm to cognitive behavioral therapy, trauma therapy, brain spotting, stress reduction, rsTMS to deep brain stimulation, and 12-stepping, the foundational induction, via epigenetics, of gentle up-regulation of dopaminergic function will be an evidenced basis for the induction of treatment (without complications or side effects) to keep people from any form of dopaminergic dysfunction.
- Genetic addiction risk testing for patients attending a pain clinic provides information about the likelihood of a predisposition for Opioid Use Disorder (OUD) and enables the utilization of less addicting analgesia at the onset of treatment.
- Genetic testing should be the standard of care for all patients attending substance and non-substance (process addictions) dependency programs (i.e., inpatient, outpatient, and intensive outpatient programs).
- Genetic addiction risk testing for early risk identification in children, especially if they have addiction issues in the family (for example, children of alcoholics), combined with precision pro-dopamine regulation prophylaxis, may attenuate or prevent addiction risk.
- Coupling of KB220 precision variants with naltrexone to improve compliance [43].
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blum, K.; Noble, E.P.; Sheridan, P.J.; Montgomery, A.; Ritchie, T.; Jagadeeswaran, P.; Nogami, H.; Briggs, A.H.; Cohn, J.B. Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA 1990, 263, 2055–2060. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Wood, R.C.; Braverman, E.R.; Chen, T.J.; Sheridan, P.J. The D2 dopamine receptor gene as a predictor of compulsive disease: Bayes’ theorem. Funct. Neurol. 1995, 10, 37–44. [Google Scholar] [PubMed]
- Blum, K.; Lott, L.; Siwicki, D.; Fried, L.; Hauser, M.; Simpatico, T.; Baron, D.; Howeedy, A.; Badgaiyan, R.D. Genetic addiction risk score (GARS™) as a predictor of substance use disorder: Identifying predisposition not diagnosis. Curr. Trends Med. Diagn. Methods 2018, 1. [Google Scholar] [CrossRef]
- Blum, K.; Briggs, A.H.; Trachtenberg, M.C.; Delallo, L.; Wallace, J.E. Enkephalinase inhibition: Regulation of ethanol intake in genetically predisposed mice. Alcohol 1987, 4, 449–456. [Google Scholar] [CrossRef]
- Chen, A.L.; Chen, T.J.; Waite, R.L.; Reinking, J.; Tung, H.L.; Rhoades, P.; Downs, B.W.; Braverman, E.; Braverman, D.; Kerner, M.; et al. Hypothesizing that brain reward circuitry genes are genetic antecedents of pain sensitivity and critical diagnostic and pharmacogenomic treatment targets for chronic pain conditions. Med. Hypotheses 2009, 72, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Bowirrat, A.; Baron, D.; Lott, L.; Ponce, J.V.; Brewer, R.; Siwicki, D.; Boyett, B.; Gondre-Lewis, M.C.; Smith, D.E.; et al. Biotechnical development of genetic addiction risk score (GARS) and selective evidence for inclusion of polymorphic allelic risk in substance use disorder (SUD). J. Syst. Integr. Neurosci. 2020, 6, 1–20. [Google Scholar] [CrossRef]
- Blum, K.; Chen, A.L.C.; Thanos, P.K.; Febo, M.; Demetrovics, Z.; Dushaj, K.; Kovoor, A.; Baron, D.; Smith, D.E.; Roy, A.K., III; et al. Genetic addiction risk score (GARS) ™, a predictor of vulnerability to opioid dependence. Front. Biosci. 2018, 10, 175–196. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Gondré-Lewis, M.C.; Modestino, E.J.; Lott, L.; Baron, D.; Siwicki, D.; McLaughlin, T.; Howeedy, A.; Krengel, M.H.; Oscar-Berman, M.; et al. Understanding the scientific basis of post-traumatic stress disorder (PTSD): Precision behavioral management overrides stigmatization. Mol. Neurobiol. 2019, 56, 7836–7850. [Google Scholar] [CrossRef]
- Blum, K.; Siwicki, D.; Baron, D.; Modestino, E.J.; Badgaiyan, R.D. The benefits of genetic addiction risk score (GARS™) and pro-dopamine regulation in combating suicide in the American Indian population. J. Syst. Integr. Neurosci. 2018, 4. [Google Scholar] [CrossRef]
- Blum, K.; Simpatico, T.; Badgaiyan, R.D.; Demetrovics, Z.; Fratantonio, J.; Agan, G.; Febo, M.; Gold, M.S. Coupling neurogenetics (GARS™) and a nutrigenomic based dopaminergic agonist to treat reward deficiency syndrome (RDS): Targeting polymorphic reward genes for carbohydrate addiction algorithms. J. Reward Defic. Syndr. 2015, 1, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Fried, L.; Modestino, E.J.; Siwicki, D.; Lott, L.; Thanos, P.K.; Baron, D.; Badgaiyan, R.D.; Ponce, J.V.; Giordano, J.; Downs, W.B.; et al. Hypodopaminergia and “precision behavioral management” (PBM): It is a generational family affair. Curr. Pharm. Biotechnol. 2020, 21, 528–541. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Gold, M.; Modestino, E.J.; Baron, D.; Boyett, B.; Siwicki, D.; Lott, L.; Podesta, A.; Roy, A.K.; Hauser, M.; et al. Would induction of dopamine homeostasis via coupling genetic addiction risk score (GARS®) and pro-dopamine regulation benefit benzodiazepine use disorder (BUD)? J. Syst. Integr. Neurosci. 2018, 4. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Baron, D.; McLaughlin, T.; Gold, M.S. Molecular neurological correlates of endorphinergic/dopaminergic mechanisms in reward circuitry linked to endorphinergic deficiency syndrome (EDS). J. Neurol. Sci. 2020, 411, 116733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, K.; Baron, D.; Lott, L.; Ponce, J.V.; Siwicki, D.; Boyett, B.; Steinberg, B.; Modestino, E.J.; Fried, L.; Hauser, M.; et al. In search of reward deficiency syndrome (RDS)-free controls: The “holy grail” in genetic addiction risk testing. Curr. Psychopharmacol. 2020, 9, 7–21. [Google Scholar] [CrossRef]
- Blum, K.; Madigan, M.A.; Fried, L.; Braverman, E.R.; Giordano, J.; Badgaiyan, R.D. Coupling genetic addiction risk score (GARS) and pro dopamine regulation (KB220) to combat substance use disorder (SUD). Glob. J. Addict. Rehabil. Med. 2017, 1, 555556. [Google Scholar] [CrossRef]
- Blum, K.; Thanos, P.K.; Badgaiyan, R.D.; Febo, M.; Oscar-Berman, M.; Fratantonio, J.; Demotrovics, Z.; Gold, M.S. Neurogenetics and gene therapy for reward deficiency syndrome: Are we going to the Promised Land? Expert Opin. Biol. Ther. 2015, 15, 973–985. [Google Scholar] [CrossRef]
- Blum, K.; Chen, T.J.; Meshkin, B.; Waite, R.L.; Downs, B.W.; Blum, S.H.; Mengucci, J.F.; Arcuri, V.; Braverman, E.R.; Palomo, T. Manipulation of catechol-O-methyl-transferase (COMT) activity to influence the attenuation of substance seeking behavior, a subtype of Reward Deficiency Syndrome (RDS), is dependent upon gene polymorphisms: A hypothesis. Med. Hypotheses 2007, 69, 1054–1060. [Google Scholar] [CrossRef]
- Blum, K.; Oscar-Berman, M.; Barh, D.; Giordano, J.; Gold, M. Dopamine genetics and function in food and substance abuse. J. Genet. Syndr. Gene Ther. 2013, 4, 1000121. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Oscar-Berman, M.; Demetrovics, Z.; Barh, D.; Gold, M.S. Genetic addiction risk score (GARS): Molecular neurogenetic evidence for predisposition to reward deficiency syndrome (RDS). Mol. Neurobiol. 2014, 50, 765–796. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Baron, D.; Hauser, M.; Henriksen, S.; Thanos, P.K.; Black, C.; Siwicki, D.; Modestino, E.J.; Downs, B.W.; Badgaiyan, S.; et al. Americas’ opioid/psychostimulant epidemic would benefit from general population early identification of genetic addiction risk especially in children of alcoholics (COAs). J. Syst. Integr. Neurosci. 2019, 5, 1–3. [Google Scholar]
- Blum, K.; Downs, B.W.; Dushaj, K.; Li, M.; Braverman, E.R.; Fried, L.; Waite, R.; Demotrovics, Z.; Badgaiyan, R.D. The benefits of customized DNA directed nutrition to balance the brain reward circuitry and reduce addictive behaviors. Precis. Med. 2016, 1, 18–33. [Google Scholar]
- Blum, K.; Modestino, E.J.; Neary, J.; Gondré-Lewis, M.C.; Siwicki, D.; Moran, M.; Hauser, M.; Braverman, E.R.; Baron, D.; Steinberg, B.; et al. Promoting precision addiction management (PAM) to combat the global opioid crisis. Biomed. J. Sci. Tech. Res. 2018, 2, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.L.; Blum, K.; Chen, T.J.; Giordano, J.; Downs, B.W.; Han, D.; Barh, D.; Braverman, E.R. Correlation of the Taq1 dopamine D2 receptor gene and percent body fat in obese and screened control subjects: A preliminary report. Food Funct. 2012, 3, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Modestino, E.J.; Gondré-Lewis, M.C.; Neary, J.; Siwicki, D.; Hauser, M.; Barh, D.; Steinberg, B.; Badgaiyan, R.D. Global opioid epidemic: Doomed to fail without genetically based precision addiction medicine (PAMTM): Lessons learned from America. Precis. Med. 2017, 2, 17–22. [Google Scholar]
- Thanos, P.K.; Hamilton, J.; O’Rourke, J.R.; Napoli, A.; Febo, M.; Volkow, N.D.; Blum, K.; Gold, M. Dopamine D2 gene expression interacts with environmental enrichment to impact lifespan and behavior. Oncotarget 2016, 7, 19111–19123. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Badgaiyan, R.D.; Agan, G.; Fratantonio, J.; Simpatico, T.; Febo, M.; Haberstick, B.C.; Smolen, A.; Gold, M.S. Molecular genetic testing in reward deficiency syndrome (RDS): Facts and fiction. J. Reward Defic. Syndr. 2015, 1, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Chen, A.L.; Oscar-Berman, M.; Chen, T.J.; Lubar, J.; White, N.; Lubar, J.; Bowirrat, A.; Braverman, E.; Schoolfield, J.; et al. Generational association studies of dopaminergic genes in reward deficiency syndrome (RDS) subjects: Selecting appropriate phenotypes for reward dependence behaviors. Int. J. Environ. Res. Public Health 2011, 8, 4425–4459. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Badgaiyan, R.D.; Dunston, G.M.; Baron, D.; Modestino, E.J.; McLaughlin, T.; Steinberg, B.; Gold, M.S.; Gondré-Lewis, M.C. The DRD2 Taq1A A1 Allele may magnify the risk of Alzheimer’s in aging African-Americans. Mol. Neurobiol. 2018, 55, 5526–5536. [Google Scholar] [CrossRef]
- Noble, E.P.; Blum, K.; Khalsa, M.E.; Ritchie, T.; Montgomery, A.; Wood, R.C.; Fitch, R.J.; Ozkaragoz, T.; Sheridan, P.J.; Anglin, M.D.; et al. Allelic association of the D2 dopamine receptor gene with cocaine dependence. Drug Alcohol Depend. 1993, 33, 271–285. [Google Scholar] [CrossRef]
- Blum, K.; Febo, M.; Smith, D.E.; Roy AK 3rd Demetrovics, Z.; Cronjé, F.J.; Femino, J.; Agan, G.; Fratantonio, J.L.; Pandey, S.C.; Badgaiyan, R.D.; et al. Neurogenetic and epigenetic correlates of adolescent predisposition to and risk for addictive behaviors as a function of prefrontal cortex dysregulation. J. Child Adolesc. Psychopharmacol. 2015, 25, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.J.; Blum, K.; Mathews, D.; Fisher, L.; Schnautz, N.; Braverman, E.R.; Schoolfield, J.; Downs, B.W.; Comings, D.E. Are dopaminergic genes involved in a predisposition to pathological aggression? Hypothesizing the importance of “super normal controls” in psychiatricgenetic research of complex behavioral disorders. Med. Hypotheses 2005, 65, 703–707. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Noble, E.P.; Sheridan, P.J.; Montgomery, A.; Ritchie, T.; Ozkaragoz, T.; Fitch, R.J.; Wood, R.; Finley, O.; Sadlack, F. Genetic predisposition in alcoholism: Association of the D2 dopamine receptor TaqI B1 RFLP with severe alcoholics. Alcohol 1993, 10, 59–67. [Google Scholar] [CrossRef]
- Moran, M.; Blum, K.; Ponce, J.V.; Lott, L.; Gondré-Lewis, M.C.; Badgaiyan, S.; Brewer, R.; Downs, B.W.; Fynman, P.; Weingarten, A.; et al. High genetic addiction risk score (GARS) in chronically prescribed severe chronic opioid probands attending multi-pain clinics: An open clinical pilot trial. Mol. Neurobiol. 2021, 58, 3335–3346. [Google Scholar] [CrossRef] [PubMed]
- Bowirrat, A.; Chen, T.J.; Blum, K.; Madigan, M.; Bailey, J.A.; Chuan Chen, A.L.; Downs, B.W.; Braverman, E.R.; Radi, S.; Waite, R.L.; et al. Neuro-psychopharmacogenetics and neurological antecedents of posttraumatic stress disorder: Unlocking the mysteries of resilience and vulnerability. Curr. Neuropharmacol. 2010, 8, 335–358. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Braverman, E.R.; Wood, R.C.; Gill, J.; Li, C.; Chen, T.J.; Taub, M.; Montgomery, A.R.; Sheridan, P.J.; Cull, J.G. Increased prevalence of the Taq I A1 allele of the dopamine receptor gene (DRD2) in obesity with comorbid substance use disorder: A preliminary report. Pharmacogenetics 1996, 6, 297–305. [Google Scholar] [CrossRef]
- Bowirrat, A.; Chen, T.J.; Oscar-Berman, M.; Madigan, M.; Chen, A.L.; Bailey, J.A.; Braverman, E.R.; Kerner, M.; Giordano, J.; Morse, S.; et al. Neuropsychopharmacology and neurogenetic aspects of executive functioning: Should reward gene polymorphisms constitute a diagnostic tool to identify individuals at risk for impaired judgment? Mol. Neurobiol. 2012, 45, 298–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, K.; Gondré-Lewis, M.C.; Baron, D.; Thanos, P.K.; Braverman, E.R.; Neary, J.; Elman, I.; Badgaiyan, R.D. Introducing precision addiction management of reward deficiency syndrome, the construct that underpins all addictive behaviors. Front. Psychiatry 2018, 9, 548. [Google Scholar] [CrossRef] [Green Version]
- Bisagno, V.; Cadet, J.L. Expression of immediate early genes in brain reward circuitries: Differential regulation by psychostimulant and opioid drugs. Neurochem. Int. 2019, 124, 10–18. [Google Scholar] [CrossRef]
- Blum, K.; Oscar-Berman, M.; Dinubile, N.; Giordano, J.; Braverman, E.R.; Truesdell, C.E.; Barh, D.; Badgaiyan, R. Coupling genetic addiction risk score (GARS) with electrotherapy: Fighting iatrogenic opioid dependence. J. Addict. Res. Ther. 2013, 4, 1000163. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Oscar-Berman, M.; Blum, S.H.; Madigan, M.A.; Waite, R.L.; McLaughlin, T.; Barh, D. Can genetic testing coupled with enhanced dopaminergic activation reduce recidivism rates in the workers compensation legacy cases? J. Alcohol Drug Depend. 2014, 2, 161. [Google Scholar] [CrossRef] [Green Version]
- Downs, B.W.; Blum, K.; Baron, D.; Bowirrat, A.; Lott, L.; Brewer, R.; Boyett, B.; Siwicki, D.; Roy, A.K.; Podesta, A.; et al. Death by opioids: Are there non-addictive scientific solutions? J. Syst. Integr. Neurosci. 2019, 5. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Febo, M.; Fried, L.; Baron, D.; Braverman, E.R.; Dushaj, K.; Li, M.; Demetrovics, Z.; Badgaiyan, R.D. Pro-dopamine regulator—(KB220) to balance brain reward circuitry in reward deficiency syndrome (RDS). J. Reward Defic. Syndr. Addict. Sci. 2017, 3, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Modestino, E.J.; Badgaiyan, R.D.; Baron, D.; Thanos, P.K.; Elman, I.; Siwicki, D.; Febo, M.; Gold, M.S. Analysis of evidence for the combination of pro-dopamine regulator (KB220PAM) and naltrexone to prevent opioid use disorder relapse. EC Psychol. Psychiatry 2018, 7, 564–579. [Google Scholar]
- Blum, K.; Modestino, E.J.; Gondré-Lewis, M.; Downs, B.W.; Baron, D.; Steinberg, B.; Siwicki, D.; Giordano, J.; McLaughlin, T.; Neary, J.; et al. “Dopamine homeostasis” requires balanced polypharmacy: Issue with destructive, powerful dopamine agents to combat America’s drug epidemic. J. Syst. Integr. Neurosci. 2017, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, K.; Oscar-Berman, M.; Femino, J.; Waite, R.L.; Benya, L.; Giordano, J.; Borsten, J.; Downs, W.B.; Braverman, E.R.; Loehmann, R.; et al. Withdrawal from buprenorphine/naloxone and maintenance with a natural dopaminergic agonist: A cautionary note. J. Addict. Res. Ther. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Febo, M.; Fried, L.; Li, M.; Dushaj, K.; Braverman, E.R.; McLaughlin, T.; Steinberg, B.; Badgaiyan, R.D. Hypothesizing that neuropharmacological and neuroimaging studies of glutaminergic-dopaminergic optimization complex (KB220Z) are associated with “dopamine homeostasis” in reward deficiency syndrome (RDS). Subst. Use Misuse 2017, 52, 535–547. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Modestino, E.J.; Gondre-Lewis, M.; Chapman, E.J.; Neary, J.; Siwicki, D.; Baron, D.; Hauser, M.; Smith, D.E.; Roy, A.K.; et al. The Benefits of Genetic Addiction Risk Score (GARS™) Testing in Substance Use Disorder (SUD). Int. J. Genom. Data Min. 2018, 2018, 115. [Google Scholar] [CrossRef]
- Downs, B.W.; Blum, K.; Bagchi, D.; Kushner, S.; Bagchi, M.; Galvin, J.M.; Lewis, M.; Siwicki, D.; Brewer, R.; Boyett, B.; et al. Molecular neuro-biological and systemic health benefits of achieving dopamine homeostasis in the face of a catastrophic pandemic (COVID-19): A mechanistic exploration. J. Syst. Integr. Neurosci. 2020, 7. [Google Scholar] [CrossRef]
- Schoenthaler, S.J.; Blum, K.; Fried, L.; Oscar-Berman, M.; Giordano, J.; Modestino, E.J.; Badgaiyan, R. The effects of residential dual diagnosis treatment on alcohol abuse. J. Syst. Integr. Neurosci. 2017, 3. [Google Scholar] [CrossRef]
- Roy, A.K.; Bowirrat, A.; Smith, D.E.; Braverman, E.R.; Jalali, R.; Badgaiyan, R.D.; Baron, D.; Llanos-Gomez, L.; Barh, D.; Blum, K. Neurobiology and Spirituality in Addiction Recovery. Acta Sci. Neurol. 2021, 4, 64–71. [Google Scholar]
- Blum, K.; Febo, M.; Badgaiyan, R.D.; Braverman, E.R.; Dushaj, K.; Li, M.; Demetrovics, Z. Neuronutrient Amino-Acid Therapy Protects Against Reward Deficiency Syndrome: Dopaminergic Key to Homeostasis and Neuroplasticity. Curr. Pharm. Des. 2016, 22, 5837–5854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, K.; Noble, E.P.; Sheridan, P.J.; Finley, O.; Montgomery, A.; Ritchie, T.; Ozkaragoz, T.; Fitch, R.J.; Sadlack, F.; Sheffield, D.; et al. Association of the A1 allele of the D2 dopamine receptor gene with severe alcoholism. Alcohol 1991, 8, 409–416. [Google Scholar] [CrossRef]
- Blum, K.; Febo, M.; Fahlke, C.; Archer, T.; Berggren, U.; Demetrovics, Z.; Dushaj, K.; Badgaiyan, R.D. Hypothesizing Balancing Endorphinergic and Glutaminergic Systems to Treat and Prevent Relapse to Reward Deficiency Behaviors: Coupling D-Phenylalanine and N-Acetyl-L-Cysteine (NAC) as a Novel Therapeutic Modality. Clin. Med. Rev. Case Rep. 2015, 2, 76. [Google Scholar] [CrossRef] [PubMed]
- Vitali, M.; Napolitano, C.; Berman, M.O.; Minuto, S.F.; Battagliese, G.; Attilia, M.L.; Braverman, E.R.; Romeo, M.; Blum, K.; Ceccanti, M. Neurophysiological measures and alcohol use disorder (AUD): Hypothesizing links between clinical severity index and molecular neurobiological patterns. J. Addict. Res. Ther. 2016, 5, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, K.; Thanos, P.K.; Gold, M.S. Dopamine and glucose, obesity, and reward deficiency syndrome. Front. Psychol. 2014, 5, 919. [Google Scholar] [CrossRef] [Green Version]
- Duquette, L.L.; Mattiace, F.; Blum, K.; Waite, R.L.; Boland, T.; McLaughlin, T.; Dushaj, K.; Febo, M.; Badgaiyan, R.D. Neurobiology of KB220Z-glutaminergic-dopaminergic optimization complex [GDOC] as a liquid nano: Clinical activation of brain in a highly functional clinician improving focus, motivation and overall sensory input following chronic intake. Clin. Med. Rev. Case Rep. 2016, 3, 104. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Oscar-Berman, M.; Giordano, J.; Downs, B.; Simpatico, T.; Han, D.; Femino, J. Neurogenetic impairments of brain reward circuitry links to reward deficiency syndrome (RDS): Potential nutrigenomic induced dopaminergic activation. J. Genet. Syndr. Gene Ther. 2012, 3, 535–547. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Jacobs, W.; Modestino, E.J.; DiNubile, N.; Baron, D.; McLaughlin, T.; Siwicki, D.; Elman, I.; Moran, M.; Braverman, E.R.; et al. Insurance companies fighting the peer review empire without any validity: The case for addiction and pain modalities in the face of an American drug epidemic. SEJ Surg. Pain 2018, 1, 1–11. [Google Scholar]
- McLaughlin, T.; Han, D.; Nicholson, J.; Steinberg, B.; Blum, K.; Febo, M.; Braverman, E.; Li, M.; Fried, L.; Badgaiyan, R. Improvement of long-term memory access with a pro-dopamine regulator in an elderly male: Are we targeting dopamine tone? J. Syst. Integr. Neurosci. 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Cadet, J.L.; Baron, D.; Badgaiyan, R.D.; Brewer, R.; Modestino, E.J.; Gold, M.S. Putative COVID-19 induction of reward deficiency syndrome (RDS) and associated behavioral addictions with potential concomitant dopamine depletion: Is COVID-19 social distancing a double edged sword? Subst. Use Misuse 2020, 55, 2438–2442. [Google Scholar] [CrossRef]
- Archer, T.; Oscar-Berman, M.; Blum, K.; Gold, M. Epigenetic Modulation of Mood Disorders. J. Genet. Syndr. Gene Ther. 2013, 4, 1000120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.J.; Blum, K.; Waite, R.L.; Meshkin, B.; Schoolfield, J.; Downs, B.W.; Braverman, E.E.; Arcuri, V.; Varshavskiy, M.; Blum, S.H.; et al. Gene\Narcotic Attenuation Program attenuates substance use disorder, a clinical subtype of reward deficiency syndrome. Adv. Ther. 2007, 24, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Chen, A.L.; Giordano, J.; Borsten, J.; Chen, T.J.; Hauser, M.; Simpatico, T.; Femino, J.; Braverman, E.R.; Barh, D. The addictive brain: All roads lead to dopamine. J. Psychoact. Drugs 2012, 44, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Chen, A.L.; Chen, T.J.; Braverman, E.R.; Reinking, J.; Blum, S.H.; Cassel, K.; Downs, B.W.; Waite, R.L.; Williams, L.; et al. Activation instead of blocking mesolimbic dopaminergic reward circuitry is a preferred modality in the long term treatment of reward deficiency syndrome (RDS): A commentary. Theor. Biol. Med. Model. 2008, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.; Chen, A.L.; Stokes, S.D.; Silverman, S.; Bowirrat, A.; Manka, M.; Manka, D.; Miller, D.K.; Perrine, K.; Chen, T.J.; et al. Early intervention of intravenous KB220IV—Neuroadaptagen amino-acid therapy (NAAT) improves behavioral outcomes in a residential addiction treatment program: A pilot study. J. Psychoact. Drugs 2012, 44, 398–409. [Google Scholar] [CrossRef]
- Blum, K.; Chen, A.L.; Chen, T.J.; Rhoades, P.; Prihoda, T.J.; Downs, B.W.; Waite, R.L.; Williams, L.; Braverman, E.R.; Braverman, D.; et al. LG839: Anti-obesity effects and polymorphic gene correlates of reward deficiency syndrome. Adv. Ther. 2008, 25, 894–913. [Google Scholar] [CrossRef]
- Blum, K.; Chen, T.J.; Meshkin, B.; Downs, B.W.; Gordon, C.A.; Blum, S.; Mengucci, J.F.; Braverman, E.R.; Arcuri, V.; Varshavskiy, M.; et al. Reward deficiency syndrome in obesity: A preliminary cross-sectional trial with a Genotrim variant. Adv. Ther. 2006, 23, 1040–1051. [Google Scholar] [CrossRef]
- Blum, K.; Chen, T.J.; Meshkin, B.; Downs, B.W.; Gordon, C.A.; Blum, S.; Mangucci, J.F.; Braverman, E.R.; Arcuri, V.; Deutsch, R.; et al. Genotrim, a DNA-customized nutrigenomic product, targets genetic factors of obesity: Hypothesizing a dopamine-glucose correlation demonstrating reward deficiency syndrome (RDS). Med. Hypotheses 2007, 68, 844–852. [Google Scholar] [CrossRef]
- Downs, B.W.; Chen, A.L.; Chen, T.J.; Waite, R.L.; Braverman, E.R.; Kerner, M.; Braverman, D.; Rhoades, P.; Prihoda, T.J.; Palomo, T.; et al. Nutrigenomic targeting of carbohydrate craving behavior: Can we manage obesity and aberrant craving behaviors with neurochemical pathway manipulation by Immunological Compatible Substances (nutrients) using a Genetic Positioning System (GPS) Map? Med. Hypotheses 2009, 73, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.J.; Blum, K.; Chen, A.L.; Bowirrat, A.; Downs, W.B.; Madigan, M.A.; Waite, R.L.; Bailey, J.A.; Kerner, M.; Yeldandi, S.; et al. Neurogenetics and clinical evidence for the putative activation of the brain reward circuitry by a neuroadaptagen: Proposing an addiction candidate gene panel map. J. Psychoact. Drugs 2011, 43, 108–127. [Google Scholar] [CrossRef]
- Chen, T.J.; Blum, K.; Payte, J.T.; Schoolfield, J.; Hopper, D.; Stanford, M.; Braverman, E.R. Narcotic antagonists in drug dependence: Pilot study showing enhancement of compliance with SYN-10, amino-acid precursors and enkephalinase inhibition therapy. Med. Hypotheses 2004, 63, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Febo, M.; Blum, K.; Badgaiyan, R.D.; Baron, D.; Thanos, P.K.; Colon-Perez, L.M.; Demortrovics, Z.; Gold, M.S. Dopamine homeostasis: Brain functional connectivity in reward deficiency syndrome. Front. Biosci. 2017, 22, 669–691. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Febo, M.; Badgaiyan, R.D.; Demetrovics, Z.; Simpatico, T.; Fahlke, C.; M, O.-B.; Li, M.; Dushaj, K.; Gold, M.S. Common neurogenetic diagnosis and meso-limbic manipulation of hypodopaminergic function in reward deficiency syndrome (RDS): Changing the recovery landscape. Curr. Neuropharmacol. 2017, 15, 184–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, K.; Febo, M.; Thanos, P.K.; Baron, D.; Fratantonio, J.; Gold, M. Clinically combating reward deficiency syndrome (RDS) with dopamine agonist therapy as a paradigm shift: Dopamine for dinner? Mol. Neurobiol. 2015, 52, 1862–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, K.; Febo, M.; McLaughlin, T.; Cronjé, F.J.; Han, D.; Gold, S.M. Hatching the behavioral addiction egg: Reward deficiency solution system (RDSS)™ as a function of dopaminergic neurogenetics and brain functional connectivity linking all addictions under a common rubric. J. Behav. Addict. 2014, 3, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Thanos, P.K.; Oscar-Berman, M.; Febo, M.; Baron, D.; Badgaiyan, R.D.; Gardner, E.; Demetrovics, Z.; Fahlke, C.; Haberstick, B.C.; et al. Dopamine in the brain: Hypothesizing surfeit or deficit links to reward and addiction. J. Reward Defic. Syndr. 2015, 1, 95–104. [Google Scholar] [CrossRef]
- Febo, M.; Blum, K.; Badgaiyan, R.D.; Perez, P.D.; Colon-Perez, L.M.; Thanos, P.K.; Ferris, C.F.; Kulkarni, P.; Giordano, J.; Baron, D.; et al. Enhanced functional connectivity and volume between cognitive and reward centers of naïve rodent brain produced by pro-dopaminergic agent KB220Z. PLoS ONE 2017, 12, e0174774. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Febo, M.; Badgaiyan, R.D. Fifty years in the development of a glutaminergic-dopaminergic optimization complex (KB220) to balance brain reward circuitry in reward deficiency syndrome: A pictorial. Austin Addict. Sci. 2016, 1, 1006. [Google Scholar]
- Blum, K.; Liu, Y.; Wang, W.; Wang, Y.; Zhang, Y.; Oscar-Berman, M.; Smolen, A.; Febo, M.; Han, D.; Simpatico, T.; et al. rsfMRI effects of KB220Z™ on neural pathways in reward circuitry of abstinent genotyped heroin addicts. Postgrad. Med. 2015, 127, 232–241. [Google Scholar] [CrossRef]
- Cohen, J.D.; Blum, K.I. Reward and decision. Neuron 2002, 36, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Badgaiyan, R.D.; Braverman, E.R.; Dushaj, K.; Li, M.; Thanos, P.K.; Demetrovics, Z.; Febo, M. Hypothesizing that, a pro-dopamine regulator (KB220Z) should optimize, but not hyper-activate the activity of trace amine-associated receptor 1 (TAAR-1) and induce anti-craving of psychostimulants in the long-term. J. Reward Defic. Syndr. Addict. Sci. 2016, 2, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Whitney, D.; Fried, L.; Febo, M.; Waite, R.L.; Braverman, E.R.; Dushaj, K.; Li, M.; Giordano, J.; Demetrovics, Z.; et al. Hypothesizing that a pro-dopaminergic regulator (KB220z™ liquid variant) can induce “dopamine homeostasis” and provide adjunctive detoxification benefits in opiate/opioid dependence. Clin. Med. Rev. Case Rep. 2016, 3, 125. [Google Scholar] [CrossRef] [PubMed]
- Beitscher-Campbell, H.; Blum, K.; Febo, M.; Madigan, M.A.; Giordano, J.; Badgaiyan, R.D.; Braverman, E.R.; Dushaj, K.; Li, M.; Gold, M.S. Pilot clinical observations between food and drug seeking derived from fifty cases attending an eating disorder clinic. J. Behav. Addict. 2016, 5, 533–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaughlin, T.; Febo, M.; Badgaiyan, R.D.; Barh, D.; Dushaj, K.; Braverman, E.R.; Li, M.; Madigan, M.A.; Blum, K. KB220Z™ a pro-dopamine regulator associated with the protracted, alleviation of terrifying lucid dreams. Can we infer neuroplasticity-induced changes in the reward circuit? J. Reward. Defic. Syndr. Addict. Sci. 2016, 2, 3–13. [Google Scholar] [CrossRef]
- McLaughlin, T.; Blum, K.; Oscar-Berman, M.; Febo, M.; Demetrovics, Z.; Agan, G.; Fratantonio, J.; Gold, M.S. Using the neuroadaptagen KB200z™ to ameliorate terrifying, lucid nightmares in RDS patients: The role of enhanced, brain-reward, functional connectivity and dopaminergic homeostasis. J. Reward Defic. Syndr. 2015, 1, 24–35. [Google Scholar] [CrossRef]
- McLaughlin, T.; Blum, K.; Oscar-Berman, M.; Febo, M.; Agan, G.; Fratantonio, J.L.; Simpatico, T.; Gold, M.S. Putative dopamine agonist (KB220Z) attenuates lucid nightmares in PTSD patients: Role of enhanced brain reward functional connectivity and homeostasis redeeming joy. J. Behav. Addict. 2015, 4, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, B.; Blum, K.; McLaughlin, T.; Lubar, J.; Febo, M.; Braverman, E.R.; Badgaiyan, R.D. Low-resolution electromagnetic tomography (LORETA) of changed brain function provoked by pro-dopamine regulator (KB220z) in one adult ADHD case. Open J. Clin. Med. Case Rep. 2016, 2, 1121. [Google Scholar]
- McLaughlin, T.; Blum, K.; Steinberg, B.; Modestino, E.J.; Fried, L.; Baron, D.; Siwicki, D.; Braverman, E.R.; Badgaiyan, R.D. Pro-dopamine regulator, KB220Z, attenuates hoarding and shopping behavior in a female, diagnosed with SUD and ADHD. J. Behav. Addict. 2018, 7, 192–203. [Google Scholar] [CrossRef]
- Barh, D.; García-Solano, M.E.; Tiwari, S.; Bhattacharya, A.; Jain, N.; Torres-Moreno, D.; Ferri, B.; Silva, A.; Azevedo, V.; Ghosh, P.; et al. BARHL1 Is Downregulated in Alzheimer’s Disease and May Regulate Cognitive Functions through ESR1 and Multiple Pathways. Genes 2017, 8, 245. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Trachtenberg, M.C.; Elliott, C.E.; Dingler, M.L.; Sexton, R.L.; Samuels, A.I.; Cataldie, L. Enkephalinase inhibition and precursor amino acid loading improves inpatient treatment of alcohol and polydrug abusers: Double-blind placebo-controlled study of the nutritional adjunct SAAVE. Alcohol 1988, 5, 481–493. [Google Scholar] [CrossRef]
- Blum, K.; McLaughlin, T.; Modestino, E.J.; Baron, D.; Bowirrat, A.; Brewer, R.; Steinberg, B.; Roy, A.K.; Febo, M.; Badgaiyan, R.D.; et al. Epigenetic Repair of Terrifying Lucid Dreams by Enhanced Brain Reward Functional Connectivity and Induction of Dopaminergic Homeostatic Signaling. Curr. Psychopharmacol. 2021, 10. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.J.; Blum, K.; Trachtenberg, M.C. Neurodynamics of relapse prevention: A neuronutrient approach to outpatient DUI offenders. J. Psychoact. Drugs 1990, 22, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Trachtenberg, M.C.; Ramsay, J.C. Improvement of inpatient treatment of the alcoholic as a function of neurotransmitter restoration: A pilot study. Int. J. Addict. 1988, 23, 991–998. [Google Scholar] [CrossRef] [PubMed]
- DeFrance, J.F.; Hymel, C.; Trachtenberg, M.C.; Ginsberg, L.D.; Schweitzer, F.C.; Estes, S.; Chen, T.J.; Braverman, E.R.; Cull, J.G.; Blum, K. Enhancement of attention processing by Kantroll in healthy humans: A pilot study. Clin. Electroencephalogr. 1997, 28, 68–75. [Google Scholar] [CrossRef]
- Blum, K.; Gold, M.S. Neuro-chemical activation of brain reward meso-limbic circuitry is associated with relapse prevention and drug hunger: A hypothesis. Med. Hypotheses 2011, 76, 576–584. [Google Scholar] [CrossRef]
- Blum, K.; Cadet, J.L.; Gold, M.S. Psychostimulant use disorder emphasizing methamphetamine and the opioid-dopamine connection: Digging out of a hypodopaminergic ditch. J. Neurol. Sci. 2021, 420, 117252. [Google Scholar] [CrossRef]
- Blum, K.; Futterman, S.; Wallace, J.E.; Schwertner, H.A. Naloxone-induced inhibition of ethanol dependence in mice. Nature 1977, 265, 49–51. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Braverman, E.R.; Holder, J.M.; Lubar, J.F.; Monastra, V.J.; Miller, D.; Lubar, J.O.; Chen, T.J.; Comings, D.E. Reward deficiency syndrome: A biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J. Psychoact. Drugs 2000, 32 (Suppl. I–IV), 1–112. [Google Scholar] [CrossRef]
- Trachtenberg, M.C.; Blum, K. Improvement of cocaine-induced neuromodulator deficits by the neuronutrient Tropamine. J. Psychoact. Drugs 1988, 20, 315–331. [Google Scholar] [CrossRef]
- Blum, K.; Allison, D.; Trachtenberg, M.C.; Williams, R.W.; Loeblich, L.A. Reduction of both drug hunger and withdrawal against advice rate of cocaine abusers in a 30-day inpatient treatment program by the neuronutrient tropamine’. Curr. Ther. Res. 1988, 43, 1204–1214. [Google Scholar]
- Blum, K.; Chen, T.J.H.; Downs, B.W.; Meshkin, B.; Blum, S.H.; Martinez Pons, M.; Mengucci, J.F.; Waite, R.L.; Arcuri, V.; Varshafski, M.; et al. Synaptamine (SG8839) an amino-acid enkephalinase inhibition nutraceutical improves recovery of alcoholics, a subtype of reward deficiency syndrome (RDS). Trends Appl. Sci. Res. 2007, 2, 132–138. [Google Scholar]
- Mechelmans, D.J.; Strelchuk, D.; Doñamayor, N.; Banca, P.; Robbins, T.W.; Baek, K.; Voon, V. Reward sensitivity and waiting impulsivity: Shift towards reward valuation away from action control. Int. J. Neuropsychopharmacol. 2017, 20, 971–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kótyuk, E.; Urbán, R.; Hende, B.; Richman, M.; Magi, A.; Király, O.; Barta, C.; Griffiths, M.D.; Potenza, M.N.; Badgaiyan, R.D.; et al. Development and validation of the Reward Deficiency Syndrome Questionnaire (RDSQ-29). J. Psychopharmacol. 2022, 36, 409–422. [Google Scholar] [CrossRef] [PubMed]
- Mies, G.W.; Ma, I.; de Water, E.; Buitelaar, J.K.; Scheres, A. Waiting and working for rewards: Attention-Deficit/Hyperactivity Disorder is associated with steeper delay discounting linked to amygdala activation, but not with steeper effort discounting. Cortex 2018, 106, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Jimura, K.; Chushak, M.S.; Braver, T.S. Impulsivity and self-control during intertemporal decision making linked to the neural dynamics of reward value representation. J. Neurosci. 2013, 33, 344–357. [Google Scholar] [CrossRef] [Green Version]
- Voon, V.; Irvine, M.A.; Derbyshire, K.; Worbe, Y.; Lange, I.; Abbott, S.; Morein-Zamir, S.; Dudley, R.; Caprioli, D.; Harrison, N.A.; et al. Measuring “waiting” impulsivity in substance Gold MSddictions and binge eating disorder in a novel analogue of rodent serial reaction time task. Biol. Psychiatry 2014, 75, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Kazemi, T.; Huang, S.; Avci, N.G.; Waits, C.M.K.; Akay, Y.M.; Akay, M. Investigating the influence of perinatal nicotine and alcohol exposure on the genetic profiles of dopaminergic neurons in the VTA using miRNA-mRNA analysis. Sci. Rep. 2020, 10, 15016. [Google Scholar] [CrossRef]
- Beran, M.J.; Evans, T.A. Delay of gratification by chimpanzees (Pan troglodytes) in working and waiting situations. Behav. Processes 2009, 80, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Barlow, R.L.; Gorges, M.; Wearn, A.; Niessen, H.G.; Kassubek, J.; Dalley, J.W.; Pekcec, A. Ventral striatal D2/3 receptor availability is associated with impulsive choice behavior as well as limbic corticostriatal connectivity. Int. J. Neuropsychopharmacol. 2018, 21, 705–715. [Google Scholar] [CrossRef] [Green Version]
- Schwing, R.; Weber, S.; Bugnyar, T. Kea (Nestor notabilis) decide early when to wait in food exchange task. J. Comp. Psychol. 2017, 131, 269–276. [Google Scholar] [CrossRef]
- Adriani, W.; Laviola, G. Delay aversion but preference for large and rare rewards in two choice tasks: Implications for the measurement of self-control parameters. BMC Neurosci. 2006, 7, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, E.S.; Eagle, D.M.; Economidou, D.; Theobald, D.E.; Mar, A.C.; Murphy, E.R.; Robbins, T.W.; Dalley, J.W. Behavioural characterisation of high impulsivity on the 5-choice serial reaction time task: Specific deficits in ‘waiting’ versus ‘stopping’. Behav. Brain Res. 2009, 196, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, T.; Huss, M.; Fendrich, M.; Kruesi, M.J.; Ziegenhain, U. Children’s ability to delay gratification: Longitudinal relations to mother-child attachment. J. Genet. Psychol. 1997, 158, 411–426. [Google Scholar] [CrossRef] [PubMed]
- Berridge, K.C. The debate over dopamine’s role in reward: The case for incentive salience. Psychopharmacology 2007, 191, 391–431. [Google Scholar] [CrossRef]
- Gardner, E.L. Addiction and brain reward and antireward pathways. Adv. Psychosom. Med. 2011, 30, 22–60. [Google Scholar]
- Koob, G.F.; Le Moal, M. Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat. Neurosci. 2005, 8, 1442–1444. [Google Scholar] [CrossRef]
- Zhang, Y.; von Deneen, K.M.; Tian, J.; Gold, M.S.; Liu, Y. Food addiction and neuroimaging. Curr. Pharm. Des. 2011, 17, 1149–1157. [Google Scholar] [CrossRef] [Green Version]
- Berridge, K.C. Wanting and liking: Observations from the neuroscience and psychology laboratory. Inquiry 2009, 52, 378. [Google Scholar] [CrossRef] [Green Version]
- Tindell, A.J.; Smith, K.S.; Berridge, K.C.; Aldridge, J.W. Dynamic computation of incentive salience: “Wanting” what was never liked. J. Neurosci. 2009, 29, 12220–12228. [Google Scholar] [CrossRef] [Green Version]
- Peciña, S.; Cagniard, B.; Berridge, K.C.; Aldridge, J.W.; Zhuang, X. Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J. Neurosci. 2003, 23, 9395–9402. [Google Scholar] [CrossRef]
- Sharot, T.; Shiner, T.; Brown, A.C.; Fan, J.; Dolan, R.J. Dopamine enhances expectation of pleasure in humans. Curr. Biol. 2009, 19, 2077–2080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kornetsky, C. Brain-stimulation reward, morphine-induced oral stereotypy, and sensitization: Implications for abuse. Neurosci. Biobehav. Rev. 2004, 27, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Dackis, C.A.; Gold, M.S. New concepts in cocaine addiction: The dopamine depletion hypothesis. Neurosci. Biobehav. Rev. 1985, 9, 469–477. [Google Scholar] [CrossRef]
- Di Chiara, G.; Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl. Acad. Sci. USA 1988, 85, 5274–5278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elman, I.; Borsook, D. Common brain mechanisms of chronic pain and addiction. Neuron 2016, 89, 11–36. [Google Scholar] [CrossRef] [Green Version]
- Gold, M.S.; Baron, D.; Bowirrat, A.; Blum, K. Neurological correlates of brain reward circuitry linked to opioid use disorder (OUD): Do homo sapiens acquire or have a reward deficiency syndrome? J. Neurol. Sci. 2020, 418, 117137. [Google Scholar] [CrossRef]
- Elman, I.; Borsook, D.; Lukas, S.E. Food intake and reward mechanisms in patients with schizophrenia: Implications for metabolic disturbances and treatment with second-generation antipsychotic agents. Neuropsychopharmacology 2006, 31, 2091–2120. [Google Scholar] [CrossRef]
- Blum, K.; Sheridan, P.J.; Wood, R.C.; Braverman, E.R.; Chen, T.J.; Cull, J.G.; Comings, D.E. The D2 dopamine receptor gene as a determinant of reward deficiency syndrome. J. R. Soc. Med. 1996, 89, 396–400. [Google Scholar] [CrossRef] [Green Version]
- Elman, I.; Borsook, D. Threat response system: Parallel brain processes in pain vis-à-vis fear and anxiety. Front. Psychiatry 2018, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- LeDoux, J.E.; Pine, D.S. Using neuroscience to help understand fear and anxiety: A two-system framework. Am. J. Psychiatry 2016, 173, 1083–1093. [Google Scholar] [CrossRef] [Green Version]
- Murck, H.; Schubert, M.I.; Schmid, D.; Schüssler, P.; Steiger, A.; Auer, D.P. The glutamatergic system and its relation to the clinical effect of therapeutic-sleep deprivation in depression - an MR spectroscopy study. J. Psychiatr. Res. 2009, 43, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Salimpoor, V.N.; Benovoy, M.; Larcher, K.; Dagher, A.; Zatorre, R.J. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 2011, 14, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Michaelides, M.; Baler, R. The neuroscience of drug reward and addiction. Physiol. Rev. 2019, 99, 2115–2140. [Google Scholar] [CrossRef]
- Volkow, N.D.; Fowler, J.S.; Wolf, A.P.; Schlyer, D.; Shiue, C.Y.; Alpert, R.; Dewey, S.L.; Logan, J.; Bendriem, B.; Christman, D.; et al. Effects of chronic cocaine abuse on postsynaptic dopamine receptors. Am. J. Psychiatry 1990, 147, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Raza, A.; Schultz, T.; Jalali, R.; Green, R.; Brewer, R.; Thanos, P.K.; McLaughlin, T.; Baron, D.; Bowirrat, A.; et al. Should we embrace the incorporation of genetically guided “dopamine homeostasis” in the treatment of reward deficiency syndrome (RSD) as a frontline therapeutic modality? Acta Sci. Neurol. 2021, 4, 17–24. [Google Scholar] [PubMed]
- Juknat, A.; Gao, F.; Coppola, G.; Vogel, Z.; Kozela, E. miRNA expression profiles and molecular networks in resting and LPS-activated BV-2 microglia-effect of cannabinoids. PLoS ONE 2019, 14, e0212039. [Google Scholar] [CrossRef] [PubMed]
- Russo, S.J.; Nestler, E.J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 2013, 14, 609–625, Erratum in Nat. Rev. Neurosci. 2013, 14, 736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, S.; Robison, A.J.; Mazei-Robison, M.S. Reward circuitry in addiction. Neurotherapeutics 2017, 14, 687–697. [Google Scholar] [CrossRef] [Green Version]
- Walker, D.M.; Nestler, E.J. Neuroepigenetics and addiction. Handb. Clin. Neurol. 2018, 148, 747–765. [Google Scholar] [CrossRef]
- Archer, T.; Oscar-Berman, M.; Blum, K.; Gold, M. Neurogenetics and epigenetics in impulsive behaviour: Impact on reward circuitry. J. Genet. Syndr. Gene Ther. 2012, 3, 1000115. [Google Scholar] [CrossRef] [Green Version]
- Hansson, A.C.; Rimondini, R.; Neznanova, O.; Sommer, W.H.; Heilig, M. Neuroplasticity in brain reward circuitry following a history of ethanol dependence. Eur. J. Neurosci. 2008, 27, 1912–1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, K.; Bowirrat, A.; Lewis, M.C.; Simpatico, T.A.; Ceccanti, M.; Steinberg, B.; Modestino, E.J.; Thanos, P.K.; Baron, D.; McLaughlin, T.; et al. Exploration of epigenetic state hyperdopaminergia (Surfeit) and genetic trait hypodopaminergia (Deficit) during adolescent brain development. Curr. Psychopharmacol. 2021, 10, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Modestino, E.J.; Gondre-Lewis, M.G.; Baron, D.; Steinberg, B.; Thanos, P.K.; Downs, W.B.; Siwicki, D.; Lott, L.; Braverman, E.R.; et al. Pro-dopamine regulator (KB220) a fifty year sojourn to combat reward deficiency syndrome (RDS): Evidence based bibliography (annotated). CPQ Neurol. Psychol. 2018, 1. Available online: https://www.cientperiodique.com/journal/fulltext/CPQNP/1/2/13 (accessed on 22 February 2022).
- Blum, K.; Oscar-Berman, M.; Braverman, E.R.; Febo, M.; Li, M.; Gold, M.S. Enhancing brain pregnenolone may protect cannabis intoxication but should not be considered as an anti-addiction therapeutic: Hypothesizing dopaminergic blockade and promoting anti-reward. J. Reward Defic. Syndr. 2015, 1, 20–23. [Google Scholar] [CrossRef] [Green Version]
- Gold, M.S.; Blum, K.; Febo, M.; Baron, D.; Modestino, E.J.; Elman, I.; Badgaiyan, R.D. Molecular role of dopamine in anhedonia linked to reward deficiency syndrome (RDS) and anti- reward systems. Front. Biosci. 2018, 10, 309–325. [Google Scholar] [CrossRef] [Green Version]
- Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch. Gen. Psychiatry 1991, 48, 648–654. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.J.; Baler, R.D. Reward, dopamine and the control of food intake: Implications for obesity. Trends Cogn. Sci. 2011, 15, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Tanabe, J.; Regner, M.; Sakai, J.; Martinez, D.; Gowin, J. Neuroimaging reward, craving, learning, and cognitive control in substance use disorders: Review and implications for treatment. Br. J. Radiol. 2019, 92, 20180942. [Google Scholar] [CrossRef]
- Weele, C.M.V.; Siciliano, C.A.; Tye, K.M. Dopamine tunes prefrontal outputs to orchestrate aversive processing. Brain Res. 2019, 1713, 16–31. [Google Scholar] [CrossRef]
- Richer, K.; Hamilton, J.; Delis, F.; Martin, C.; Fricke, D.; Yao, R.; Sajjad, M.; Blum, K.; Hadjiargyrou, M.; Komatsu, D.; et al. Chronic treatment and abstinence from methylphenidate exposure dose-dependently changes glucose metabolism in the rat brain. Brain Res. 2022, 1780, 147799. [Google Scholar] [CrossRef]
- Blum, K.; Kazmi, S.; Modestino, E.J.; Downs, B.W.; Bagchi, D.; Baron, D.; McLaughlin, T.; Green, R.; Jalali, R.; Thanos, P.K.; et al. A novel precision approach to overcome the “addiction pandemic” by incorporating genetic addiction risk severity (GARS) and dopamine homeostasis restoration. J. Pers. Med. 2021, 11, 212. [Google Scholar] [CrossRef] [PubMed]
- Korb, S.; Götzendorfer, S.J.; Massaccesi, C.; Sezen, P.; Graf, I.; Willeit, M.; Eisenegger, C.; Silani, G. Dopaminergic and opioidergic regulation during anticipation and consumption of social and nonsocial rewards. eLife 2020, 9, e55797. [Google Scholar] [CrossRef] [PubMed]
- Di Chiara, G. Alcohol and dopamine. Alcohol Health Res. World 1997, 21, 108–114. [Google Scholar] [PubMed]
- Stefano, G.B.; Bianchi, E.; Guarna, M.; Fricchione, G.L.; Zhu, W.; Cadet, P.; Mantione, K.J.; Casares, F.M.; Kream, R.M.; Esch, T. Nicotine, alcohol and cocaine coupling to reward processes via endogenous morphine signaling: The dopamine-morphine hypothesis. Med. Sci. Monit. 2007, 13, RA91–RA102. [Google Scholar]
- Weinstein, A.; Livny, A.; Weizman, A. New developments in brain research of internet and gaming disorder. Neurosci. Biobehav. Rev. 2017, 75, 314–330. [Google Scholar] [CrossRef]
- Green, C.L.; Nahhas, R.W.; Scoglio, A.A.; Elman, I. Post-traumatic stress symptoms in pathological gambling: Potential evidence of anti-reward processes. J. Behav. Addict. 2017, 6, 98–101. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, Y.; Yang, Z.; Dai, W.; Zheng, Y.; Sun, Y.; Liu, X. Dysfunctional cognitive control and reward processing in adolescents with internet gaming disorder. Psychophysiology 2020, 57, e13469. [Google Scholar] [CrossRef]
- Chamberlain, S.R.; Derbyshire, K.; Daws, R.E.; Odlaug, B.L.; Leppink, E.W.; Grant, J.E. White matter tract integrity in treatment-resistant gambling disorder. Br. J. Psychiatry 2016, 208, 579–584. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Tian, M.; Zheng, Y.; Li, Q.; Liu, X. Reduced loss aversion and inhibitory control in adolescents with internet gaming disorder. Psychol. Addict. Behav. 2020, 34, 484–496. [Google Scholar] [CrossRef]
- Tian, M.; Chen, Q.; Zhang, Y.; Du, F.; Hou, H.; Chao, F.; Zhang, H. PET imaging reveals brain functional changes in internet gaming disorder. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1388–1397. [Google Scholar] [CrossRef]
- Adriani, W.; Boyer, F.; Gioiosa, L.; Macrì, S.; Dreyer, J.L.; Laviola, G. Increased impulsive behavior and risk proneness following lentivirus-mediated dopamine transporter over-expression in rats’ nucleus accumbens. Neuroscience 2009, 159, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuckerman, M.; Kuhlman, D.M. Personality and risk-taking: Common biosocial factors. J. Pers. 2000, 68, 999–1029. [Google Scholar] [CrossRef] [PubMed]
- Badgaiyan, R.D.; Sinha, S.; Sajjad, M.; Wack, D.S. Attenuated tonic and enhanced phasic release of dopamine in attention deficit hyperactivity disorder. PLoS ONE 2015, 10, e0137326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Hayek, S.; Allouch, F.; Razafsha, M.; Talih, F.; Gold, M.S.; Wang, K.K.; Kobeissy, F. Traumatic brain injury and methamphetamine: A double-hit neurological insult. J. Neurol. Sci. 2020, 411, 116711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gold, M.S. The role of alcohol, drugs, and deaths of despair in the U.S.’s falling life expectancy. MO Med. 2020, 117, 99–101. [Google Scholar]
- Oesterle, T.S.; Kolla, B.P.; Rummans, T.A.; Gold, M.S. Medication-assisted therapies for opioid use disorders in patients with chronic pain. J. Neurol. Sci. 2020, 411, 116728. [Google Scholar] [CrossRef] [Green Version]
Set 1. Criteria DSM5 Disorders | |
---|---|
A Present or Past Diagnosis or History of These Behavioral Disorders | |
Substance Use Process Disorders | Disorders: Alcohol Use Disorder, Opioid Use Disorder, Cannabis Use Disorder, Sedative, Hypnotic, Anxiolytic Use Disorder, Cocaine Use Disorder, Amphetamine Use Disorder, Hallucinogen Use Disorder, Nicotine Use Disorder, Inhalant Use Disorder, Other, Unknown Substance Use Disorder Specifiers: Mild, Moderate, Severe, Early Remission (6–12 months), Sustained Remission (12 + months), in a Controlled Environment, on Maintenance Therapy |
Process Disorders | Gambling, Sex, Other Specified Process Disorders |
Depressive (and related) Disorders | Major Depression, Dysthymia, Disruptive Mood Dysregulation, SUD/Medication/Medical Condition Inducted Depressive Disorder, Disruptive Premenstrual Dysphoric Disorder |
Anxiety Disorders | Generalized Anxiety Disorder, Social Anxiety, Panic Attack Disorder, Separation Anxiety, Selective Mutism, Specific Phobia, SUD/Medication/Medical Condition Inducted Anxiety |
Trauma and Stress Disorders | Reactive Attachment, Disinhibited Social Engagement, Post-Traumatic Stress Disorder (PTSD), Acute Stress Disorders |
Disruptive, Impulse Control, and Conduct Disorders | Oppositional Defiant Disorder, Intermittent Explosive Disorder, Conduct Disorder, Pyromania, Kleptomania |
Personality Disorders | General Personality Disorder, Paranoid Personality Disorder, Schizoid/Schizotypal Personality Disorder, Anti-Social Personality Disorder, Borderline Personality Disorder, Histrionic Personality Disorder, Narcissistic, Personality Disorder, Avoidant Personality Disorder, Dependent Personality Disorder |
Obsessive Compulsive Disorders and Related Disorders | Trichotillomania, Excoriation Disorder, SUD/Medical/Medication Inducted OCD Disorder, other Medical Condition, Induced Personality Disorder |
Schizophrenic Disorders | Schizophrenia, Schizoaffective Disorder, Schizophreniform Disorder, Delusional disorder, Brief Psychotic Disorder, MH/Medical Catalonia, SUD/Medication/Medical Condition Inducted Psychotic Disorder |
Dissociative Disorders | Dissociative Identity Disorder, Dissociative Amnesia, Depersonalization/Derealization Disorder |
Other Not Otherwise Specified (NOS) Disorders | Gender Dysphoric Disorder Paraphilic Disorders |
Spectrum Disorders | Attention Deficient Disorder, Attention Deficient/Hyperactivity Disorder, Tourette’s Syndrome, Autism |
Set 2. Criteria | |
Reported history of these symptoms: | |
Novelty seeking | The y trait is associated with exploratory activity in response to novel stimulation, impulsive decision making, extravagance in approach to reward cues, quick loss of temper, and avoidance of frustration. |
Impulsivity | The impulsivity construct includes at least two independent components: first, acting without an appropriate amount of deliberation, which may or may not be functional; and second, choosing short-term gains over long-term ones. |
Difficulty feeling reward (Anhedonia) | Either a reduced ability to experience pleasure or a diminished interest in engaging in pleasurable activities. |
Motivational Anhedonia | A decrease in motivation to participate in pleasurable activities. |
Rumination, Obsessive, and Intrusive Negative Thoughts | Possible causes and consequences, as opposed to its solutions. |
Genetic Variant | Prime Function |
---|---|
G-Allele COMT | Carriers of this allele will have a high activity of synaptic dopamine (DA) reabsorption leading to a reduced interaction at DA receptors. |
A-Allele of the DRD1 receptor gene | Carriers of this allele will have a reduced number of DRD1 receptors and lower DA function within the brain reward circuitry. The DRD1 receptor is involved in promoting normal DA function. |
A1 variant of the DRD2 receptor gene | Carriers of this allele will have a reduced number of DRD2 receptors up to 40% and, as such, will have a lower DA function within the brain reward circuitry, especially at the Ventral Tegmental Area (VTA) Nucleus Accumbens. |
C variant of the DRD3 | Carriers of this allele will have a reduced number of DRD3 receptors and have a lower DA function within the brain reward circuitry. Studies have found that this allele associates with risk for Alcohol, Cocaine, and Opioid Use Disorder as well as opioid dependence, especially in the African American population. |
C variant of the DRD4 receptor gene | Carriers of this allele will have a reduced number of DRD4 receptors and have a lower DA function within the brain reward circuitry. The DRD4 gene is responsible for normal DA function within the mesolimbic reward cascade, and the C variant is highly associated with risk for ADHD and novelty seeking. |
G-Allele of the OPRM1 receptor gene | Carriers of this allele will have a reduced number of Mu opioid receptors. Reduced Mu opioid receptors reduce GABA transmission at the Raphe Nuclei and Substania Nigra, leading to a reduced DA release at the VTA via altered inhibition of the normal Glutaminergic drive. |
9 R allele of the DAT1 gene | Carriers of this allele will have a high activity of synaptic dopamine (DA) reabsorption, leading to a reduced interaction at DA receptors. |
S or LG allele of the 5-HTTLPR gene | Carriers of these alleles will have a high activity of synaptic serotonin reabsorption, leading to a reduced interaction at serotonin receptors. This paucity leads to a reduced serotonergic transmission at the hypothalamus in the mesolimbic system. The low serotonin activity results in a reduced interaction with the endogenous opioid peptides and, as such, a reduced inhibition at GABA sites. |
4 R variant of the MAOA gene | Carriers of this allele will have a high activity of mitochondrial catabolism of both serotonin and dopamine. The high activity will reduce the projection of these neurotransmitters to storage at the pre-neuron vesicles for further release when fired with an action potential. |
181 allele of the GABRB3 gene | Carriers of this allele will have an overexpressed GABRB3 that will lead to a higher GABA transmission at the VTA-Glutaminergic site, leading to hypodopaminergia. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madigan, M.A.; Gupta, A.; Bowirrat, A.; Baron, D.; Badgaiyan, R.D.; Elman, I.; Dennen, C.A.; Braverman, E.R.; Gold, M.S.; Blum, K. Precision Behavioral Management (PBM) and Cognitive Control as a Potential Therapeutic and Prophylactic Modality for Reward Deficiency Syndrome (RDS): Is There Enough Evidence? Int. J. Environ. Res. Public Health 2022, 19, 6395. https://doi.org/10.3390/ijerph19116395
Madigan MA, Gupta A, Bowirrat A, Baron D, Badgaiyan RD, Elman I, Dennen CA, Braverman ER, Gold MS, Blum K. Precision Behavioral Management (PBM) and Cognitive Control as a Potential Therapeutic and Prophylactic Modality for Reward Deficiency Syndrome (RDS): Is There Enough Evidence? International Journal of Environmental Research and Public Health. 2022; 19(11):6395. https://doi.org/10.3390/ijerph19116395
Chicago/Turabian StyleMadigan, Margaret A., Ashim Gupta, Abdalla Bowirrat, David Baron, Rajendra D. Badgaiyan, Igor Elman, Catherine A. Dennen, Eric R. Braverman, Mark S. Gold, and Kenneth Blum. 2022. "Precision Behavioral Management (PBM) and Cognitive Control as a Potential Therapeutic and Prophylactic Modality for Reward Deficiency Syndrome (RDS): Is There Enough Evidence?" International Journal of Environmental Research and Public Health 19, no. 11: 6395. https://doi.org/10.3390/ijerph19116395
APA StyleMadigan, M. A., Gupta, A., Bowirrat, A., Baron, D., Badgaiyan, R. D., Elman, I., Dennen, C. A., Braverman, E. R., Gold, M. S., & Blum, K. (2022). Precision Behavioral Management (PBM) and Cognitive Control as a Potential Therapeutic and Prophylactic Modality for Reward Deficiency Syndrome (RDS): Is There Enough Evidence? International Journal of Environmental Research and Public Health, 19(11), 6395. https://doi.org/10.3390/ijerph19116395