Effect of Different Maxillary Oral Appliance Designs on Respiratory Variables during Sleep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Sleep Test
2.4. Experimental Appliance Design and Measurement Schedule
2.5. Outcome Measures
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Participants
3.2. Comparison of Age, BMI, and Respiratory Variables in the Exacerbation and Non-Exacerbation Groups for Each MOA
3.3. The Relationship of Respiratory Variables between MOA Types and Dental Arch Morphology
3.4. Sleep Satisfaction While Wearing the Three Types of MOAs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Young, T.; Palta, M.; Dempsey, J.; Skatrud, J.; Weber, S.; Badr, S. The occurrence of sleep-disordered breathing among middle-aged adults. N. Engl. J. Med. 1993, 328, 1230–1235. [Google Scholar] [CrossRef] [Green Version]
- Flemons, W.W. Clinical practice. Obstructive sleep apnea. N. Engl. J. Med. 2002, 347, 498–504. [Google Scholar] [CrossRef]
- White, D.P. Pathogenesis of obstructive and central sleep apnea. Am. J. Respir. Crit. Care Med. 2005, 172, 1363–1370. [Google Scholar] [CrossRef] [Green Version]
- Young, T.; Skatrud, J.; Peppard, P.E. Risk Factors for Obstructive Sleep Apnea in Adults. JAMA 2004, 291, 2013–2016. [Google Scholar] [CrossRef]
- Mohammadieh, A.; Sutherland, K.; Cistulli, P.A. Sleep disordered breathing: Management update. Intern. Med. J. 2017, 47, 1241–1247. [Google Scholar] [CrossRef] [Green Version]
- Kaynak, H.; Kaynak, D.; Oztura, I. Does frequency of nocturnal urination reflect the severity of sleep-disordered breathing? J. Sleep Res. 2004, 13, 173–176. [Google Scholar] [CrossRef]
- Ahn, Y.H.; Lee, S.; Kim, S.R.; Lim, J.; Park, S.J.; Kwon, S.; Kim, H. Factors associated with different levels of daytime sleepiness among Korean construction drivers: A cross-sectional study. BMC Public Health 2021, 21, 2014. [Google Scholar] [CrossRef]
- Jean-Louis, G.; Zizi, F.; Clark, L.T.; Brown, C.D.; McFarlane, S.I. Obstructive sleep apnea and cardiovascular disease: Role of the metabolic syndrome and its components. J. Clin. Sleep Med. 2008, 4, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Kribbs, N.B.; Pack, A.I.; Kline, L.R.; Smith, P.L.; Schwartz, A.R.; Schubert, N.M.; Redline, S.; Henry, J.N.; Getsy, J.E.; Dinges, D.F. Objective measurement of patterns of nasal CPAP use by patients with obstructive sleep apnea. Am. Rev. Respir. Dis. 1993, 147, 887–895. [Google Scholar] [CrossRef]
- Almeida, F.R.; Bansback, N. Long-term effectiveness of oral appliance versus CPAP therapy and the emerging importance of understanding patient preferences. Sleep 2013, 36, 1271–1272. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, K.; Vanderveken, O.M.; Tsuda, H.; Marklund, M.; Gagnadoux, F.; Kushida, C.A.; Cistulli, P.A. Oral appliance treatment for obstructive sleep apnea: An update. J. Clin. Sleep Med. 2014, 10, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Ishiyama, H.; Hideshima, M.; Inukai, S.; Tamaoka, M.; Nishiyama, A.; Miyazaki, Y. Evaluation of Respiratory Resistance as a Predictor for Oral Appliance Treatment Response in Obstructive Sleep Apnea: A Pilot Study. J. Clin. Med. 2021, 10, 1255. [Google Scholar] [CrossRef]
- Ishiyama, H.; Hasebe, D.; Sato, K.; Sakamoto, Y.; Furuhashi, A.; Komori, E.; Yuasa, H. The Efficacy of Device Designs (Mono-block or Bi-block) in Oral Appliance Therapy for Obstructive Sleep Apnea Patients: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2019, 16, 3182. [Google Scholar] [CrossRef] [Green Version]
- Minakuchi, H.; Fujisawa, M.; Abe, Y.; Iida, T.; Oki, K.; Okura, K.; Tanabe, N.; Nishiyama, A. Managements of sleep bruxism in adult: A systematic review. Jpn. Dent. Sci. Rev. 2022, 58, 124–136. [Google Scholar] [CrossRef]
- Gagnon, Y.; Mayer, P.; Morisson, F.; Rompré, P.H.; Lavigne, G.J. Aggravation of respiratory disturbances by the use of an occlusal splint in apneic patients: A pilot study. Int. J. Prosthodont. 2004, 17, 447–453. [Google Scholar]
- Kapur, V.; Strohl, K.P.; Redline, S.; Iber, C.; O’Connor, G.; Nieto, J. Underdiagnosis of sleep apnea syndrome in U.S. communities. Sleep Breath 2002, 6, 49–54. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Naeije, M.; Aarab, G.; Hamburger, H.L.; Visscher, C.M.; Lobbezoo, F. The effect of raising the bite without mandibular protrusion on obstructive sleep apnoea. J. Oral Rehabil. 2011, 38, 643–647. [Google Scholar] [CrossRef]
- Pang, K.P.; Gourin, C.G.; Terris, D.J. A comparison of polysomnography and the WatchPAT in the diagnosis of obstructive sleep apnea. Otolaryngol. Head Neck Surg. 2007, 137, 665–668. [Google Scholar] [CrossRef]
- O’Brien, L.M.; Bullough, A.S.; Shelgikar, A.V.; Chames, M.C.; Armitage, R.; Chervin, R.D. Validation of Watch-PAT-200 against polysomnography during pregnancy. J. Clin. Sleep Med. 2012, 8, 287–294. [Google Scholar] [CrossRef]
- Park, C.Y.; Hong, J.H.; Lee, J.H.; Lee, K.E.; Cho, H.S.; Lim, S.J.; Kwak, J.W.; Kim, K.S.; Kim, H.J. Clinical usefulness of watch-PAT for assessing the surgical results of obstructive sleep apnea syndrome. J. Clin. Sleep Med. 2014, 10, 43–47. [Google Scholar] [CrossRef]
- Choi, J.H.; Lee, B.; Lee, J.Y.; Kim, H.J. Validating the Watch-PAT for Diagnosing Obstructive Sleep Apnea in Adolescents. J. Clin. Sleep Med. 2018, 14, 1741–1747. [Google Scholar] [CrossRef]
- Pillar, G.; Berall, M.; Berry, R.; Etzioni, T.; Shrater, N.; Hwang, D.; Ibrahim, M.; Litman, E.; Manthena, P.; Koren-Morag, N.; et al. Detecting central sleep apnea in adult patients using WatchPAT-a multicenter validation study. Sleep Breath 2020, 24, 387–398. [Google Scholar] [CrossRef] [Green Version]
- Berry, R.B.; Gamaldo, C.E.; Harding, S.M.; Brooks, R.; Lloyd, R.M.; Vaughn, B.V.; Marcus, C.L. AASM Scoring Manual Version 2.2 Updates: New Chapters for Scoring Infant Sleep Staging and Home Sleep Apnea Testing. J. Clin. Sleep Med. 2015, 11, 1253–1254. [Google Scholar] [CrossRef] [Green Version]
- American Academy of Sleep Medicine. International Classification of Sleep Disorders, 3rd ed.; American Academy of Sleep Medicine: Darien, IL, USA, 2014. [Google Scholar]
- Dylina, T.J. A common-sense approach to splint therapy. J. Prosthet. Dent. 2001, 86, 539–545. [Google Scholar] [CrossRef] [Green Version]
- Al-Zubair, N.M. Determinant factors of Yemeni maxillary arch dimensions. Saudi Dent. J. 2015, 27, 50–54. [Google Scholar] [CrossRef] [Green Version]
- Maeda, K.; Tsuiki, S.; Fukuda, T.; Takise, Y.; Inoue, Y. Is maxillary dental arch constriction common in Japanese male adult patients with obstructive sleep apnoea? Eur. J. Orthod. 2014, 36, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Tschopp, S.; Wimmer, W.; Caversaccio, M.; Borner, U.; Tschopp, K. Night-to-night variability in obstructive sleep apnea using peripheral arterial tonometry: A case for multiple night testing. J. Clin. Sleep Med. 2021, 17, 1751–1758. [Google Scholar] [CrossRef]
- Le Bon, O.; Staner, L.; Hoffmann, G.; Dramaix, M.; San Sebastian, I.; Murphy, J.R.; Kentos, M.; Pelc, I.; Linkowski, P. The first-night effect may last more than one night. J. Psychiatr. Res. 2001, 35, 165–172. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Ahlberg, J.; Visscher, C.M.; Hamburger, H.L.; Naeije, M.; Lobbezoo, F. Effects of occlusal stabilization splints on obstructive sleep apnea: A randomized controlled trial. J. Orofac. Pain 2013, 27, 199–205. [Google Scholar] [CrossRef]
- Miyamoto, K.; Ozbek, M.M.; Lowe, A.A.; Sjöholm, T.T.; Love, L.L.; Fleetham, J.A.; Ryan, C.F. Mandibular posture during sleep in healthy adults. Arch. Oral Biol. 1998, 43, 269–275. [Google Scholar] [CrossRef]
- Johnston, C.D.; Gleadhill, I.C.; Cinnamond, M.J.; Gabbey, J.; Burden, D.J. Mandibular advancement appliances and obstructive sleep apnoea: A randomized clinical trial. Eur. J. Orthod. 2002, 24, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Trudo, F.J.; Gefter, W.B.; Welch, K.C.; Gupta, K.B.; Maislin, G.; Schwab, R.J. State-related changes in upper airway caliber and surrounding soft-tissue structures in normal subjects. Am. J. Respir. Crit. Care Med. 1998, 158, 1259–1270. [Google Scholar] [CrossRef]
- Marklund, M.; Persson, M.; Franklin, K.A. Treatment success with a mandibular advancement device is related to supine-dependent sleep apnea. Chest 1998, 114, 1630–1635. [Google Scholar] [CrossRef]
- Cistulli, P.A.; Gotsopoulos, H.; Marklund, M.; Lowe, A.A. Treatment of snoring and obstructive sleep apnea with mandibular repositioning appliances. Sleep Med. Rev. 2004, 8, 443–457. [Google Scholar] [CrossRef]
- Isono, S.; Tanaka, A.; Tagaito, Y.; Ishikawa, T.; Nishino, T. Influences of head positions and bite opening on collapsibility of the passive pharynx. J. Appl. Physiol. 2004, 97, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Kuwashima, A.; Virk, A.; Merrill, R. Respiratory effect associated with use of occlusal orthotics in temporomandibular disorder patients. Int. J. Oral-Med. Sci. 2019, 18, 101–109. [Google Scholar]
- Fujimoto, S.; Yamaguchi, K.; Gunjigake, K. Clinical estimation of mouth breathing. Am. J. Orthod. Dentofacial. Orthop. 2009, 136, 630.e1–630.e7. [Google Scholar] [CrossRef]
- Slowik, J.M.; Collen, J.F. Obstructive Sleep Apnea; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Kushida, C.A.; Efron, B.; Guilleminault, C. A predictive morphometric model for the obstructive sleep apnea syndrome. Ann. Intern. Med. 1997, 127, 581–587. [Google Scholar] [CrossRef]
- Guilleminault, C.; Partinen, M.; Hollman, K.; Powell, N.; Stoohs, R. Familial aggregates in obstructive sleep apnea syndrome. Chest 1995, 107, 1545–1551. [Google Scholar] [CrossRef] [Green Version]
- Cistulli, P.A.; Richards, G.N.; Palmisano, R.G.; Unger, G.; Berthon-Jones, M.; Sullivan, C.E. Influence of maxillary constriction on nasal resistance and sleep apnea severity in patients with Marfan’s syndrome. Chest 1996, 110, 1184–1188. [Google Scholar] [CrossRef]
- Banabilh, S.M.; Suzina, A.H.; Dinsuhaimi, S.; Samsudin, A.R.; Singh, G.D. Dental arch morphology in south-east Asian adults with obstructive sleep apnoea: Geometric morphometrics. J. Oral Rehabil. 2009, 36, 184–192. [Google Scholar] [CrossRef] [PubMed]
Total | w/o-OSA Participants (n = 10) | Mild-OSA Participants (n = 13) | p-Value a | |
---|---|---|---|---|
Age (years) | 31.1 (4.3) | 29.9 (4.1) | 32.1 (4.3) | 0.24 |
BMI (kg/m2) | 21.9 (2.7) | 22.4 (2.7) | 21.6 (2.7) | 0.45 |
REI (events/h) | 5.9 (3.8) | 2.3 (1.1) | 8.7 (2.7) | <0.001 |
Lowest SpO2 (%) | 91.7 (2.4) | 93.2 (1.3) | 90.5 (2.4) | 0.003 |
Maxillary DAL (mm) | 44.2 (2.9) | 45.2 (3.8) | 43.5 (1.9) | 0.21 |
A-DAW (mm) | 43.0 (3.4) | 44.9 (3.1) | 41.6 (2.8) | 0.017 |
P-DAW (mm) | 55.6 (3.0) | 56.5 (2.7) | 54.8 (3.1) | 0.17 |
PD (mm) | 20.5 (1.8) | 20.4 (1.6) | 20.6 (2.0) | 0.83 |
Mandibular DAL (mm) | 31.3 (2.8) | 32.4 (3.0) | 30.5 (2.3) | 0.12 |
A-DAW (mm) | 34.0 (3.5) | 35.4 (3.0) | 32.9 (3.7) | 0.087 |
P-DAW (mm) | 47.7 (3.1) | 48.2 (2.2) | 47.0 (3.6) | 0.23 |
Maxillary/Mandibular: A-DAW | 1.27 (0.09) | 1.27 (0.09) | 1.27 (0.09) | 0.93 |
Maxillary/Mandibular: P-DAW | 1.17 (0.04) | 1.17 (0.04) | 1.17 (0.04) | 0.85 |
Number (%) | Age (years) | BMI (kg/m2) | Baseline | With OA | ||||
---|---|---|---|---|---|---|---|---|
REI (events/h) | Lowest SpO2 (%) | REI (events/h) | Lowest SpO2 (%) | |||||
w/o-OSA participants (n = 10) | ||||||||
S-OA | Exacerbation | 1 (10%) | 35.0 (-) | 22.3 (-) | 4.2 (-) | 92.0 (-) | 6.8 (-) | 91.5 (-) |
Non-exacerbation | 9 (90%) | 29.3 (4.0) | 22.5 (2.9) | 2.1 (1.0) | 93.3 (1.3) | 2.7 (1.0) | 91.8 (2.2) | |
p-Value | 0.21 | 0.96 | 0.088 | 0.38 | 0.005 | 0.89 | ||
PC-OA | Exacerbation | 4 (40%) | 29.3 (4.8) | 21.8 (2.7) | 2.8 (1.2) | 93.88 (1.3) | 7.7 (0.85) | 93.1 (2.2) |
Non-exacerbation | 6 (60%) | 30.3 (4.1) | 22.9 (2.9) | 2.0 (1.1) | 92.75 (1.3) | 2.5 (1.0) | 93.3 (1.6) | |
p-Value | 0.72 | 0.56 | 0.29 | 0.22 | <0.001 | 0.93 | ||
VI-OA | Exacerbation | 3 (30%) | 31.0 (4.0) | 20.6 (1.8) | 2.8 (1.5) | 93.67 (1.5) | 8.8 (2.4) | 89.0 (4.0) |
Non-exacerbation | 7 (70%) | 29.4 (4.4) | 23.2 (2.8) | 2.1 (1.1) | 93.00 (1.3) | 2.6 (0.66) | 93.6 (1.3) | |
p-Value | 0.61 | 0.13 | 0.53 | 0.55 | 0.042 | 0.18 | ||
Mild-OSA participants (n = 13) | ||||||||
S-OA | Exacerbation | 2 (15.4%) | 29.5 (5.0) | 19.1 (1.4) | 7.3 (0.92) | 92.5 (2.1) | 16.9 (5.7) | 92.5 (2.1) |
Non-exacerbation | 11 (84.6%) | 32.6 (4.3) | 22.0 (2.6) | 8.9 (2.8) | 90.09 (2.4) | 5.8 (3.7) | 92.0 (2.1) | |
p-Value | 0.54 | 0.12 | 0.18 | 0.32 | 0.20 | 0.80 | ||
PC-OA | Exacerbation | 3 (23.1%) | 36.3 (4.2) | 22.1 (3.6) | 7.0 (2.2) | 92.0 (1.0) | 16.0 (1.1) | 85.5 (6.9) |
Non-exacerbation | 10 (76.9%) | 30.8 (3.6) | 21.4 (2.6) | 9.1 (2.7) | 90.0 (2.6) | 4.7 (2.8) | 92.5 (2.3) | |
p-Value | 0.13 | 0.78 | 0.24 | 0.074 | <0.001 | 0.22 | ||
VI-OA | Exacerbation | 3 (23.1%) | 30.3 (4.0) | 22.4 (2.0) | 10.8 (3.5) | 90.8 (2.8) | 15.1 (2.0) | 90.0 (4.6) |
Non-exacerbation | 10 (76.9%) | 32.6 (4.5) | 21.3 (2.9) | 8.0 (2.2) | 90.4 (2.5) | 5.3 (3.3) | 91.9 (2.6) | |
p-Value | 0.46 | 0.49 | 0.30 | 0.81 | 0.001 | 0.56 |
Maxillary Dental Arch (mm) | Mandibular Dental Arch (mm) | Maxillary/Mandibular | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
DAL | A-DAW | P-DAW | PD | DAL | A-DAW | P-DAW | A-DAW | P-DAW | ||
w/o-OSA participants (n = 10) | ||||||||||
S-OA | Exacerbation | 40.0 (-) | 45.8 (-) | 60.4 (-) | 20.6 (-) | 32.0 (-) | 38.9 (-) | 52.6 (-) | 1.18 (-) | 1.15 (-) |
Non-exacerbation | 45.8 (3.5) | 44.8 (3.3) | 56.1 (2.5) | 20.4 (1.7) | 32.5 (3.2) | 35.0 (2.9) | 48.1 (1.7) | 1.28 (0.09) | 1.17 (0.04) | |
p-Value | 0.16 | 0.77 | 0.14 | 0.95 | 0.90 | 0.23 | 0.040 | 0.29 | 0.67 | |
PC-OA | Exacerbation | 44.0 (3.3) | 44.1 (1.3) | 56.3 (3.2) | 20.4 (0.1) | 31.8 (0.9) | 37.4 (1.3) | 49.4 (2.2) | 1.18 (0.04) | 1.14 (0.05) |
Non-exacerbation | 46.0 (4.1) | 45.4 (4.0) | 56.7 (2.6) | 20.5 (2.2) | 32.9 (3.9) | 34.1(3.1) | 47.8 (2.2) | 1.33 (0.04) | 1.18 (0.02) | |
p-Value | 0.42 | 0.49 | 0.88 | 0.98 | 0.54 | 0.051 | 0.32 | 0.001 | 0.15 | |
VI-OA | Exacerbation | 42.7 (2.3) | 44.6 (1.1) | 56.5 (3.9) | 20.4 (0.2) | 32.0 (1.0) | 37.5 (1.6) | 49.6 (2.6) | 1.19 (0.03) | 1.17 (0.06) |
Non-exacerbation | 46.3 (4.0) | 45.0 (3.8) | 56.5 (2.4) | 20.5 (2.0) | 32.6 (3.7) | 34.6 (3.1) | 48.0 (2.0) | 1.30 (0.08) | 1.18 (0.02) | |
p-Value | 0.11 | 0.82 | 1.0 | 0.97 | 0.71 | 0.093 | 0.41 | 0.015 | 0.37 | |
Mild-OSA participants (n = 13) | ||||||||||
S-OA | Exacerbation | 44.5 (0.7) | 41.3 (3.5) | 53.5 (5.1) | 21.2 (1.6) | 29.3 (3.8) | 34.3 (8.2) | 47.2 (7.5) | 1.23 (0.19) | 1.14 (0.07) |
Non-exacerbation | 43.3 (2.0) | 41.6 (2.9) | 55.1 (2.9) | 20.5 (2.2) | 30.7 (2.2) | 32.7 (3.0) | 47.0 (3.2) | 1.28 (0.08) | 1.17 (0.04) | |
p-Value | 0.18 | 0.93 | 0.73 | 0.66 | 0.69 | 0.83 | 0.97 | 0.77 | 0.61 | |
PC-OA | Exacerbation | 43.3 (2.1) | 43.2 (4.0) | 53.3 (3.0) | 19.6 (0.6) | 30.0 (2.0) | 34.1 (4.8) | 45.9 (4.2) | 1.27 (0.08) | 1.16 (0.06) |
Non-exacerbation | 43.5 (2.0) | 41.1 (2.4) | 55.3 (3.1) | 20.9 (2.2) | 30.7 (2.5) | 32.6 (3.5) | 47.3 (3.6) | 1.27 (0.10) | 1.17 (0.04) | |
p-Value | 0.91 | 0.46 | 0.39 | 0.10 | 0.65 | 0.66 | 0.91 | 0.90 | 0.84 | |
VI-OA | Exacerbation | 44.3 (2.5) | 42.9 (1.8) | 56.9 (2.0) | 22.2 (0.3) | 29.2 (3.3) | 35.1 (4.4) | 49.0 (3.7) | 1.23 (0.12) | 1.17 (0.07) |
Non-exacerbation | 43.2 (1.8) | 41.2 (3.0) | 54.2 (3.2) | 20.1 (2.1) | 30.9 (2.0) | 32.3 (3.4) | 46.4 (3.6) | 1.28 (0.08) | 1.17 (0.04) | |
p-Value | 0.53 | 0.29 | 0.14 | 0.012 | 0.48 | 0.38 | 0.36 | 0.53 | 0.94 |
Sleep Quality a | Arousal b | Difficulty in Breathing c | ||
---|---|---|---|---|
w/o-OSA participants (n = 10) | ||||
S-OA | Exacerbation | 2.5 (2.5, 2.5) | 2.0 (2.0, 2.0) | 0.0 (0.0, 0.0) |
Non-exacerbation | 2.0 (1.3, 3.0) | 0.5 (0.0, 1.8) | 0.0 (0.0, 0.5) | |
p-Value | 0.80 | 0.40 | 0.80 | |
PC-OA | Exacerbation | 3.0 (3.0, 3.0) | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) |
Non-exacerbation | 2.0 (1.5, 3.0) | 1.0 (0.0, 2.0) | 0.0 (0.0, 1.0) | |
p-Value | 0.40 | 0.40 | 0.60 | |
VI-OA | Exacerbation | 3.0 (3.0, 3.0) | 0.5 (0.5, 0.5) | 0.0 (0.0, 0.0) |
Non-exacerbation | 3.0 (1.5, 3.0) | 1.0 (0.5, 1.5) | 0.0 (0.0, 0.3) | |
p-Value | 0.80 | 0.60 | 0.80 | |
Mild-OSA participants (n = 13) | ||||
S-OA | Exacerbation | 1.8 (1.4, 2.1) | 1.8 (1.6, 1.9) | 0.5 (0.3, 0.8) |
Non-exacerbation | 2.0 (1.5, 2.4) | 1.0 (0.6, 1.9) | 0.0 (0.0, 0.4) | |
p-Value | 0.77 | 0.31 | 0.64 | |
PC-OA | Exacerbation | 1.5 (0.4, 1.5) | 1.5 (1.5, 1.5) | 0.0 (0.5, 1.0) |
Non-exacerbation | 1.5 (1.0, 1.9) | 1.5 (1.0, 1.5) | 0.0 (0.0, 0.9) | |
p-Value | 0.57 | 0.81 | 1.0 | |
VI-OA | Exacerbation | 2.0 (2.1, 2.3) | 1.0 (0.6, 1.0) | 0.0 (0.0, 0.0) |
Non-exacerbation | 1.8 (1.1, 2.0) | 1.3 (1.0, 2.0) | 0.5 (0.0, 1.0) | |
p-Value | 0.11 | 0.29 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye Min Soe, K.T.; Ishiyama, H.; Nishiyama, A.; Shimada, M.; Maeda, S. Effect of Different Maxillary Oral Appliance Designs on Respiratory Variables during Sleep. Int. J. Environ. Res. Public Health 2022, 19, 6714. https://doi.org/10.3390/ijerph19116714
Ye Min Soe KT, Ishiyama H, Nishiyama A, Shimada M, Maeda S. Effect of Different Maxillary Oral Appliance Designs on Respiratory Variables during Sleep. International Journal of Environmental Research and Public Health. 2022; 19(11):6714. https://doi.org/10.3390/ijerph19116714
Chicago/Turabian StyleYe Min Soe, Kay Thwe, Hiroyuki Ishiyama, Akira Nishiyama, Masahiko Shimada, and Shigeru Maeda. 2022. "Effect of Different Maxillary Oral Appliance Designs on Respiratory Variables during Sleep" International Journal of Environmental Research and Public Health 19, no. 11: 6714. https://doi.org/10.3390/ijerph19116714
APA StyleYe Min Soe, K. T., Ishiyama, H., Nishiyama, A., Shimada, M., & Maeda, S. (2022). Effect of Different Maxillary Oral Appliance Designs on Respiratory Variables during Sleep. International Journal of Environmental Research and Public Health, 19(11), 6714. https://doi.org/10.3390/ijerph19116714