Infectious Diseases Associated with Desert Dust Outbreaks: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Selection Criteria
2.2. Data Extraction
3. Results
3.1. Search Results and Included Studies
3.2. Characteristics of Included Studies
3.3. Identified Microorganisms from Airborne Sampling
3.4. Associated Infectious Diseases
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wu, Y.; Wen, B.; Li, S.; Guo, Y. Sand and dust storms in Asia: A call for global cooperation on climate change. Lancet Planet Health 2021, 5, e329–e330. [Google Scholar] [CrossRef]
- Sandstrom, T.; Forsberg, B. Desert dust: An unrecognized source of dangerous air pollution? Epidemiology 2008, 19, 808–809. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Jeong, J.H.; Yoon, J.H.; Kim, H.; Wang, S.S.; Linderholm, H.W.; Fang, K.; Wu, X.; Chen, D. Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science 2020, 370, 1095–1099. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Kim, E.K.; Park, H.J.; McDowell, A.; Kim, Y.K. The impact of bacteria-derived ultrafine dust particles on pulmonary diseases. Exp. Mol. Med. 2020, 52, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Dockery, D.W. Health effects of particulate air pollution. Ann. Epidemiol. 2009, 19, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Griffin, D.W. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol. Rev. 2007, 20, 459–477. [Google Scholar] [CrossRef] [Green Version]
- Aghababaeian, H.; Ostadtaghizadeh, A.; Ardalan, A.; Asgary, A.; Akbary, M.; Yekaninejad, M.S.; Stephens, C. Global Health Impacts of Dust Storms: A Systematic Review. Environ. Health Insights 2021. [Google Scholar] [CrossRef]
- McCarthy, M. Dust clouds implicated in spread of infection. Lancet 2001, 358, 478. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Teezlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Rev. Esp. Cardiol. (Engl. Ed.) 2021, 74, 790–799. [Google Scholar] [CrossRef]
- Maki, T.; Kurosaki, Y.; Onishi, K.; Lee, K.C.; Pointing, S.B.; Jugder, D.; Yamanaka, N.; Hasegawa, H.; Shinoda, M. Variations in the structure of airborne bacterial communities in Tsogt-Ovoo of Gobi desert area during dust events. Air Qual. Atmos. Health 2017, 10, 249–260. [Google Scholar] [CrossRef]
- Comrie, A.C. No Consistent Link Between Dust Storms and Valley Fever (Coccidioidomycosis). Geohealth 2021, 5, e2021GH000504. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhou, J.; Yang, S.; Zhao, Y.; Zheng, X. Assessment for the impact of dust events on measles incidence in western China. Atmos. Environ. 2017, 157, 1–9. [Google Scholar] [CrossRef]
- Bell, M.L.; Levy, J.K.; Lin, Z. The effect of sandstorms and air pollution on cause-specific hospital admissions in Taipei, Taiwan. Occup. Environ. Med. 2008, 65, 104–111. [Google Scholar] [CrossRef]
- Kang, J.H.; Keller, J.J.; Chen, C.S.; Lin, H.C. Asian dust storm events are associated with an acute increase in pneumonia hospitalization. Ann. Epidemiol. 2012, 22, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Lauer, A.; Etyemezian, V.; Nikolich, G.; Kloock, C.; Arzate, A.F.; Sadiq Batcha, F.; Kaur, M.; Garcia, E.; Mander, J.; Passaglia, A.K. Valley Fever: Environmental Risk Factors and Exposure Pathways Deduced from Field Measurements in California. Int. J. Environ. Res. Public Health 2020, 17, 5285. [Google Scholar] [CrossRef] [PubMed]
- Stern, R.A.; Mahmoudi, N.; Buckee, C.O.; Schartup, A.T.; Koutrakis, P.; Ferguson, S.T.; Wolfson, J.M.; Wofsy, S.C.; Daube, B.C.; Sunderland, E.M. The Microbiome of Size-Fractionated Airborne Particles from the Sahara Region. Environ. Sci. Technol. 2021, 55, 1487–1496. [Google Scholar] [CrossRef] [PubMed]
- Lauer, A.; Lopez, J.; Abarca, S.; Bains, J. Earthquake-Ridden Area in USA Contains Coccidioides, the Valley Fever Pathogen. Ecohealth 2020, 17, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Tong, D.Q.; Wang, J.X.L.; Gill, T.E.; Lei, H.; Wang, B. Intensified dust storm activity and Valley fever infection in the southwestern United States. Geophys. Res. Lett. 2017, 44, 4304–4312. [Google Scholar] [CrossRef] [Green Version]
- Rohrer, M.; Flahault, A.; Stoffel, M. Peaks of Fine Particulate Matter May Modulate the Spreading and Virulence of COVID-19. Earth Syst. Environ. 2020, 4, 789–796. [Google Scholar] [CrossRef]
- Trianti, S.M.; Samoli, E.; Rodopoulou, S.; Katsouyanni, K.; Papiris, S.A.; Karakatsani, A. Desert dust outbreaks and respiratory morbidity in Athens, Greece. Environ. Health 2017, 16, 7. [Google Scholar] [CrossRef] [Green Version]
- Tobias, A.; Cayla, J.A.; Pey, J.; Alastuey, A.; Querol, X. Are Saharan dust intrusions increasing the risk of meningococcal meningitis? Int. J. Infect. Dis. 2011, 15, e503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meola, M.; Lazzaro, A.; Zeyer, J. Bacterial Composition and Survival on Sahara Dust Particles Transported to the European Alps. Front. Microbiol. 2015, 6, 1454. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, R.; Ming, J.; Liu, G.; Chen, T.; Liu, X.; Liu, H.; Zhen, Y.; Cheng, G. Effects of dust storm events on weekly clinic visits related to pulmonary tuberculosis disease in Minqin, China. Atmos. Environ. 2016, 127, 205–212, Greenwood. [Google Scholar] [CrossRef]
- Gat, D.; Mazar, Y.; Cytryn, E.; Rudich, Y. Origin-Dependent Variations in the Atmospheric Microbiome Community in Eastern Mediterranean Dust Storms. Environ. Sci. Technol. 2017, 51, 6709–6718. [Google Scholar] [CrossRef] [PubMed]
- Favet, J.; Lapanje, A.; Giongo, A.; Kennedy, S.; Aung, Y.Y.; Cattaneo, A.; Davis-Richardson, A.G.; Brown, C.T.; Kort, R.; Brumsack, H.-J.; et al. Microbial hitchhikers on intercontinental dust: Catching a lift in Chad. ISME J. 2013, 7, 850–867. [Google Scholar] [CrossRef]
- Marone, A.; Kane, C.T.; Mbengue, M.; Jenkins, G.S.; Niang, D.N.; Drame, M.S.; Gernand, J.M. Characterization of Bacteria on Aerosols From Dust Events in Dakar, Senegal, West Africa. Geohealth 2020, 4, e2019GH000216. [Google Scholar] [CrossRef]
- Kellogg, C.A.; Griffin, D.W.; Garrison, V.H.; Peak, K.K.; Royall, N.; Smith, R.R.; Shinn, E.A. Characterization of Aerosolized Bacteria and Fungi From Desert Dust Events in Mali, West Africa. Aerobiologia 2004, 20, 99–110. [Google Scholar] [CrossRef]
- Azua-Bustos, A.; Gonzalez-Silva, C.; Fernandez-Martinez, M.A.; Arenas-Fajardo, C.; Fonseca, R.; Martin-Torres, F.J.; Fernández-Sampedro, M.; Fairén, A.G.; Zorzano, M. Aeolian transport of viable microbial life across the Atacama Desert, Chile: Implications for Mars. Sci Rep. 2019, 9, 11024. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Delgado, A.; Shukla, M.K.; DuBois, D.W.; Flores-Margez, J.P.; Hernandez Escamilla, J.A.; Olivas, E. Microbial and size characterization of airborne particulate matter collected on sticky tapes along US-Mexico border. J. Environ. Sci. (China) 2017, 53, 207–216. [Google Scholar] [CrossRef]
- An, S.; Sin, H.H.; DuBow, M.S. Modification of atmospheric sand-associated bacterial communities during Asian sandstorms in China and South Korea. Heredity (Edinb.) 2015, 114, 460–467. [Google Scholar] [CrossRef] [Green Version]
- Cha, S.; Lee, D.; Jang, J.H.; Lim, S.; Yang, D.; Seo, T. Alterations in the airborne bacterial community during Asian dust events occurring between February and March 2015 in South Korea. Sci. Rep. 2016, 6, 37271. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.; Srinivasan, S.; Jang, J.H.; Lee, D.; Lim, S.; Kim, K.S.; Jheong, W.; Lee, D.-W.; Park, E.-R.; Chung, H.-M.; et al. Metagenomic Analysis of Airborne Bacterial Community and Diversity in Seoul, Korea, during December 2014, Asian Dust Event. PLoS ONE 2017, 12, e0170693. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.S.; Tsai, F.T.; Lin, C.K.; Yang, C.Y.; Chan, C.C.; Young, C.Y.; Lee, C.H. Ambient influenza and avian influenza virus during dust storm days and background days. Environ. Health Perspect. 2010, 118, 1211–1216. [Google Scholar] [CrossRef] [Green Version]
- Gat, D.; Reicher, N.; Schechter, S.; Alayof, M.; Tarn, M.D.; Wyld, B.V.; Zimmermann, R.; Rudich, Y. Size-Resolved Community Structure of Bacteria and Fungi Transported by Dust in the Middle East. Front. Microbiol. 2021, 12, 744117. [Google Scholar] [CrossRef] [PubMed]
- Itani, G.N.; Smith, C.A. Dust Rains Deliver Diverse Assemblages of Microorganisms to the Eastern Mediterranean. Sci. Rep. 2016, 6, 22657. [Google Scholar] [CrossRef]
- Katra, I.; Arotsker, L.; Krasnov, H.; Zaritsky, A.; Kushmaro, A.; Ben-Dov, E. Richness and diversity in dust stormborne biomes at the southeast mediterranean. Sci. Rep. 2014, 4, 5265. [Google Scholar] [CrossRef]
- Lee, S.; Choi, B.; Yi, S.M.; Ko, G. Characterization of microbial community during Asian dust events in Korea. Sci. Total Environ. 2009, 407, 5308–5314. [Google Scholar] [CrossRef]
- Leski, T.A.; Malanoski, A.P.; Gregory, M.J.; Lin, B.; Stenger, D.A. Application of a broad-range resequencing array for detection of pathogens in desert dust samples from Kuwait and Iraq. Appl. Environ. Microbiol. 2011, 77, 4285–4292. [Google Scholar] [CrossRef] [Green Version]
- Maki, T.; Susuki, S.; Kobayashi, F.; Kakikawa, M.; Tobo, Y.; Yamada, M.; Higashi, T.; Matsuki, A.; Hong, C.; Hasegawa, H.; et al. Phylogenetic analysis of atmospheric halotolerant bacterial communities at high altitude in an Asian dust (KOSA) arrival region, Suzu City. Sci. Total Environ. 2010, 408, 4556–4562. [Google Scholar] [CrossRef] [Green Version]
- Maki, T.; Puspitasari, F.; Hara, K.; Yamada, M.; Kobayashi, F.; Hasegawa, H.; Iwasaka, Y. Variations in the structure of airborne bacterial communities in a downwind area during an Asian dust (Kosa) event. Sci. Total Environ. 2014, 488, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Mazar, Y.; Cytryn, E.; Erel, Y.; Rudich, Y. Effect of Dust Storms on the Atmospheric Microbiome in the Eastern Mediterranean. Environ. Sci. Technol. 2016, 50, 4194–4202. [Google Scholar] [CrossRef]
- Nourmoradi, H.; Moradnejadi, K.; Moghadam, F.M.; Khosravi, B.; Hemati, L.; Khoshniyat, R.; Kazembeigi, F. The Effect of Dust Storm on the Microbial Quality of Ambient Air in Sanandaj: A City Located in the West of Iran. Glob. J. Health Sci. 2015, 7, 114–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, N.; Park, J.; Kodama, M.; Ichijo, T.; Baba, T.; Nasu, M. Changes in the airborne bacterial community in outdoor environments following Asian dust events. Microbes Environ. 2014, 29, 82–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, M.-S.; Shin, M.; Kim, Y.; Jang, M.; Choi, Y.E.; Park, S.J.; Choi, J.; Lee, J.; Park, C. Development of electrochemical biosensor for detection of pathogenic microorganism in Asian dust events. Chemosphere 2017, 175, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Sekhon, S.S.; Kim, M.; Um, H.J.; Kobayashi, F.; Iwasaka, Y.; Shi, G.; Chen, B.; Cho, S.-J.; Min, J.; Kim, Y.H. Proteomic Analysis of Microbial Community Inhabiting Asian Dust Source Region. Clean Soil Air Water 2016, 44, 25–28. [Google Scholar] [CrossRef]
- Soleimani, Z.; Goudarzi, G.; Sorooshian, A.; Marzouni, M.B.; Maleki, H. Impact of Middle Eastern dust storms on indoor and outdoor composition of bioaerosol. Atmos. Environ. 2016, 138, 135–143. [Google Scholar] [CrossRef]
- Maki, T.; Hara, K.; Kobayashi, F.; Kurosaki, Y.; Kakikawa, M.; Matsuki, A.; Chen, B.; Shi, G.; Hasegawa, H.; Iwasaka, Y. Vertical distribution of airborne bacterial communities in an Asian-dust downwind area, Noto Peninsula. Atmos. Environ. 2015, 119, 282–293. [Google Scholar] [CrossRef] [Green Version]
- Hagiwara, K.; Tamaki, M.; Purevsuren, T.; Kenji, B.; Buho, H. Distribution of Viable Bacteria in the Dust-Generating Natural Source Area of the Gobi Region, Mongolia. Atmosphere 2020, 11, 893. [Google Scholar] [CrossRef]
- Schlesinger, P.; Mamane, Y.; Grishkan, I. Transport of microorganisms to Israel during Saharan dust events. Aerobiologia 2006, 22, 259–273. [Google Scholar] [CrossRef]
- Wu, P.C.; Tsai, J.C.; Li, F.C.; Lung, S.C.; Su, H.J. Increased levels of ambient fungal spores in Taiwan are associated with dust events from China. Atmos. Environ. 2004, 38, 4879–4886. [Google Scholar] [CrossRef]
- Kakikawa, M.; Kobayashi, F.; Maki, T.; Yamada, M.; Higashi, T.; Chen, B.; Shi, G.; Hong, C.; Tobo, Y.; Iwasaka, Y. Dustborne microorganisms in the atmosphere over an Asian dust source region, Dunhuang. Air Qual Atmos Health 2008, 1, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Maki, T.; Susuki, S.; Kobayashi, F.; Kakikawa, M.; Yamada, M.; Higashi, T.; Chen, B.; Shi, G.; Hong, C.; Tobo, Y.; et al. Phylogenetic diversity and vertical distribution of a halobacterial community in the atmosphere of an Asian dust (KOSA) source region, Dunhuang City. Air Qual Atmos Health 2008, 1, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Hua, N.P.; Kobayashi, F.; Iwasaka, Y.; Shi, G.Y.; Naganuma, T. Detailed identification of desert-originated bacteria carried by Asian dust storms to Japan. Aerobiologia 2007, 23, 291–298. [Google Scholar] [CrossRef]
- Batarberan, A.; Henley, J.; Fierer, N.; Casamayor, E.O. Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities. Sci. Total Environ. 2014, 487, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Rosselli, R.; Fiamma, M.; Deligios, M.; Pintus, G.; Pellizzaro, G.; Canu, A.; Duce, P.; Squartini, A.; Muresu, R.; Cappuccinelli, P. Microbial immigration across the Mediterranean via airborne dust. Sci. Rep. 2015, 5, 16306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spivey, A. Dust storm fallout. Environ. Health Perspect. 2008, 116, A128. [Google Scholar] [CrossRef] [Green Version]
- Romano, S.; Di Salvo, M.; Rispoli, G.; Alifano, P.; Perrone, M.R.; Tala, A. Airborne bacteria in the Central Mediterranean: Structure and role of meteorology and air mass transport. Sci. Total Environ. 2019, 697, 134020. [Google Scholar] [CrossRef]
- Weil, T.; De Filippo, C.; Albanese, D.; Donati, C.; Pindo, M.; Pavarini, L.; Carotenuto, F.; Pasqui, M.; Poto, L.; Gabrieli, J.; et al. Legal immigrants: Invasion of alien microbial communities during winter occurring desert dust storms. Microbiome 2017, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Lim, N.; Munday, C.I.; Allison, G.E.; O’Loingsigh, T.; De Deckker, P.; Tapper, N.J. Microbiological and meteorological analysis of two Australian dust storms in April 2009. Sci. Total Environ. 2011, 412, 223–231. [Google Scholar] [CrossRef]
- Cheng, M.F.; Ho, S.C.; Chiu, H.F.; Wu, T.N.; Chen, P.S.; Yang, C.Y. Consequences of exposure to Asian dust storm events on daily pneumonia hospital admissions in Taipei, Taiwan. J. Toxicol. Environ. Health 2008, 71, 1295–1299. [Google Scholar] [CrossRef]
- Makhalanyane, T.P.; Valverde, A.; Gunnigle, E.; Frossard, A.; Ramond, J.B.; Cowan, D.A. Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 2015, 39, 203–221. [Google Scholar] [CrossRef]
- Dose, K.; Bieger-Dose, A.; Ernst, B.; Feister, U.; Gomez-Silva, B.; Klein, A.; Risi, S.; Stridde, C. Survival of microorganisms under the extreme conditions of the Atacama Desert. Orig. Life Evol. Biosph. 2001, 31, 287–303. [Google Scholar] [CrossRef]
- Kwon, H.J.; Cho, S.H.; Chun, Y.; Lagarde, F.; Pershagen, G. Effects of the Asian dust events on daily mortality in Seoul, Korea. Environ. Res. 2002, 90, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Middleton, N.; Yiallouros, P.; Kleanthous, S.; Kolokotroni, O.; Schwartz, J.; Dockery, D.W.; Demokritou, P.; Koutrakis, P. A 10-year time-series analysis of respiratory and cardiovascular morbidity in Nicosia, Cyprus: The effect of short-term changes in air pollution and dust storms. Environ. Health 2008, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Fu, J.F.; Mao, J.H.; Shang, S.Q. Haze is a risk factor contributing to the rapid spread of respiratory syncytial virus in children. Environ. Sci. Pollut. Res. Int. 2016, 23, 20178–20185. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, B.M.; Blakebrough, I.S.; Bradley, A.K.; Wali, S.; Whittle, H.C. Meningococcal disease and season in sub-Saharan Africa. Lancet 1984, 1, 1339–1342. [Google Scholar] [CrossRef]
- Molesworth, A.M.; Cuevas, L.E.; Connor, S.J.; Morse, A.P.; Thomson, M.C. Environmental risk and meningitis epidemics in Africa. Emerg. Infect. Dis. 2003, 9, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
Region; Study | Dust Source | Sample | Potential Pathogenic or Opportunistic Microorganism |
---|---|---|---|
Africa | |||
Chad, Cape Verde Islands; [25] | The Sahara | dust samples | Firmicutes-Bacillacea, Proteobacteria-Oxalobacteraceae, Microsporidia |
Mali; [16] | The Sahara | atmospheric particle samples | B. cereus, E. coli, P. aeruginosa, F. nucleatum |
Mali; [27] | The Sahara | air particles | Acinetobacter spp., Bacillus spp., Corynebacterium spp., Staphylococcus spp., Aspergillus spp. |
Senegal; [26] | The Sahara | dust samples | Micrococcus spp., Bacillus spp., Kytococcus spp., Pseudomonas spp., Burkholderia spp., Brucella spp., S. aureus, Rhizobium radiobacter, Sphingomonas paucimibilis, Serratia plymuthica, Enterobacter cloacae, Aeromonas hydrophila, Serratia rubidaea |
America | |||
Chile; [28] | Atacama Desert | dust samples | Kocuria flava, Bacillus subtilis, Brachybacterium paraconglomeratum, Oceanobacillus oncorhynchi, Microbacterium barkeri, Bacillus sp., Microbacterium paraoxydans, Bacillus firmus, Aspergillus versicolor, Aspergillus nidulans |
Mexico and New Mexico USA; [29] | Chihuahuan Desert | air (particular matter) and soil samples | Fusarium spp., Aspergillus spp. |
Asia | |||
China, South Korea; [30] | Asian desert dust | sand samples | Massilia spp., Planococcus spp. |
Dunhuang, China; [51] | Taklimakan Desert | airborne dust | Staphylococcus spp., Pseudomonas spp. |
Dunhuang, China; [52] | Asian desert dust, Gobi desert | bioaerosoles | Bacillus spp., Staphylococcus spp. |
China; [43] | Asian desert dust | air samples | Proteobacteria, Firmicutes, Bacillus spp. |
South Korea; [37] | Asian desert dust | air samples | Prevotellaceae bacterium sp. |
South Korea; [31] | Asian desert dust | air samples | Proteobacteria, Firmicutes |
South Korea; [32] | Asian desert dust | air samples | Bacillus spp., Bacillus circulans; Sphingomonas starnbergensis |
Korea; [44] | Asian desert dust | dust particulate matter | Bacillus subtilis |
Korea; [45] | Asian desert dust | soil samples | Staphylococcus spp., Bacillus cereus |
Taiwan; [33] | Asian desert dust | air samples | Influenza A virus |
Taiwan; [50] | Asian desert dust | spore trap | Penicillium spp., Aspergillus spp. |
Israel; [34] | The Sahara, Arabian deserts | aerosols | Enterobacteriaceae spp., Lactobacillus spp., Corynebacterium spp. |
Israel; [36] | South Europe, North Africa | dust samples | α-Proteobacteria, Actinobacteria, β-Proteobacteria, Tremellomycetes |
Israel; [49] | The Sahara | dust particles | Aspergillus fumigatus, A. niger, Penicillium chrysogenum |
Lebanon; [35] | North African and Asian desert dust | dust rain samples | β-Proteobacteria, a-proteobacteria, Firmicutes, E-proteobacteria, γ-Proteobacteria |
Japan; [47] | Asian desert dust | aerosole samples | α-Proteobacteria, β-Proteobacteria and γ-Proteobacteria |
Japan; [39] | Asian desert dust | bioaerosols | Bacillus subtilis |
Japan; [40] | Asian desert dust | air samples | Firmicutes (B. subtilis, B. pumilus), a-Proteobacteria |
Japan; [53] | Gobi desert | dust samples | B. subtilis and B. licheniformis |
Mongolia; [10] | Gobi Desert | air samples | α- Proteobacteria, β-Proteobacteria and γ-Proteobacteria |
Mongolia; [48] | Gobi desert | soil samples | Bacillus spp., Staphylococcus spp. |
Eastern Mediterranean; [41] | The Sahara Desert | air samples (particulate matter) | Micrococcus terreus |
Iran; [42] | Arabian Deserts | air samples | Bacillus spp., Mycosporium |
Kuwait and Iraq; [38] | Arid areas of Iraq and Kuwait | dust and soil samples | Mycobacterium spp., Brucella spp., Coxiella burnetii, Clostridium perfringens, Bacillus spp. |
Iraq; [46] | Middle Eastern desert dust | air samples | Bacillus spp., Micrococcus spp., Streptomyces spp., Staphylococcus spp. |
Europe | |||
Spain; [54] | The Sahara Desert | soil samples | Alpha- and Betaproteobacteria, Actinobacteria, Bacteroidetes, Firmicutes |
Greece; [56] | The Sahara Desert | air samples | Firmicutes |
Swiss Alps; [22] | The Sahara Desert | snow samples | Oxalobacteriaceae, Neisseria spp., Streptococcus spp. |
Italy; [57] | African desert dust | air samples (particulate matter) | Sphingobacterium multivorum, Clostridium cadaveris, S. aureus, Propionibacterium avidum, Propionibacterium acnes, Salmonella enterica, Providencia rettgeri, Acinetobacter lwoffi, Acinetobacter ursingii, Acinetobacter johnsonii, Enterobacter cloacae, Enterobacter asburiae, Enterobacter aerogenes, Enterobacter amnigenus, Enterobacter hormaechei |
Italy; [58] | The Sahara Desert | snow samples | Bacillus spp., Aurebasidium, Periconia, Pleosporaceae |
Italy; [55] | African desert dust | dust samples | Bacillus spp., Streptococcus spp., Lactococcus spp., Corynebacterium spp., Brevundimonas spp., Paracoccus spp., Sphingomonas spp., Aspergillus spp. |
Australia | |||
Australia; [59] | Australian desert dust | dust and rain samples | Bacillus spp., Pseudomonas spp. |
Study | Region | Pathogens Studied | Association with Infectious Diseases |
---|---|---|---|
Bell, M.L., et al. [13] | Taiwan | - | Pneumonia (no significant association) |
Cheng, M.F., et al. [60] | Taiwan | Pneumonia | |
Comrie, A.C., et al. [11] | California, USA | Coccidioides spp. | Coccidioidomycosis (Valley fever) (no significant association) |
Kang, J.H., et al. [61] | Taiwan | - | Pneumonia |
Lauer, A., et al. [15] | California, USA | Coccidioides spp. | Coccidioidomycosis (Valley fever) |
Lauer, A., et al. [17] | California, USA | Coccidioides spp. | Coccidioidomycosis (Valley fever) |
Ma, Y., et al. [12] | China | Measles virus | Measles |
Rohrer, M., et al. [19] | Spain | SARS-CoV-2 | COVID-19 |
Tobías, A., et al. [21] | Spain | Neisseria meningitidis | Meningococcal meningitis |
Tong, D.Q., et al. [18] | Southwestern USA | C. immitis, C. posadasii | Valley fever |
Trianti, S.M., et al. [19] | Greece | - | Pneumonia, other respiratory tract infections |
Wang, Y., et al. [23] | China | M. tuberculosis | Pulmonary tuberculosis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergadi, E.; Rouva, G.; Angeli, M.; Galanakis, E. Infectious Diseases Associated with Desert Dust Outbreaks: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 6907. https://doi.org/10.3390/ijerph19116907
Vergadi E, Rouva G, Angeli M, Galanakis E. Infectious Diseases Associated with Desert Dust Outbreaks: A Systematic Review. International Journal of Environmental Research and Public Health. 2022; 19(11):6907. https://doi.org/10.3390/ijerph19116907
Chicago/Turabian StyleVergadi, Eleni, Glykeria Rouva, Maria Angeli, and Emmanouil Galanakis. 2022. "Infectious Diseases Associated with Desert Dust Outbreaks: A Systematic Review" International Journal of Environmental Research and Public Health 19, no. 11: 6907. https://doi.org/10.3390/ijerph19116907
APA StyleVergadi, E., Rouva, G., Angeli, M., & Galanakis, E. (2022). Infectious Diseases Associated with Desert Dust Outbreaks: A Systematic Review. International Journal of Environmental Research and Public Health, 19(11), 6907. https://doi.org/10.3390/ijerph19116907