Quantitative Evaluation of Psychological Tolerance under the Haze: A Case Study of Typical Provinces and Cities in China with Severe Haze
Abstract
:1. Introduction
1.1. Sentiment Analysis
1.2. Mental Health Impact Assessment
2. Materials and Methods
2.1. Study Area
2.2. Datasets and Data Processing
2.2.1. Data Collection
2.2.2. Sample Data Collection and Processing
2.2.3. Other Data
2.3. Research Method
2.3.1. SnowNLP
2.3.2. AHP-Entropy Method
- (1)
- Matrix of Index Judgment
- (2)
- Calculation of Feature Vectors and a Consistency Test
- (3)
- Calculate the weight of the index entropy
- (4)
- Weight of the Combination
2.3.3. Haze Psychological Tolerance Index
2.3.4. Method of Spatiotemporal Trajectory
3. Results and Discussion
3.1. Sentiment Analysis
3.2. Local Keyword Analysis
3.3. Psychological Tolerance
3.3.1. Provincial Scale
- (1)
- Evaluation Index System
- (2)
- Matrix of Index Judgment
- (3)
- Calculation of Feature Vectors and a Consistency Test
- (4)
- Weight of the Combination
3.3.2. Prefecture Level City Scale
3.4. Analysis of Spatiotemporal Trajectories
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Y.; Zhuang, G.; Tang, A.; Wang, Y.; An, Z. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Eviron. Sci. Techonol. 2006, 40, 3148–3155. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Duan, J.; Chen, D.; Wang, X.; Bi, X.; Fu, J. Chemical characteristics of haze during summer and winter in Guangzhou—ScienceDirect. Atmos. Res. 2009, 94, 238–245. [Google Scholar] [CrossRef]
- Huang, J.; Mcqueen, J.; Wilczak, J.; Djalalova, I.; Stajner, I.; Shafran, P.; Delle, M.L. Improving NOAA NAQFC PM2.5 Predictions with a Bias Correction Approach. Weather Forecast 2017, 32, 407–421. [Google Scholar] [CrossRef]
- Krzyzanowski, M. Health Effects of Transport-Related Air Pollution; Krzyzanowski, M., Kuna-Dibbert, B., Schneider, J., Eds.; WHO Regional Office Europe: Copenhagen, Denmark, 2005; Volume 97, pp. 418–419. [Google Scholar]
- Zhang, J.; Guo, C.; Xu, H.; Li, Y.; Zhang, L.; Dong, C.; Shi, Y.; Qian, H.; Jin, Q. Time series study on the relationship between air pollution and outpatient volume of respiratory diseases in a hospital in Shanghai. Environ. Occup. Med. 2014, 31, 846–851. [Google Scholar]
- Chow, J.C.; Watson, J.G.; Mauderly, J.L.; Costa, D.L.; Wyzga, R.E.; Vedal, S.; George, M.H.; Altshuler, S.L.; Marrack, D.; Heuss, J.M.; et al. 2006 critical review discussion—Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 1368–1380. [Google Scholar] [CrossRef] [PubMed]
- Bian, X. Effects of environmental pollution on mental health. Mod. Prev. Med. 2008, 35, 414–415. [Google Scholar]
- Tao, Y.; Zhang, F.; Shi, C.; Chen, Y. Social media data-based sentiment analysis of tourists’ air quality perceptions. Sustainability 2019, 11, 5070. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Chen, Y.; Ma, L. Effect of time-varying exposure to air pollution on subjective well-being. J. Clean. Prod. 2021, 281, 125364. [Google Scholar] [CrossRef]
- Tian, X.; Yu, G.; He, F. An analysis of sleep complaints on Sina Weibo. Comput. Hum. Behav. 2016, 62, 230–235. [Google Scholar] [CrossRef]
- Wang, J.; Jia, Y. Social media’s influence on air quality improvement: Evidence from China. J. Clean. Prod. 2021, 298, 126769. [Google Scholar] [CrossRef]
- Wang, L.; Yan, C.; Li, W. Study on temporal and spatial characteristics of tourism flow based on Sina Weibo big data—Taking Lanzhou as an example. Tour. Trib. 2017, 32, 94–105. [Google Scholar]
- Zhao, Y.; Qin, B.; Liu, T. Summary of text emotion analysis. J. Softw. 2010, 21, 1834–1848. [Google Scholar] [CrossRef]
- Wankhade, M.; Rao, A.C.S.; Kulkarni, C. A survey on sentiment analysis methods, applications, and challenges. Artif. Intell. Rev. 2022, 1–50. [Google Scholar] [CrossRef]
- Bollen, J.; Pepe, A.; Mao, H. Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. In Proceedings of the International AAAI Conference on Web and Social Media, Catalonia, Spain, 17–21 July 2011; Volume 5, pp. 450–453. [Google Scholar]
- Gemechu, G.F.; Rui, X.; Lu, H. Wetland Change Mapping Using Machine Learning Algorithms, and Their Link with Climate Variation and Economic Growth: A Case Study of Guangling County, China. Sustainability 2021, 14, 439. [Google Scholar] [CrossRef]
- Dashtipour, K.; Gogate, M.; Gelbukh, A.; Hussiain, A. Extending persian sentiment lexicon with idiomatic expressions for sentiment analysis. Soc. Netw. Anal. Min. 2022, 12, 9. [Google Scholar] [CrossRef]
- Sharma, S.S.; Dutta, G. SentiDraw: Using star ratings of reviews to develop domain specific sentiment lexicon for polarity determination. Inf. Process. Manag. 2021, 58, 02412. [Google Scholar] [CrossRef]
- Araque, O.; Zhu, G.; Iglesias, C.A. A semantic similarity-based perspective of affect lexicons for sentiment analysis. Knowl.-Based Syst. 2019, 165, 346–359. [Google Scholar] [CrossRef]
- Abdulmohsen, A.T.; Qubayl, A.; Abdulaziz, A. Sentiment lexicon for sentiment analysis of Saudi dialect tweets. Procedia Comput. Sci. 2018, 14, 301–307. [Google Scholar]
- Aydogan, E.; Akcayol, M.A. A comprehensive survey of sentiment analysis takes using machine learning techniques. INISTA Sinaia Rom. 2016. [Google Scholar] [CrossRef]
- Alsayat, A. Improving Sentiment Analysis for Social Media Applications Using an Ensemble Deep Learning Language Model. Arab. J. Sci. Eng. 2022, 47, 2499–2511. [Google Scholar] [CrossRef]
- Uni, A.; Corcoran, P.; Spasi, I. Aspect-based sentiment analysis with graph convolution over syntactic dependencies. Artif. Intell. Med. 2021, 119, 102138. [Google Scholar]
- García-Ordás, M.T.; Moreton, H.A.; Benítez-Andrades, J.A.; Benitez-Andrades, J.A.; Garcia, I.; Benabides, C. Sentiment analysis in non-fixed length audios using a Fully Convolutional Neural Network. Biomed. Signal Process. Control 2021, 69, 102946. [Google Scholar] [CrossRef]
- Song, Y.; Zhou, A.; Zhang, M.; Wang, H. Assessing the effects of haze pollution on subjective well-being based on Chinese General Social Survey. J. Clean. Prod. 2019, 235, 574–582. [Google Scholar] [CrossRef]
- Wang, X.; Yin, C.; Shao, C. Relationships among haze pollution, commuting behavior and life satisfaction: A quasi-longitudinal analysis. Transp. Res. Part D Transp. Environ. 2021, 92, 102723. [Google Scholar] [CrossRef]
- Liu, L.; Yan, Y.; Nazhalati, N.; Kuerban, A.; Li, J.; Huang, L. The effect of PM2.5 exposure and risk perception on the mental stress of Nanjing citizens in China. Chemosphere 2020, 254, 126797. [Google Scholar] [CrossRef] [PubMed]
- Descendant Collector [EB/OL]. Available online: http://www.houyicaiji.com/ (accessed on 4 August 2020).
- Zhang, N.; Liu, Y.C.; Wang, R.N. Social media data mining based on text emotion analysis. J. Henan Univ. Urban Constr. 2019, 28, 75–79. [Google Scholar]
- Lee, C.H.; Gutierrez, F.; Dou, D. Calculating feature weights in naive bayes with kullback-leibler measure. In Proceedings of the 2011 IEEE 11th International Conference on Data Mining, Vancouver, BC, Canada, 11–14 December 2011; pp. 1146–1151. [Google Scholar]
- Zhang, P.; Jia, Y.; Liu, Q. Research on text emotion analysis technology based on data mining technology. Infor. Com. 2020, 1, 77–78. [Google Scholar]
- Li, H.; Chai, Y. Quantitative analysis of emotional polarity of comment text based on attribute features. Data Anal. Knowl. Discov. 2017, 1, 1–11. [Google Scholar]
- Ghosh, A.; Kar, S.K. Correction to: Application of analytical hierarchy process (AHP) for flood risk assessment: A case study in Malda district of West Bengal, India. Nat. Hazards 2018, 94, 369. [Google Scholar] [CrossRef] [Green Version]
- Ayyildiz, E.; Gumus, A.T. Pythagorean fuzzy AHP based risk assessment methodology for hazardous material transportation: An application in Istanbul. Environ. Sci. Pollut. R. 2021, 28, 35798–35810. [Google Scholar] [CrossRef]
- Nikhil, S.; Danumah, J.H.; Saha, S. Correction to: Application of GIS and AHP Method in Forest Fire Risk Zone Mapping: A Study of the Parambikulam Tiger Reserve, Kerala, India. J. Geovis. Spat. Anal. 2021, 5, 15. [Google Scholar] [CrossRef]
- Vilasan, R.T.; Kapse, V.S. Evaluation of the prediction capability of AHP and F-AHP methods in flood susceptibility mapping of Ernakulam district (India). Nat. Hazards 2022, 2, 112. [Google Scholar] [CrossRef]
- Ayağ, Z.; Özdemir, R.G. A Fuzzy AHP Approach to Evaluating Machine Tool Alternatives. J. Intell. Manuf. 2006, 17, 179–190. [Google Scholar] [CrossRef]
- Qiao, J. Application of improved entropy method in Henan sustainable development evaluation. Resour. Sci. 2004, 26, 113–119. [Google Scholar]
- Wang, F.; Mao, A.; Li, H.; Jia, M. Quality measurement and regional difference of urbanization in Shandong Province based on the entropy method. Sci. Geogr. Sin. 2013, 33, 1323–1329. [Google Scholar]
- Gao, J.; Yang, Y. Evaluation on ecological security in Shiyanghe Valley, Gansu. For. Resour. Manag. 2010, 32, 9–13. [Google Scholar]
- Grondin, P.; Gauthier, S.; Borcard, D.; Bergeron, Y.; Noel, J. A new approach to ecological land classification for the Canadian boreal forest that integrates disturbance. Landsc. Ecol. 2014, 29, 1–16. [Google Scholar] [CrossRef]
- García-Álvarez, D.; Olmedo, M.T.C.; Paegelow, M. Sensitivity of a common Land Use Cover Change (LUCC) model to the Minimum Mapping Unit (MMU) and Minimum Mapping Width (MMW) of input maps. Comput. Environ. Urban Syst. 2019, 78, 101389. [Google Scholar] [CrossRef]
- Marc, L.; Zhang, P.L.; Robert, E.; Lahouari, B. Remote sensing of the urban heat island effect across biomes in the continental USA—Science Direct. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar]
- Davis, A.; Thill, J.C.; Meentemeyer, R.K. Multi-temporal trajectories of landscape change explain forest biodiversity in urbanizing ecosystems. Landsc. Ecol. 2017, 32, 1789–1803. [Google Scholar] [CrossRef]
- Turner, B.L.; Skole, D.L.; Sanderson, S.; Fischer, G.; Leenmans, R. Land-use and land-cover change. Science/Research plan. Glob. Chang. Rep. 1995, 43, 669–679. [Google Scholar]
- Shi, W.; Tao, F.; Liu, J. Changes in quantity and quality of cropland and the implications for grain production in the Huang-Huai-Hai Plain of China. Food Secur. 2013, 5, 69–82. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Chaskovskyy, O.; Knorn, J.; Radeloff, V.C.; Kruhlov, I.; Keeton, W.S.; Hostert, P. Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007. Remote Sens. Environ. 2009, 113, 1194–1207. [Google Scholar] [CrossRef]
- Sridhar, V.; Jaksa, W.; Fang, B.; Lakshmi, V.; Xin, J. Evaluating Bias-Corrected AMSR-E soil moisture using in situ observations and model estimates. Vadose Zone J. 2013, 12, 1712–1717. [Google Scholar] [CrossRef]
- Munroe, D.K.; Southworth, J.; Tucker, C.M. Modeling Spatially and Temporally Complex Land-Cover Change: The Case of Western Honduras. Prof. Geogr. 2004, 56, 544–559. [Google Scholar]
- Ruiz, J.; Domon, G. Analysis of landscape pattern change trajectories within areas of intensive agricultural use: Case study in a watershed of southern Quebec, Canada. Landsc. Ecol. 2009, 24, 419–432. [Google Scholar] [CrossRef]
- Brocca, L.; Hasenauer, S.; Lacava, T.; Melone, F.; Moramarco, T.; Wagner, W.; Dorigo, W.; Matgen, P.; Martinez, P.; Llorens, P. Soil moisture estimation throug ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sens. Environ. 2011, 115, 3390–3408. [Google Scholar] [CrossRef]
- Han, Y.; Rui, X.; Cheng, X.; Hui, F. Temporal and spatial variation of Arctic sea ice in recent 10 years based on temporal and spatial trajectory method. J. Grad. Sch. Chin. Acad. Sci. 2015, 32, 743–750. [Google Scholar]
- Lu, H.; Rui, X.; Li, R. Research on CO-word network topic mining and topic differences based on haze microblog data. J. Phys. Conf. Ser. 2021, 1971, 012089. [Google Scholar] [CrossRef]
Original Microblog | Cleaned Microblog | Remove Stop Words |
---|---|---|
What businesses have been closed or banned as a result of the recent blue sky cloudy weather? | The hazy weather has been substantially reduced in return for the current blue sky, and businesses have been shut down or outlawed. | Many businesses have closed as a result of the recent hazy weather, and the current blue sky has been outlawed. |
Toxins and harmful substances are eliminated from the body by enzymes that serve no other purpose but to keep the body healthy; consequently, health comes first! | During highly hazy days, enzymes are required to remove toxins and hazardous chemicals from the body; therefore, health comes first. | On days when there is a lot of haze, enzymes remove toxins and poisonous substances from the body. |
Haze is made up of a variety of substances that will most likely thicken in the skin! (Puhuangyu Community Health Center) | Haze has several substances that will likely build up in the skin. | The substances that cause haze block skin. |
Comparative Score | Relative Importance | Explanation |
---|---|---|
1 | Equally crucial | Indicates that both variables are equally important |
3 | Significantly important | One element has a tiny advantage over another |
5 | Important | One component takes precedence over another |
7 | Extremely significant | One aspect is far more significant than the other |
9 | Extremely crucial | One aspect is far more crucial than the others |
2, 4, 6, 8 | Adjacency has a middle value. | When a compromise between the two components is required, these values are employed |
Matrix Order | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
RI value | 0 | 0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 |
Cleaned Microblog | Release Time | Sentiment Score | Sentiment Tendency |
---|---|---|---|
There are no foggy days in life as long as the heart is clear. New Year’s greetings for 2017! | 1 January 2017, 09:44 | 0.710162602 | Positive |
The haze is such that still have the heart to fire the gun; I have nothing to say. | 1 February 2017, 08:01 | 0.32582773 | Negative |
On a polluted day, high school students acted as nature’s vacuum cleaners, while teachers stayed with their haze masks. | 4 May 2017, 08:57 | 0.460606061 | Negative |
This winter haze days really too much less awesome. | 18 December 2017, 11:56 | 0.809009009 | Positive |
Target Layer | Rule Layer | Index Layer |
---|---|---|
Psychological tolerance (A) | Ecological environment (B1) | Air quality (μg/m3, C1), temperature (°C, C2), relative humidity (%, C3), wind speed (m/s, C4), pollution days (d, C5) |
Social economy (B2) | Population density (person/km2, C6), per capita GDP (CNY, C7), proportion of secondary industry (%, C8), proportion of built-up area (%, C9), road area (10,000 m2, C10), per capita green space area (m2, C11), education level (C12), gender ratio (female = 100, C13) | |
Social media (B3) | Number of microblogs (C14), correlation coefficient of number (C15), sentiment score (C16), correlation coefficient of sentiment (C17), topic index (C18) |
Primary Index | Ecological Environment | Social Economy | Social Media |
---|---|---|---|
Ecological environment | 1 | 4 | 0.33333 |
Social economy | 0.25 | 1 | 0.14286 |
Social media | 3 | 7 | 1 |
Secondary Index | Temperature | Air Quality | Relative Humidity | Wind Speed | Pollution Days |
---|---|---|---|---|---|
Temperature | 1 | 5.95733 | 5.37924 | 6 | 1 |
Air quality | 0.16786 | 1 | 0.36 | 2.35832 | 0.34832 |
Relative humidity | 0.18591 | 2.77778 | 1 | 2.63424 | 0.13234 |
Wind speed | 0.166667 | 0.42399 | 0.37962 | 1 | 0.16982 |
Pollution days | 1 | 2.87092 | 7.55629 | 5.88859 | 1 |
Secondary Index | Population Density | Per Capita GDP | Proportion of Secondary Industry | Proportion of Built-Up Area | Road Area | Per Capita Green Space Area | Education Level | Gender Ratio |
---|---|---|---|---|---|---|---|---|
Population density | 1 | 0.68472 | 0.15402 | 0.65873 | 0.52938 | 0.62348 | 0.31245 | 0.53981 |
Per capita GDP | 1.46045 | 1 | 0.28564 | 2.43921 | 2.32913 | 0.31569 | 0.29837 | 2.4 |
Proportion of secondary industry | 6.49284 | 3.50091 | 1 | 2.5 | 1 | 2.47921 | 2.68931 | 2.78931 |
Proportion of built-up area | 1.51807 | 0.40997 | 0.4 | 1 | 0.5 | 0.33333 | 0.57532 | 0.5 |
Road area | 1.88901 | 0.42934 | 1 | 2 | 1 | 0.7 | 0.65 | 2.63922 |
Per capita green space area | 1.60391 | 3.16766 | 0.40335 | 3 | 1.42857 | 1 | 2.42324 | 2.58482 |
Education level | 3.20051 | 3.35154 | 0.37184 | 1.73816 | 1.53846 | 0.41267 | 1 | 2.35382 |
Gender ratio | 1.8525 | 0.41667 | 0.35851 | 2 | 0.37879 | 0.38687 | 0.42484 | 1 |
Secondary Index | Number of Microblogs | Correlation Coefficient of Number | Sentiment Score | Correlation Coefficient of Sentiment | Topic Index |
---|---|---|---|---|---|
Number of microblogs | 1 | 0.31582 | 0.166667 | 0.45225 | 0.12424 |
Correlation coefficient of number | 3.16636 | 1 | 0.65392 | 1.1 | 0.16667 |
Sentiment score | 6 | 1.52924 | 1 | 1.27 | 0.72737 |
Correlation coefficient of sentiment | 2.21116 | 0.90909 | 0.7874 | 1 | 1.1 |
Topic index | 8.04894 | 6 | 1.37482 | 0.90909 | 1 |
Target Layer | System Layer | Index Layer | AHP | Entropy Weight Method | Combination Weight |
---|---|---|---|---|---|
Psychological tolerance (PT) | Ecological Environment (B1) | Air quality (C1) | 0.103307 | 0.01794 | 0.070799 |
Temperature (C2) | 0.021266 | 0.087627 | 0.046536 | ||
Relative humidity (C3) | 0.027740 | 0.059598 | 0.039871 | ||
Wind speed (C4) | 0.012561 | 0.07623 | 0.036806 | ||
Pollution days (C5) | 0.098562 | 0.054243 | 0.081686 | ||
Social economy (B2) | Population density (C6) | 0.029542 | 0.114473 | 0.061884 | |
Per capita GDP (C7) | 0.004224 | 0.033572 | 0.015400 | ||
The proportion of secondary industry (C8) | 0.008478 | 0.070581 | 0.032127 | ||
The proportion of built-up area (C9) | 0.020486 | 0.064344 | 0.037187 | ||
Road area (C10) | 0.004855 | 0.068431 | 0.029065 | ||
Per capita green space area (C11) | 0.009563 | 0.050828 | 0.025277 | ||
Education level (C12) | 0.014204 | 0.055002 | 0.029740 | ||
Gender ratio (C13) | 0.011559 | 0.024712 | 0.016568 | ||
Social media (B3) | Number of microblogs (C14) | 0.033488 | 0.022391 | 0.029262 | |
The correlation coefficient of number (C15) | 0.090235 | 0.03637 | 0.069723 | ||
Sentiment score (C16) | 0.159775 | 0.034084 | 0.111912 | ||
The correlation coefficient of sentiment (C17) | 0.124904 | 0.096453 | 0.114070 | ||
Topic index (C18) | 0.249201 | 0.033121 | 0.166918 |
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|---|---|---|
Beijing | 0.48971 | 0.506841 | 0.602236 | 0.432072 | 0.447645 | 0.541737 | 0.521512 |
Tianjin | 0.495376 | 0.422032 | 0.378095 | 0.501404 | 0.426962 | 0.53912 | 0.498869 |
Hebei | 0.491715 | 0.453081 | 0.557138 | 0.363952 | 0.446847 | 0.548772 | 0.527312 |
Liaoning | 0.632011 | 0.539867 | 0.591269 | 0.569133 | 0.569305 | 0.72548 | 0.674516 |
Shanxi | 0.553621 | 0.510981 | 0.564137 | 0.561731 | 0.650882 | 0.613825 | 0.542213 |
Shandong | 0.598622 | 0.426567 | 0.576922 | 0.48618 | 0.434261 | 0.50842 | 0.502466 |
Inner Mongolia | 0.637273 | 0.566498 | 0.644165 | 0.539332 | 0.689162 | 0.731031 | 0.697857 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Rui, X.; Gemechu, G.F.; Li, R. Quantitative Evaluation of Psychological Tolerance under the Haze: A Case Study of Typical Provinces and Cities in China with Severe Haze. Int. J. Environ. Res. Public Health 2022, 19, 6574. https://doi.org/10.3390/ijerph19116574
Lu H, Rui X, Gemechu GF, Li R. Quantitative Evaluation of Psychological Tolerance under the Haze: A Case Study of Typical Provinces and Cities in China with Severe Haze. International Journal of Environmental Research and Public Health. 2022; 19(11):6574. https://doi.org/10.3390/ijerph19116574
Chicago/Turabian StyleLu, Haiyue, Xiaoping Rui, Gadisa Fayera Gemechu, and Runkui Li. 2022. "Quantitative Evaluation of Psychological Tolerance under the Haze: A Case Study of Typical Provinces and Cities in China with Severe Haze" International Journal of Environmental Research and Public Health 19, no. 11: 6574. https://doi.org/10.3390/ijerph19116574
APA StyleLu, H., Rui, X., Gemechu, G. F., & Li, R. (2022). Quantitative Evaluation of Psychological Tolerance under the Haze: A Case Study of Typical Provinces and Cities in China with Severe Haze. International Journal of Environmental Research and Public Health, 19(11), 6574. https://doi.org/10.3390/ijerph19116574