Urine Di-(2-ethylhexyl) Phthalate Metabolites Are Independently Related to Body Fluid Status in Adults: Results from a U.S. Nationally Representative Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Urine DEHP Metabolites
2.3. Body Measures
2.4. Bioelectrical Impedance Analysis (BIA)
2.5. Covariates
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, K.W.; Kuo, P.L.; Huang, H.B.; Chang, J.W.; Chiang, H.C.; Huang, P.C. Increased risk of phthalates exposure for recurrent pregnancy loss in reproductive-aged women. Environ. Pollut. 2018, 241, 969–977. [Google Scholar] [CrossRef]
- Wang, W.; Leung, A.O.W.; Chu, L.H.; Wong, M.H. Phthalates contamination in China: Status, trends and human exposure-with an emphasis on oral intake. Environ. Pollut. 2018, 238, 771–782. [Google Scholar] [CrossRef]
- Lind, P.M.; Zethelius, B.; Lind, L. Circulating levels of phthalate metabolites are associated with prevalent diabetes in the elderly. Diabetes Care 2012, 35, 1519–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meeker, J.D.; Ferguson, K.K. Urinary phthalate metabolites are associated with decreased serum testosterone in men, women, and children from NHANES 2011–2012. J. Clin. Endocrinol. Metab. 2014, 99, 4346–4352. [Google Scholar] [CrossRef] [Green Version]
- Hoppin, J.A.; Brock, J.W.; Davis, B.J.; Baird, D.D. Reproducibility of urinary phthalate metabolites in first morning urine samples. Environ. Health Perspect. 2002, 110, 515–518. [Google Scholar] [CrossRef] [Green Version]
- Wang, I.J.; Lin, C.C.; Lin, Y.J.; Hsieh, W.S.; Chen, P.C. Early life phthalate exposure and atopic disorders in children: A prospective birth cohort study. Environ. Int. 2014, 62, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Schaedlich, K.; Gebauer, S.; Hunger, L.; Beier, L.S.; Koch, H.M.; Wabitsch, M.; Fischer, B.; Ernst, J. DEHP deregulates adipokine levels and impairs fatty acid storage in human SGBS-adipocytes. Sci. Rep. 2018, 8, 3447. [Google Scholar] [CrossRef] [PubMed]
- James-Todd, T.; Stahlhut, R.; Meeker, J.D.; Powell, S.G.; Hauser, R.; Huang, T.; Rich-Edwards, J. Urinary phthalate metabolite concentrations and diabetes among women in the National Health and Nutrition Examination Survey (NHANES) 2001–2008. Environ. Health Perspect. 2012, 120, 1307–1313. [Google Scholar] [CrossRef] [Green Version]
- Trasande, L.; Sathyanarayana, S.; Spanier, A.J.; Trachtman, H.; Attina, T.M.; Urbina, E.M. Urinary phthalates are associated with higher blood pressure in childhood. J. Pediatr. 2013, 163, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Edelman, I.S.; Leibman, J. Anatomy of body water and electrolytes. Am. J. Med. 1959, 27, 256–277. [Google Scholar] [CrossRef]
- Roumelioti, M.E.; Glew, R.H.; Khitan, Z.J.; Rondon-Berrios, H.; Argyropoulos, C.P.; Malhotra, D.; Raj, D.S.; Agaba, E.I.; Rohrscheib, M.; Murata, G.H.; et al. Fluid balance concepts in medicine: Principles and practice. World J. Nephrol. 2018, 7, 1–28. [Google Scholar] [CrossRef]
- Seo, H.S.; Kim, E.J.; Kim, S.W.; Im, S.I.; Na, J.O.; Choi, C.U.; Lim, H.E.; Won Kim, J.; Rha, S.W.; Park, C.G. Extracellular fluid adjusted for body size is contracted in hypertension. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2013, 36, 916–921. [Google Scholar] [CrossRef]
- Park, S.; Lee, C.J.; Jhee, J.H.; Yun, H.R.; Kim, H.; Jung, S.Y.; Kee, Y.K.; Yoon, C.Y.; Park, J.T.; Kim, H.C.; et al. Extracellular Fluid Excess Is Significantly Associated With Coronary Artery Calcification in Patients With Chronic Kidney Disease. J. Am. Heart Assoc. 2018, 7, e008935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y.; Ryu, H.S.; Yoon, S.S.; Kim, E.H.; Yoon, S.W. Extracellular-to-Intracellular Fluid Volume Ratio as a Prognostic Factor for Survival in Patients With Metastatic Cancer. Integr. Cancer Ther. 2019, 18, 1534735419847285. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Guo, L.J.; Wang, T. Extracellular water/intracellular water is a strong predictor of patient survival in incident peritoneal dialysis patients. Blood Purif. 2007, 25, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Choi, M.J.; Lee, J.H.; Oh, J.E.; Seo, J.W.; Lee, Y.K.; Yoon, J.W.; Kim, H.J.; Noh, J.W.; Koo, J.R. Extracellular Fluid/Intracellular Fluid Volume Ratio as a Novel Risk Indicator for All-Cause Mortality and Cardiovascular Disease in Hemodialysis Patients. PLoS ONE 2017, 12, e0170272. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-P.; Yu, W.-C.; Hsu, T.-L.; Ding, P.Y.-A.; Yang, W.-C.; Chen, C.-H. The extracellular fluid—to—intracellular fluid volume ratio is associated with large-artery structure and function in hemodialysis patients. Am. J. Kidney Dis. 2003, 42, 990–999. [Google Scholar] [CrossRef]
- Kirkley, A.G.; Sargis, R.M. Environmental endocrine disruption of energy metabolism and cardiovascular risk. Curr. Diabetes Rep. 2014, 14, 494. [Google Scholar] [CrossRef] [Green Version]
- Harrison-Bernard, L.M. The renal renin-angiotensin system. Adv. Physiol. Educ. 2009, 33, 270–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, X.; Deng, T.; Duan, J.; Ding, S.; Yuan, J.; Chen, M. Comparing the effects of diethylhexyl phthalate and dibutyl phthalate exposure on hypertension in mice. Ecotoxicol. Environ. Saf. 2019, 174, 75–82. [Google Scholar] [CrossRef]
- Jenkins, R.; Tackitt, S.; Gievers, L.; Iragorri, S.; Sage, K.; Cornwall, T.; O’Riordan, D.; Merchant, J.; Rozansky, D. Phthalate-associated hypertension in premature infants: A prospective mechanistic cohort study. Pediatr. Nephrol. 2019, 34, 1413–1424. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, C.; Mendes, V.; Peleteiro, B.; Delgado, I.; Araújo, J.; Aggerbeck, M.; Annesi-Maesano, I.; Sarigiannis, D.; Ramos, E. Association between the exposure to phthalates and adiposity: A meta-analysis in children and adults. Environ. Res. 2019, 179 Pt A, 108780. [Google Scholar] [CrossRef] [PubMed]
- Briones, A.M.; Nguyen Dinh Cat, A.; Callera, G.E.; Yogi, A.; Burger, D.; He, Y.; Corrêa, J.W.; Gagnon, A.M.; Gomez-Sanchez, C.E.; Gomez-Sanchez, E.P.; et al. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: Implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension 2012, 59, 1069–1078. [Google Scholar] [CrossRef]
- Ito, Y.; Kamijima, M.; Nakajima, T. Di(2-ethylhexyl) phthalate-induced toxicity and peroxisome proliferator-activated receptor alpha: A review. Environ. Health Prev. Med. 2019, 24, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusef, Y.R.; Thomas, W.; Harvey, B.J. Estrogen increases ENaC activity via PKCδ signaling in renal cortical collecting duct cells. Physiol. Rep. 2014, 2, e12020. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Gerasimova, M.; Batz, F.; Kuczkowski, A.; Alam, Y.; Sanders, P.W.; Ronzaud, C.; Hummler, E.; Vallon, V. PPARγ agonist-induced fluid retention depends on αENaC expression in connecting tubules. Nephron 2015, 129, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Khalil, S.F.; Mohktar, M.S.; Ibrahim, F. The Theory and Fundamentals of Bioimpedance Analysis in Clinical Status Monitoring and Diagnosis of Diseases. Sensors 2014, 14, 10895–10928. [Google Scholar] [CrossRef]
- Buser, M.C.; Murray, H.E.; Scinicariello, F. Age and sex differences in childhood and adulthood obesity association with phthalates: Analyses of NHANES 2007–2010. Int. J. Hyg. Environ. Health 2014, 217, 687–694. [Google Scholar] [CrossRef]
- Yaghjyan, L.; Sites, S.; Ruan, Y.; Chang, S.H. Associations of urinary phthalates with body mass index, waist circumference and serum lipids among females: National Health and Nutrition Examination Survey 1999–2004. Int. J. Obes. 2015, 39, 994–1000. [Google Scholar] [CrossRef] [Green Version]
- Díaz Santana, M.V.; Hankinson, S.E.; Bigelow, C.; Sturgeon, S.R.; Zoeller, R.T.; Tinker, L.; Manson, J.A.E.; Calafat, A.M.; Meliker, J.R.; Reeves, K.W. Urinary concentrations of phthalate biomarkers and weight change among postmenopausal women: A prospective cohort study. Environ. Health Glob. Access Sci. Source 2019, 18, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Hauser, R.; Hu, F.B.; Franke, A.A.; Liu, S.; Sun, Q. Urinary concentrations of bisphenol A and phthalate metabolites and weight change: A prospective investigation in US women. Int. J. Obes. 2014, 38, 1532–1537. [Google Scholar] [CrossRef] [Green Version]
- Hatch, E.E.; Nelson, J.W.; Qureshi, M.M.; Weinberg, J.; Moore, L.L.; Singer, M.; Webster, T.F. Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: A cross-sectional study of NHANES data, 1999–2002. Environ. Health Glob. Access Sci. Source 2008, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Buckley, J.P.; Engel, S.M.; Mendez, M.A.; Richardson, D.B.; Daniels, J.L.; Calafat, A.M.; Wolff, M.S.; Herring, A.H. Prenatal Phthalate Exposures and Childhood Fat Mass in a New York City Cohort. Environ. Health Perspect. 2016, 124, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Shoaff, J.; Papandonatos, G.D.; Calafat, A.M.; Ye, X.; Chen, A.; Lanphear, B.P.; Yolton, K.; Braun, J.M. Early-Life Phthalate Exposure and Adiposity at 8 Years of Age. Environ. Health Perspect. 2017, 125, 097008. [Google Scholar] [CrossRef] [Green Version]
- Maresca, M.M.; Hoepner, L.A.; Hassoun, A.; Oberfield, S.E.; Mooney, S.J.; Calafat, A.M.; Ramirez, J.; Freyer, G.; Perera, F.P.; Whyatt, R.M.; et al. Prenatal Exposure to Phthalates and Childhood Body Size in an Urban Cohort. Environ. Health Perspect. 2016, 124, 514–520. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.H.; Chen, C.F.; Tsai, Y.A.; Wang, S.L.; Huang, P.C.; Chen, B.H.; Wu, M.T.; Chen, C.C.; Hsiung, C.A.; Chen, M.L. The sex-specific association of phthalate exposure with DNA methylation and characteristics of body fat in children. Sci. Total Environ. 2020, 737, 139833. [Google Scholar] [CrossRef]
- Corbasson, I.; Hankinson, S.E.; Stanek, E.J., 3rd; Reeves, K.W. Urinary bisphenol-A, phthalate metabolites and body composition in US adults, NHANES 1999–2006. Int. J. Environ. Health Res. 2016, 26, 606–617. [Google Scholar] [CrossRef]
- Lind, P.M.; Roos, V.; Rönn, M.; Johansson, L.; Ahlström, H.; Kullberg, J.; Lind, L. Serum concentrations of phthalate metabolites are related to abdominal fat distribution two years later in elderly women. Environ. Health Glob. Access Sci. Source 2012, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- National Health and Nutrition Examination Survey 2003–2004. Available online: http://wwwn.cdc.gov/Nchs/Nhanes/Search/nhanes03_04.aspx (accessed on 10 December 2021).
- Braun, J.M.; Smith, K.W.; Williams, P.L.; Calafat, A.M.; Berry, K.; Ehrlich, S.; Hauser, R. Variability of urinary phthalate metabolite and bisphenol A concentrations before and during pregnancy. Environ. Health Perspect. 2012, 120, 739–745. [Google Scholar] [CrossRef] [PubMed]
- The National Health and Nutrition Examination Survey (NHANES). ANALYTIC AND REPORTING GUIDELINES. Available online: http://www.cdc.gov/nchs/data/nhanes/nhanes_03_04/nhanes_analytic_guidelines_dec_2005.pdf (accessed on 10 December 2021).
- Okorodudu, D.O.; Jumean, M.F.; Montori, V.M.; Romero-Corral, A.; Somers, V.K.; Erwin, P.J.; Lopez-Jimenez, F. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: A systematic review and meta-analysis. Int. J. Obes. 2010, 34, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Padilla, J.; Vieira-Potter, V.J.; Jia, G.; Sowers, J.R. Role of perivascular adipose tissue on vascular reactive oxygen species in type 2 diabetes: A give-and-take relationship. Diabetes 2015, 64, 1904–1906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzo, I.; Serra-Prat, M.; Yébenes, J.C. The Role of Water Homeostasis in Muscle Function and Frailty: A Review. Nutrients 2019, 11, 1857. [Google Scholar] [CrossRef] [Green Version]
- Grün, F.; Blumberg, B. Environmental obesogens: Organotins and endocrine disruption via nuclear receptor signaling. Endocrinology 2006, 147 (Suppl. 6), S50–S55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, J.S.; Schaedlich, K.; Fiandanese, N.; Pocar, P.; Fischer, B. Effects of di(2-ethylhexyl) phthalate (DEHP) on female fertility and adipogenesis in C3H/N mice. Environ. Health Perspect. 2012, 120, 1123–1129. [Google Scholar] [CrossRef] [Green Version]
- Lv, Z.; Cheng, J.; Huang, S.; Zhang, Y.; Wu, S.; Qiu, Y.; Geng, Y.; Zhang, Q.; Huang, G.; Ma, Q.; et al. DEHP induces obesity and hypothyroidism through both central and peripheral pathways in C3H/He mice. Obesity 2016, 24, 368–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, J.L., Jr.; Yoon, M.; Ward, P.L.; Fromme, H.; Kessler, W.; Phillips, M.B.; Anderson, W.A.; Clewell, H.J., 3rd; Longnecker, M.P. Excretion of Di-2-ethylhexyl phthalate (DEHP) metabolites in urine is related to body mass index because of higher energy intake in the overweight and obese. Environ. Int. 2018, 113, 91–99. [Google Scholar] [CrossRef]
- Johannsson, G.; Gibney, J.; Wolthers, T.; Leung, K.C.; Ho, K.K. Independent and combined effects of testosterone and growth hormone on extracellular water in hypopituitary men. J. Clin. Endocrinol. Metab. 2005, 90, 3989–3994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Xu, S.; Tan, T.; Lee, S.T.; Cheng, S.H.; Lee, F.W.; Xu, S.J.; Ho, K.C. Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures. Int. J. Environ. Res. Public Health 2014, 11, 3156–3168. [Google Scholar] [CrossRef]
- Parlett, L.E.; Calafat, A.M.; Swan, S.H. Women’s exposure to phthalates in relation to use of personal care products. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 197–206. [Google Scholar] [CrossRef]
- Toering, T.J.; Gant, C.M.; Visser, F.W.; van der Graaf, A.M.; Laverman, G.D.; Danser, A.H.J.; Faas, M.M.; Navis, G.; Lely, A.T. Sex differences in renin-angiotensin-aldosterone system affect extracellular volume in healthy subjects. Am. J. Physiol. Ren. Physiol. 2018, 314, F873–F878. [Google Scholar] [CrossRef]
- Kleppinger, A.; Litt, M.D.; Kenny, A.M.; Oncken, C.A. Effects of smoking cessation on body composition in postmenopausal women. J. Women’s Health 2010, 19, 1651–1657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efendi, V.; Özalevli, S.; Naz, İ.; Kılınç, O. The effects of smoking on body composition, pulmonary function, physical activity and health-related quality of life among healthy women. Tuberkuloz Toraks 2018, 66, 101–108. [Google Scholar] [CrossRef] [PubMed]
- 2003–2004 Data Documentation, Codebook, and Frequencies: Phthalates—Urine. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/L24PH_C.htm (accessed on 10 December 2021).
- 2003–2004 Data Documentation, Codebook, and Frequencies: Body Measures. Available online: http://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/BMX_C.htm (accessed on 10 December 2021).
- 2003–2004 Data Documentation, Codebook, and Frequencies: Bioelectrical Impedance Analysis. Available online: http://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/BIX_C.htm (accessed on 10 December 2021).
- Weitzman, M.; Cook, S.; Auinger, P.; Florin, T.A.; Daniels, S.; Nguyen, M.; Winickoff, J.P. Tobacco smoke exposure is associated with the metabolic syndrome in adolescents. Circulation 2005, 112, 862–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 2003–2004 Data Documentation, Codebook, and Frequencies: Physical Activity. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/PAQ_C.htm#Appendix_1._Suggested_MET_Scores (accessed on 10 December 2021).
Unweighted No. (%) | MEHP (μg/g Creatinine) | MEOHP (μg/g Creatinine) | MEHHP (μg/g Creatinine) | MECPP (μg/g Creatinine) | Σ DEHP (μmol/g Creatinine) | |
---|---|---|---|---|---|---|
Overall | 1678 (100) | 2.13 (1.03) | 12.18 (1.03) | 18.23 (1.03) | 29.44 (1.03) | 0.21(1.03) |
Age, year | ||||||
18–39 | 718 (42.8) | 2.64 (1.05) ‡ | 13.63 (1.05) ‡ | 20.15 (1.05) † | 30.88 (1.04) † | 0.23 (1.04) † |
40–59 | 449 (26.8) | 1.90 (1.06) ‡ | 10.67 (1.05) ‡ | 16.33 (1.05) † | 25.89 (1.05) † | 0.19 (1.05) † |
≥60 | 511 (30.4) | 1.72 (1.05) ‡ | 11.70 (1.04) ‡ | 17.46 (1.04) † | 30.81 (1.04) † | 0.21 (1.04) † |
Gender | ||||||
Men | 798 (47.6) | 1.85 (1.05) ‡ | 10.74 (1.04) ‡ | 16.52 (1.04) ‡ | 26.08 (1.04) ‡ | 0.19 (1.04) ‡ |
Women | 880 (52.4) | 2.41 (1.04) ‡ | 13.66 (1.04) ‡ | 19.94 (1.04) ‡ | 32.86 (1.03) ‡ | 0.24 (1.03) ‡ |
Race | ||||||
Mexican American | 365 (21.8) | 1.96 (1.06) | 10.36 (1.06) * | 15.18 (1.06) * | 26.30 (1.05) * | 0.19 (1.05) * |
Other Hispanic | 48 (2.9) | 2.63 (1.17) | 12.92 (1.17) * | 19.59 (1.18) * | 32.47 (1.14) * | 0.24 (1.15) * |
Non-Hispanic White | 842 (50.2) | 2.09 (1.04) | 12.91 (1.04) * | 19.19 (1.04) * | 32.00 (1.04) * | 0.23 (1.04) * |
Non-Hispanic Black | 345 (20.6) | 2.37 (1.07) | 12.72 (1.06) * | 19.64 (1.06) * | 26.91 (1.06) * | 0.21 (1.06) * |
Others | 78 (4.5) | 2.02 (1.14) | 11.09 (1.13) * | 17.09 (1.13) * | 28.41 (1.12) * | 0.20 (1.12) * |
Education levels | ||||||
≤High school | 927 (55.3) | 1.94 (1.04) ‡ | 10.85 (1.03) ‡ | 16.04 (1.04) ‡ | 26.54 (1.03) ‡ | 0.19 (1.03) ‡ |
>High school | 750 (44.7) | 2.37 (1.05) ‡ | 14.06 (1.04) ‡ | 21.35 (1.04) ‡ | 33.47 (1.04) ‡ | 0.25 (1.04) ‡ |
Annual household income | ||||||
<USD 25,000 | 556 (35.6) | 2.02 (1.05) | 10.98 (1.05) ‡ | 16.50 (1.05) ‡ | 27.52 (1.04) † | 0.20 (1.04) ‡ |
USD 25,000–55,000 | 503 (32.2) | 2.00 (1.05) | 11.54 (1.05) ‡ | 17.24 (1.05) ‡ | 27.89 (1.05) † | 0.20 (1.05) ‡ |
>USD 55,000 | 501 (32.2) | 2.31 (1.06) | 14.07 (1.05) ‡ | 21.06 (1.05) ‡ | 33.01 (1.05) † | 0.24 (1.05) ‡ |
BMI, kg/m2 | ||||||
<25 | 577 (34.4) | 2.31 (1.05) * | 11.92 (1.05) ‡ | 17.77 (1.05) ‡ | 28.71 (1.05) * | 0.21 (1.05) ‡ |
25–30 | 562 (33.5) | 1.90 (1.05) * | 10.93 (1.05) ‡ | 16.31 (1.05) ‡ | 27.29 (1.04) * | 0.20 (1.04) ‡ |
≥30 | 539 (32.1) | 2.19 (1.05) * | 13.97 (1.05) ‡ | 21.06 (1.05) ‡ | 32.73 (1.04) * | 0.24 (1.04) ‡ |
Body fat percentage (%) | ||||||
<25 | 227 (31.4) | 2.22 (1.09) | 10.70 (1.08) * | 16.81 (1.09) | 25.82 (1.08) * | 0.19 (1.08) * |
25–35 | 230 (31.9) | 2.00 (1.09) | 11.33 (1.08) * | 17.11 (1.08) | 25.87 (1.07) * | 0.20 (1.07) * |
≥35 | 265 (36.7) | 2.53 (1.08) | 14.19 (1.07) * | 20.83 (1.08) | 32.21 (1.07) * | 0.24 (1.07) * |
Smoking | ||||||
Nonexposed | 353 (21.0) | 2.16 (1.07) | 12.10 (1.06) * | 18.26 (1.06) | 31.27 (1.05) ‡ | 0.22 (1.06) * |
Expose to ETS | 849 (50.6) | 2.15 (1.04) | 12.99 (1.04) * | 19.04 (1.04) | 31.15 (1.04) ‡ | 0.23 (1.04) * |
Active smokers | 476 (28.4) | 2.07 (1.06) | 10.93 (1.05) * | 18.23 (1.05) | 25.46 (1.05) ‡ | 0.19 (1.05) * |
Alcohol consumption (drinks/year) | ||||||
<12 | 412 (29.5) | 2.01 (1.06) | 11.86 (1.05) | 17.38 (1.05) | 2.52 (1.05) | 0.21 (1.05) |
≥12 | 983 (70.5) | 2.05 (1.04) | 11.89 (1.04) | 17.97 (1.04) | 2.32 (1.03) | 0.21 (1.03) |
Unweighted No. (%) | ECF (L) | ICF (L) | ECF/ICF Ratio | |
---|---|---|---|---|
Overall | 726 (100) | 16.92 (0.13) | 23.35 (0.24) | 0.74 (0.00) |
Age, year | ||||
18–39 | 524 (42.8) | 16.80 (0.16) | 23.42 (0.29) | 0.74 (0.00) ‡ |
40–50 | 202 (26.8) | 17.24 (0.24) | 23.16 (0.42) | 0.76 (0.01) ‡ |
Gender | ||||
Men | 377 (47.6) | 19.00 (0.15) ‡ | 27.61 (0.28) ‡ | 0.70 (0.00) ‡ |
Women | 349 (52.4) | 14.67 (0.15) ‡ | 18.74 (0.22) ‡ | 0.79 (0.00) ‡ |
Race | ||||
Mexican American | 172 (21.8) | 15.95 (0.23) ‡ | 22.32 (0.43) | 0.73 (0.01) * |
Other Hispanic | 27 (2.9) | 15.99 (0.64) ‡ | 22.92 (1.28) | 0.72 (0.02) * |
Non-Hispanic White | 319 (50.2) | 17.45 (0.21) ‡ | 23.78 (0.38) | 0.75 (0.01) * |
Non-Hispanic Black | 172 (20.6) | 17.13 (0.27) ‡ | 23.78 (0.49) | 0.74 (0.01) * |
Others | 36 (4.5) | 16.59 (0.65) ‡ | 22.70 (1.22) | 0.75 (0.01) * |
Education levels | ||||
≤High school | 376 (55.3) | 16.88 (0.18) | 23.58 (0.33) | 0.73 (0.00) ‡ |
>High school | 350 (44.7) | 16.97 (0.20) | 23.10 (0.36) | 0.75 (0.00) ‡ |
Annual household income | ||||
<USD 25,000 | 203 (35.6) | 16.40 (0.23) ‡ | 22.50 (0.41) * | 0.74 (0.01) |
USD 25,000–55,000 | 227 (32.2) | 16.79 (0.24) ‡ | 23.32 (0.44) * | 0.74 (0.01) |
>USD 55,000 | 248 (32.2) | 17.62 (0.24) ‡ | 24.25 (0.45) * | 0.75 (0.00) |
BMI, kg/m2 | ||||
<25 | 301 (34.4) | 15.04 (0.18) ‡ | 20.04 (0.31) ‡ | 0.77 (0.01) ‡ |
25–30 | 218 (33.5) | 17.22 (0.20) ‡ | 24.35 (0.38) ‡ | 0.72 (0.01) ‡ |
≥30 | 207 (32.1) | 19.35 (0.23) ‡ | 27.10 (0.46) ‡ | 0.73 (0.01) ‡ |
Body fat percentage (%) | ||||
<25 | 229 (31.4) | 18.52 (0.21) ‡ | 27.79 (0.38) ‡ | 0.67 (0.00) ‡ |
25–35 | 230 (31.9) | 16.94 (0.26) ‡ | 23.24 (0.42) ‡ | 0.74 (0.00) ‡ |
≥35 | 267 (36.7) | 15.54 (0.19) ‡ | 19.62 (0.29) ‡ | 0.80 (0.01) ‡ |
Smoking | ||||
Nonexposed | 109 (21.0) | 15.91 (0.35) ‡ | 21.45 (0.60) ‡ | 0.76 (0.01) |
Expose to ETS | 356 (50.6) | 16.74 (0.19) ‡ | 23.23 (0.35) ‡ | 0.74 (0.00) |
Active smokers | 257 (28.4) | 17.63 (0.21) ‡ | 24.39 (0.39) ‡ | 0.74 (0.01) |
Alcohol consumption (drinks/year) | ||||
<12 | 124 (29.5) | 16.34 (0.36) ‡ | b21.87(0.62) ‡ | 0.77 (0.01) ‡ |
≥12 | 429 (70.5) | 17.43 (0.17) ‡ | 24.23 (0.31) ‡ | 0.74 (0.00) ‡ |
Body Measures | MEHP (μg/g Creatinine) | p | MEOHP (μg/g Creatinine) | p | MEHHP (μg/g Creatinine) | p | MECPP (μg/g Creatinine) | p | Σ DEHP (μmol/g Creatinine) | p | |
---|---|---|---|---|---|---|---|---|---|---|---|
Body weight (kg) | |||||||||||
Model 1 | 1563/193,092,305 | 0.092 (0.501) | 0.856 | 2.020 (0.760) | 0.018 | 2.047 (0.648) | 0.007 | 2.003 (0.766) | 0.019 | 2.031 (0.749) | 0.016 |
Model 2 | 852/117,709,513 | 0.023 (0.452) | 0.961 | 1.679 (0.572) | 0.010 | 1.704 (0.538) | 0.006 | 1.520 (0.616) | 0.026 | 1.627 (0.593) | 0.015 |
Body mass index (kg/m2) | |||||||||||
Model 1 | 1563/193,092,305 | 0.060 (0.157) | 0.711 | 0.679 (0.211) | 0.006 | 0.696 (0.190) | 0.002 | 0.709 (0.227) | 0.007 | 0.705 (0.217) | 0.005 |
Model 2 | 852/117,709,513 | 0.052 (0.145) | 0.726 | 0.598 (0.174) | 0.004 | 0.617 (0.177) | 0.003 | 0.578 (0.200) | 0.011 | 0.602 (0.189) | 0.006 |
Waist (cm) | |||||||||||
Model 1 | 1563/193,092,305 | −0.012 (0.409) | 0.978 | 1.549 (0.534) | 0.011 | 1.532 (0.468) | 0.005 | 1.512 (0.515) | 0.010 | 1.533 (0.521) | 0.010 |
Model 2 | 852/117,709,513 | 0.059 (0.414) | 0.888 | 1.374 (0.423) | 0.005 | 1.342 (0.403) | 0.005 | 1.209 (0.391) | 0.007 | 1.305 (0.411) | 0.006 |
Subscapular Skinfold (mm) | |||||||||||
Model 1 | 1255/1,158,342,664 | −0.362 (0.210) | 0.104 | 0.082 (0.274) | 0.770 | 0.151 (0.272) | 0.586 | 0.133 (0.278) | 0.640 | 0.073 (0.284) | 0.801 |
Model 2 | 687/97,486,158 | −0.423 (0.206) | 0.058 | 0.019 (0.258) | 0.943 | 0.113 (0.258) | 0.669 | 0.038 (0.244) | 0.877 | 0.005 (0.260) | 0.985 |
Triceps Skinfold (mm) | |||||||||||
Model 1 | 1390/172,886,004 | −0.253 (0.180) | 0.181 | 0.263 (0.228) | 0.267 | 0.237 (0.199) | 0.254 | 0.261 (0.256) | 0.323 | 0.237 (0.241) | 0.342 |
Model 2 | 763/106,411,256 | −0.198 (0.164) | 0.245 | 0.272 (0.216) | 0.227 | 0.234 (0.200) | 0.262 | 0.205 (0.234) | 0.395 | 0.216 (0.223) | 0.347 |
Bioelectrical Impedance Analysis | MEHP (μg/g Creatinine) | p | MEOHP (μg/g Creatinine) | p | MEHHP (μg/g Creatinine) | p | MECPP (μg/g Creatinine) | p | Σ DEHP (μmol/g Creatinine) | p | |
---|---|---|---|---|---|---|---|---|---|---|---|
Lean mass (kg) | |||||||||||
Model 1 | 674/96,499,431 | −0.012 (0.320) | 0.970 | 0.654 (0.444) | 0.162 | 0.692 (0.382) | 0.090 | 0.562 (0.481) | 0.262 | 0.635 (0.444) | 0.173 |
Model 2 | 415/61,088,209 | −0.020 (0.296) | 0.948 | 0.608 (0.384) | 0.134 | 0.640 (0.364) | 0.099 | 0.497 (0.416) | 0.251 | 0.579 (0.393) | 0.162 |
Fat mass (kg) | |||||||||||
Model 1 | 674/96,499,431 | 0.806 (0.610) | 0.206 | 1.646 (0.675) | 0.028 | 1.579 (0.617) | 0.022 | 1.639 (0.697) | 0.033 | 1.666 (0.695) | 0.030 |
Model 2 | 415/61,088,209 | 1.000 (0.546) | 0.087 | 1.716 (0.602) | 0.012 | 1.560 (0.580) | 0.017 | 1.547 (0.639) | 0.029 | 1.651 (0.636) | 0.020 |
Percent body fat (%) | |||||||||||
Model 1 | 674/96,499,431 | 0.419 (0.377) | 0.285 | 0.800 (0.383) | 0.034 | 0.718 (0.368) | 0.040 | 0.808 (0.374) | 0.047 | 0.794 (0.391) | 0.036 |
Model 2 | 415/61,088,209 | 0.632 (0.352) | 0.093 | 0.951 (0.337) | 0.013 | 0.789 (0.336) | 0.033 | 0.865 (0.348) | 0.025 | 0.894 (0.354) | 0.023 |
Cell membrane capacitance (nF) | |||||||||||
Model 1 | 674/96,499,431 | −0.024 (0.028) | 0.416 | −0.008 (0.022) | 0.716 | −0.001 (0.018) | 0.952 | −0.014 (0.021) | 0.525 | −0.009 (0.020) | 0.660 |
Model 2 | 415/61,088,209 | −0.022 (0.029) | 0.469 | −0.002 (0.018) | 0.925 | 0.004 (0.018) | 0.824 | −0.009 (0.020) | 0.653 | −0.004 (0.020) | 0.843 |
ECF (L) | |||||||||||
Model 1 | 674/96,499,431 | 0.134 (0.101) | 0.203 | 0.321 (0.149) | 0.049 | 0.308 (0.133) | 0.035 | 0.316 (0.167) | 0.078 | 0.327 (0.156) | 0.044 |
Model 2 | 415/61,088,209 | 0.147 (0.085) | 0.105 | 0.289 (0.126) | 0.037 | 0.271 (0.119) | 0.038 | 0.279 (0.143) | 0.069 | 0.292 (0.134) | 0.045 |
ICF (L) | |||||||||||
Model 1 | 674/96,499,431 | −0.106 (0.151) | 0.493 | 0.196 (0.191) | 0.321 | 0.230 (0.162) | 0.175 | 0.139 (0.203) | 0.505 | 0.179 (0.186) | 0.351 |
Model 2 | 415/61,088,209 | −0.120 (0.147) | 0.430 | 0.189 (0.168) | 0.278 | 0.224 (0.160) | 0.184 | 0.123 (0.178) | 0.498 | 0.168 (0.169) | 0.337 |
ECF/ICF ratio | |||||||||||
Model 1 | 471/68,616,209 | 0.008 (0.003) | 0.010 | 0.008 (0.002) | 0.004 | 0.006 (0.002) | 0.021 | 0.009 (0.003) | 0.005 | 0.008 (0.003) | 0.007 |
Model 2 | 415/61,088,209 | 0.009 (0.003) | 0.003 | 0.007 (0.002) | 0.004 | 0.005 (0.002) | 0.041 | 0.009 (0.002) | 0.002 | 0.008 (0.002) | 0.004 |
BMI (kg/m2) | Percent Body Fat (%) | ECF/ICF Ratio | ||||
---|---|---|---|---|---|---|
βcoeff (S.E.) | p-Value | βcoeff (S.E.) | p-Value | βcoeff (S.E.) | p-Value | |
Age, year | ||||||
18–39 | 0.42 (0.37) | 0.267 | 1.06 (0.38) | 0.014 | 0.006 (0.003) | 0.044 |
≥40 | 0.84 (0.31) | 0.016 | −0.03 (0.57) | 0.960 | 0.010 (0.008) | 0.228 |
Gender | ||||||
Men | 0.48 (0.39) | 0.246 | −0.19 (0.52) | 0.722 | 0.002 (0.006) | 0.711 |
Women | 0.77 (0.40) | 0.073 | 1.78 (0.45) | 0.001 | 0.011 (0.004) | 0.011 |
Race | ||||||
Non-Hispanic White | 0.39 (0.18) | 0.048 | 0.98 (0.36) | 0.016 | 0.012 (0.003) | 0.001 |
Others | 1.38 (0.46) | 0.009 | 0.63 (0.72) | 0.398 | −0.001 (0.003) | 0.658 |
Smoking | ||||||
Nonactive smokers | 0.50 (0.20) | 0.024 | 0.65 (0.36) | 0.089 | 0.009 (0.002) | 0.002 |
Active smokers | 0.83 (0.48) | 0.103 | 0.79 (0.48) | 0.118 | 0.007 (0.006) | 0.284 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.-J.; Wang, C.-S.; Wang, C.-K.; Yang, A.-M.; Lin, C.-Y. Urine Di-(2-ethylhexyl) Phthalate Metabolites Are Independently Related to Body Fluid Status in Adults: Results from a U.S. Nationally Representative Survey. Int. J. Environ. Res. Public Health 2022, 19, 6964. https://doi.org/10.3390/ijerph19126964
Wang W-J, Wang C-S, Wang C-K, Yang A-M, Lin C-Y. Urine Di-(2-ethylhexyl) Phthalate Metabolites Are Independently Related to Body Fluid Status in Adults: Results from a U.S. Nationally Representative Survey. International Journal of Environmental Research and Public Health. 2022; 19(12):6964. https://doi.org/10.3390/ijerph19126964
Chicago/Turabian StyleWang, Wei-Jie, Chia-Sung Wang, Chi-Kang Wang, An-Ming Yang, and Chien-Yu Lin. 2022. "Urine Di-(2-ethylhexyl) Phthalate Metabolites Are Independently Related to Body Fluid Status in Adults: Results from a U.S. Nationally Representative Survey" International Journal of Environmental Research and Public Health 19, no. 12: 6964. https://doi.org/10.3390/ijerph19126964
APA StyleWang, W.-J., Wang, C.-S., Wang, C.-K., Yang, A.-M., & Lin, C.-Y. (2022). Urine Di-(2-ethylhexyl) Phthalate Metabolites Are Independently Related to Body Fluid Status in Adults: Results from a U.S. Nationally Representative Survey. International Journal of Environmental Research and Public Health, 19(12), 6964. https://doi.org/10.3390/ijerph19126964