Gait Alteration Due to Haemophilic Arthropathies in Patients with Moderate Haemophilia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Three-dimension Gait Analysis
2.3. Haemophilia Joint Health Score
2.4. Haemophilic Arthropathy Evaluation
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Study Participants
3.2. Gait Score Analysis
3.3. Spatial/Temporal Assessment
3.4. Correlation between Gait Scores and Clinical/Radiological Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- White, G.C.; Rosendaal, F.; Aledort, L.M.; Lusher, J.M.; Rothschild, C.; Ingerslev, J.; Factor VIII and Factor IX Subcommittee. Definitions in Hemophilia. Recommendation of the Scientific Subcommittee on Factor VIII and Factor IX of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb. Haemost. 2001, 85, 560. [Google Scholar]
- Wyseure, T.; Mosnier, L.O.; von Drygalski, A. Advances and Challenges in Hemophilic Arthropathy. Semin. Hematol. 2016, 53, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Dunn, A.L. Pathophysiology, Diagnosis and Prevention of Arthropathy in Patients with Haemophilia. Haemophilia 2011, 17, 571–578. [Google Scholar] [CrossRef]
- Wallny, T.; Hess, L.; Seuser, A.; Zander, D.; Brackmann, H.H.; Kraft, C.N. Pain Status of Patients with Severe Haemophilic Arthropathy. Haemophilia 2001, 7, 453–458. [Google Scholar] [CrossRef]
- Di Minno, M.N.D.; Ambrosino, P.; Franchini, M.; Coppola, A.; Di Minno, G. Arthropathy in Patients with Moderate Hemophilia a: A Systematic Review of the Literature. Semin. Thromb. Hemost. 2013, 39, 723–731. [Google Scholar] [CrossRef]
- Fischer, K.; van der Bom, J.G.; Mauser-Bunschoten, E.P.; Roosendaal, G.; Beek, F.J.; de Kleijn, P.; Grobbee, D.E.; van den Berg, H.M. Endogenous Clotting Factor Activity and Long-Term Outcome in Patients with Moderate Haemophilia. Thromb. Haemost. 2000, 84, 977–980. [Google Scholar]
- Den Uijl, I.E.M.; Mauser Bunschoten, E.P.; Roosendaal, G.; Schutgens, R.E.G.; Biesma, D.H.; Grobbee, D.E.; Fischer, K. Clinical Severity of Haemophilia A: Does the Classification of the 1950s Still Stand? Haemophilia 2011, 17, 849–853. [Google Scholar] [CrossRef]
- Den Uijl, I.E.M.; Fischer, K.; Van Der Bom, J.G.; Grobbee, D.E.; Rosendaal, F.R.; Plug, I. Clinical Outcome of Moderate Haemophilia Compared with Severe and Mild Haemophilia. Haemophilia 2009, 15, 83–90. [Google Scholar] [CrossRef]
- Den Uijl, I.; Biesma, D.; Grobbee, D.; Fischer, K. Outcome in Moderate Haemophilia. Blood Transfus. Trasfus. Sangue 2014, 12 (Suppl. 1), s330–s336. [Google Scholar] [CrossRef]
- Chai-Adisaksopha, C.; Noone, D.; Curtis, R.; Frick, N.; Nichol, M.B.; Germini, F.; O’Mahony, B.; Page, D.; Stonebraker, J.S.; Skinner, M.W.; et al. Non-Severe Haemophilia: Is It Benign?—Insights from the PROBE Study. Haemophilia 2020, 17, 17–24. [Google Scholar] [CrossRef]
- Måseide, R.J.; Berntorp, E.; Astermark, J.; Olsson, A.; Bruzelius, M.; Frisk, T.; Nummi, V.; Lassila, R.; Tjønnfjord, G.E.; Holme, P.A. Joint Health and Treatment Modalities in Nordic Patients with Moderate Haemophilia A and B—The MoHem Study. Haemophilia 2020, 26, 891–897. [Google Scholar] [CrossRef]
- Fouasson-Chailloux, A.; Maugars, Y.; Trossaert, M.; Rannou, F.; Menu, P.; Vinatier, C.; Guicheux, J.; Dauty, M. Isokinetic Knee Strength Deficit in Patients with Moderate Haemophilia. Haemophilia 2021, 27, 634–640. [Google Scholar] [CrossRef]
- Kennedy, M.; O’ Mahony, B.; Roche, S.; McGowan, M.; Singleton, E.; Ryan, K.; O’ Connell, N.M.; Pipe, S.W.; Lavin, M.; O’ Donnell, J.S.; et al. Pain and Functional Disability amongst Adults with Moderate and Severe Haemophilia from the Irish Personalised Approach to the Treatment of Haemophilia (IPATH) Study. Eur. J. Haematol. 2022, 108, 518–527. [Google Scholar] [CrossRef]
- Favre, J.; Erhart-Hledik, J.C.; Andriacchi, T.P. Age-Related Differences in Sagittal-Plane Knee Function at Heel-Strike of Walking Are Increased in Osteoarthritic Patients. Osteoarthr. Cartil. 2014, 22, 464–471. [Google Scholar] [CrossRef] [Green Version]
- Creaby, M.W.; Bennell, K.L.; Hunt, M.A. Gait Differs between Unilateral and Bilateral Knee Osteoarthritis. Arch. Phys. Med. Rehabil. 2012, 93, 822–827. [Google Scholar] [CrossRef]
- Fouasson-Chailloux, A.; Menu, P.; Dauty, M. Lower-Limb Arthropathies and Walking: The Use of 3D Gait Analysis as a Relevant Tool in Clinical Practice. Int. J. Environ. Res. Public. Health 2022, 19, 6785. [Google Scholar] [CrossRef]
- Fouasson-Chailloux, A.; Maugars, Y.; Vinatier, C.; Trossaert, M.; Menu, P.; Rannou, F.; Guicheux, J.; Dauty, M. Clinical Relevance of 3D Gait Analysis in Patients with Haemophilia. Haemophilia 2018, 24, 703–710. [Google Scholar] [CrossRef]
- Putz, P.; Durstberger, S.; Kaufmann, C.; Klinger, M.; Plessl, K.; Rejtö, J.; Widhalm, K.; Male, C.; Pabinger, I. 3D Gait Analysis, Haemophilia Joint Health Score, Leg Muscle Laterality and Biomarkers of Joint Damage: A Cross-Sectional Comparative Assessment of Haemophilic Arthropathy. Haemophilia 2020, 26, e323–e333. [Google Scholar] [CrossRef]
- Bladen, M.; Alderson, L.; Khair, K.; Liesner, R.; Green, J.; Main, E. Can Early Subclinical Gait Changes in Children with Haemophilia Be Identified Using the GAITRite Walkway. Haemophilia 2007, 13, 542–547. [Google Scholar] [CrossRef]
- Lobet, S.; Detrembleur, C.; Francq, B.; Hermans, C. Natural Progression of Blood-Induced Joint Damage in Patients with Haemophilia: Clinical Relevance and Reproducibility of Three-Dimensional Gait Analysis. Haemophilia 2010, 16, 813–821. [Google Scholar] [CrossRef]
- Forneris, E.; Andreacchio, A.; Pollio, B.; Mannucci, C.; Franchini, M.; Mengoli, C.; Pagliarino, M.; Messina, M. Gait Analysis in Children with Haemophilia: First Italian Experience at the Turin Haemophilia Centre. Haemophilia 2016, 22, e184–e191. [Google Scholar] [CrossRef]
- Leboeuf, F.; Sangeux, M.; Baker, R. An Open Source Implementation of the Conventional Gait Model in Python. Gait Posture 2017, 57, 236. [Google Scholar] [CrossRef]
- Woltring, H.J. 3-D Attitude Representation of Human Joints: A Standardization Proposal. J. Biomech. 1994, 27, 1399–1414. [Google Scholar] [CrossRef]
- Baker, R.; McGinley, J.L.; Schwartz, M.H.; Beynon, S.; Rozumalski, A.; Graham, H.K.; Tirosh, O. The Gait Profile Score and Movement Analysis Profile. Gait Posture 2009, 30, 265–269. [Google Scholar] [CrossRef]
- Baker, R.; McGinley, J.L.; Schwartz, M.; Thomason, P.; Rodda, J.; Graham, H.K. The Minimal Clinically Important Difference for the Gait Profile Score. Gait Posture 2012, 35, 612–615. [Google Scholar] [CrossRef]
- Feldman, B.M.; Funk, S.M.; Bergstrom, B.-M.; Zourikian, N.; Hilliard, P.; van der Net, J.; Engelbert, R.; Petrini, P.; van den Berg, H.M.; Manco-Johnson, M.J.; et al. Validation of a New Pediatric Joint Scoring System from the International Hemophilia Prophylaxis Study Group: Validity of the Hemophilia Joint Health Score. Arthritis Care Res. 2011, 63, 223–230. [Google Scholar] [CrossRef]
- Hilliard, P.; Funk, S.; Zourikian, N.; Bergstrom, B.-M.; Bradley, C.S.; McLimont, M.; Manco-Johnson, M.; Petrini, P.; van den Berg, M.; Feldman, B.M. Hemophilia Joint Health Score Reliability Study. Haemoph. Off. J. World Fed. Hemoph. 2006, 12, 518–525. [Google Scholar] [CrossRef]
- Wang, M.; Batt, K.; Kessler, C.; Neff, A.; Iyer, N.N.; Cooper, D.L.; Kempton, C.L. Internal Consistency and Item-Total Correlation of Patient-Reported Outcome Instruments and Hemophilia Joint Health Score v2.1 in US Adult People with Hemophilia: Results from the Pain, Functional Impairment, and Quality of Life (P-FiQ) Study. Patient Prefer. Adherence 2017, 11, 1831–1839. [Google Scholar] [CrossRef] [Green Version]
- Fischer, K.; Steen Carlsson, K.; Petrini, P.; Holmström, M.; Ljung, R.; van den Berg, H.M.; Berntorp, E. Intermediate-Dose versus High-Dose Prophylaxis for Severe Hemophilia: Comparing Outcome and Costs since the 1970s. Blood 2013, 122, 1129–1136. [Google Scholar] [CrossRef] [Green Version]
- Pettersson, H.; Ahlberg, A.; Nilsson, I.M. A Radiologic Classification of Hemophilic Arthropathy. Clin. Orthop. 1980, 149, 153–159. [Google Scholar] [CrossRef]
- Srivastava, A.; Brewer, A.K.; Mauser-Bunschoten, E.P.; Key, N.S.; Kitchen, S.; Llinas, A.; Ludlam, C.A.; Mahlangu, J.N.; Mulder, K.; Poon, M.C.; et al. Guidelines for the Management of Hemophilia. Haemophilia 2013, 19, e1–e47. [Google Scholar] [CrossRef]
- Iosa, M.; Cereatti, A.; Merlo, A.; Campanini, I.; Paolucci, S.; Cappozzo, A. Assessment of Waveform Similarity in Clinical Gait Data: The Linear Fit Method. BioMed Res. Int. 2014, 2014, 214156. [Google Scholar] [CrossRef]
- Berntorp, E. Moderate Haemophilia in Focus. Haemophilia 2019, 25, 187–188. [Google Scholar] [CrossRef] [Green Version]
- Lobet, S.; Detrembleur, C.; Hermans, C. Impact of Multiple Joint Impairments on the Energetics and Mechanics of Walking in Patients with Haemophilia. Haemophilia 2013, 19, e66–e72. [Google Scholar] [CrossRef]
- Lobet, S.; Hermans, C.; Bastien, G.J.; Massaad, F.; Detrembleur, C. Impact of Ankle Osteoarthritis on the Energetics and Mechanics of Gait: The Case of Hemophilic Arthropathy. Clin. Biomech. 2012, 27, 625–631. [Google Scholar] [CrossRef]
- Lobet, S.; Hermans, C.; Pasta, G.; Detrembleur, C. Body Structure versus Body Function in Haemophilia: The Case of Haemophilic Ankle Arthropathy. Haemophilia 2011, 17, 508–515. [Google Scholar] [CrossRef]
- Plut, D.; Kotnik, B.F.; Zupan, I.P.; Kljucevsek, D.; Vidmar, G.; Snoj, Z.; Martinoli, C.; Salapura, V. Diagnostic Accuracy of Haemophilia Early Arthropathy Detection with Ultrasound (HEAD-US): A Comparative Magnetic Resonance Imaging (MRI) Study. Radiol. Oncol. 2019, 53, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Brunel, T.; Lobet, S.; Deschamps, K.; Hermans, C.; Peerlinck, K.; Vandesande, J.; Pialat, J.-B. Reliability and Clinical Features Associated with the IPSG MRI Tibiotalar and Subtalar Joint Scores in Children, Adolescents and Young Adults with Haemophilia. Haemophilia 2018, 24, 141–148. [Google Scholar] [CrossRef]
- Martinoli, C.; Della Casa Alberighi, O.; Di Minno, G.; Graziano, E.; Molinari, A.C.; Pasta, G.; Russo, G.; Santagostino, E.; Tagliaferri, A.; Tagliafico, A.; et al. Development and Definition of a Simplified Scanning Procedure and Scoring Method for Haemophilia Early Arthropathy Detection with Ultrasound (HEAD-US). Thromb. Haemost. 2013, 109, 1170–1179. [Google Scholar] [CrossRef]
- Glyn-Jones, S.; Palmer, A.J.R.; Agricola, R.; Price, A.J.; Vincent, T.L.; Weinans, H.; Carr, A.J. Osteoarthritis. Lancet 2015, 386, 376–387. [Google Scholar] [CrossRef]
Patients with Moderate Haemophilia (n = 24) | Group 1 (n = 16) | Group 2 (n = 8) | p | |
---|---|---|---|---|
Haemophilia A/B (n) | 15/9 | 8/8 | 7/1 | 0.08 a |
Level of clotting factor, % (mean ± SD) (min–max) | 3.0 ± 1.0 (1.0–5.0) | 3.1 ± 0.9 (2.0–5.0) | 2.8 ± 1.3 (1.0–4.5) | 0.57 |
Age, years (mean ± SD) (min–max) | 44.3 ± 16.1 (20–72) | 42.8 ± 16.2 (20–72) | 47.4 ± 16.7 (25–65) | 0.67 |
Weight, kg (mean ± SD) (min–max) | 75.9 ± 15.0 (48.0–112.0) | 73.8 ± 15.5 (48.0–112.0) | 75.7 ± 7.7 (65.0–85.0) | 0.52 |
Height, cm (mean ± SD) (min–max) | 173.0 ± 6.6 (160.0–185.0) | 173.3 ± 6.5 (164.0–185.0) | 172.6 ± 7.3 (160.0–182) | 0.95 |
Body mass index, kg/m2 (mean ± SD) (min–max) | 25.30 ± 4.9 (18.0–38.8) | 24.6 ± 5.2 (18.0–38.8) | 26.8 ± 3.9 (22.0–35.1) | 0.17 |
Total HJHS (mean ± SD) (min–max) | 10.4 ± 14.0 (0–56) | 2.9 ± 3.5 (0–9) | 22.3 ± 11.3 (11–41) | <0.0001 |
Lower limb HJHS (mean ± SD) (min–max) | 9.0 ± 11.1 (0–41) | 2.7 ± 3.4 (0–9) | 18.5 ± 6.8 (10–41) | <0.0001 |
Knee HJHS sub-score (mean ± SD) (min–max) | 3.0 ± 4.2 (0–16) | 1.4 ± 1.8 (0–6) | 6.1 ± 5.8 (0–16) | 0.03 |
Ankle HJHS sub-score (mean ± SD) (min–max) | 4.4 ± 6.7 (0–22) | 0.7 ± 1.4 (0–4) | 11.8 ± 7.0 (2–22) | <0.0001 |
Pettersson knee sub-score (mean ± SD) (min–max) | 2.0 ± 2.3 (0–7.5) | 1.7 ± 2.0 (0–7.5) | 2.6 ±2.8 (0–7.0) | 0.61 |
Pettersson ankle sub-score (mean ± SD) (min–max) | 3.3 ± 3.8 (0–12) | 1.3 ± 1.5 (0–5.5) | 7.5 ± 3.6 (2.5–12) | <0.0001 |
Group 1 (n = 16) | Group 2 (n = 8) | Control Group from the Normative Dataset (n = 30) | p | |
---|---|---|---|---|
Gait Profile Score | 4.73 ± 0.32 | 5.34 ± 0.41 | 4.21 ± 0.41 | 0.20 |
Knee Gait Variable Score (degrees) | ||||
- Flexion/Extension | 5.63 ± 0.46 | 7.25 ± 0.69 a* | 4.56 ± 0.63 a* | 0.02 |
Ankle Gait Variable Score (degrees) | ||||
- Flexion/Extension | 4.56 ± 0.45 | 5.97 ± 0.64 a* | 3.74 ± 0.57 a* | 0.04 |
Group 1 (n = 16) | Group 2 (n = 8) | Control Group from the Normative Dataset (n = 30) | p | |
---|---|---|---|---|
Walking velocity (m/s) | 1.24 ± 0.06 | 1.20 ± 0.08 | 1.28 ± 0.07 | 0.06 |
Cadence (steps/min) | 56.8 ± 1.47 | 52.1 ± 2.08 | 59.0 ± 1.86 | 0.06 |
Stance phase (%gait cycle) | 60.6 ± 0.47 a** | 62.8 ± 0.65 a**, b** | 59.6 ± 0.59 b** | 0.004 |
Double support (ms) | 10.2 ± 0.50 a** | 12.60 ± 0.69 a**, b** | 9.54 ± 0.63 b** | 0.006 |
Stride Width (m) | 0.12 ± 0.01 a** | 0.15 ± 0.01 a**, b** | 0.11 ± 0.01 b** | 0.002 |
Step length (m) | 0.66 ± 0.02 | 0.59 ± 0.03 | 0.66 ± 0.03 | 0.18 |
Lower Limb HJHS | KHJHS | KPS | AHJHS | APS | |
---|---|---|---|---|---|
GPS | r2 = 0.100 p = 0.06 | ||||
Knee GVS | r2 = 0.290 * p < 0.0001 | r2 = 0.01 p = 0.61 | |||
Ankle GVS | r2 = 0.150 * p = 0.04 | r2 = 0.250 * p = 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fouasson-Chailloux, A.; Leboeuf, F.; Maugars, Y.; Trossaert, M.; Menu, P.; Rannou, F.; Vinatier, C.; Guicheux, J.; Gross, R.; Dauty, M. Gait Alteration Due to Haemophilic Arthropathies in Patients with Moderate Haemophilia. Int. J. Environ. Res. Public Health 2022, 19, 7527. https://doi.org/10.3390/ijerph19127527
Fouasson-Chailloux A, Leboeuf F, Maugars Y, Trossaert M, Menu P, Rannou F, Vinatier C, Guicheux J, Gross R, Dauty M. Gait Alteration Due to Haemophilic Arthropathies in Patients with Moderate Haemophilia. International Journal of Environmental Research and Public Health. 2022; 19(12):7527. https://doi.org/10.3390/ijerph19127527
Chicago/Turabian StyleFouasson-Chailloux, Alban, Fabien Leboeuf, Yves Maugars, Marc Trossaert, Pierre Menu, François Rannou, Claire Vinatier, Jérome Guicheux, Raphael Gross, and Marc Dauty. 2022. "Gait Alteration Due to Haemophilic Arthropathies in Patients with Moderate Haemophilia" International Journal of Environmental Research and Public Health 19, no. 12: 7527. https://doi.org/10.3390/ijerph19127527
APA StyleFouasson-Chailloux, A., Leboeuf, F., Maugars, Y., Trossaert, M., Menu, P., Rannou, F., Vinatier, C., Guicheux, J., Gross, R., & Dauty, M. (2022). Gait Alteration Due to Haemophilic Arthropathies in Patients with Moderate Haemophilia. International Journal of Environmental Research and Public Health, 19(12), 7527. https://doi.org/10.3390/ijerph19127527