Exploring Influential Factors Affecting the Severity of Urban Expressway Collisions: A Study Based on Collision Data
Abstract
:1. Introduction
2. Data
3. Methodology
4. Results
4.1. Multicollinearity Diagnostics
4.2. Test of Parallel Lines
4.3. Model Estimation
4.4. Model Validation
5. Discussion
5.1. Gender
5.2. Collision Modality
5.3. Road Pavement and Road Surface Conditions
5.4. Visibility
6. Conclusions and Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, N.; Yu, L.; Zhao, H.; Guo, J.; Wen, H. Analysis of Traffic Flow Characteristics on Ring Road Expressways in Beijing. Transp. Res. Rec. J. Transp. Res. Board 2009, 2124, 178–185. [Google Scholar] [CrossRef]
- Hossain, M.; Muromachi, Y. Understanding crash mechanism on urban expressways using high-resolution traffic data. Accid. Anal. Prev. 2013, 57, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Nakamura, H.; Iryo-Asano, M. A comparative study on crash-influencing factors by facility types on urban expressway. J. Mod. Transp. 2013, 21, 224–235. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Li, T.; Li, F.; Chen, F. Analysis of safety factors for urban expressways considering the effect of congestion in Shanghai, China. Accid. Anal. Prev. 2016, 95, 503–511. [Google Scholar] [CrossRef]
- Yu, R.; Zheng, Y.; Qin, Y.; Peng, Y. Utilizing Partial Least-Squares Path Modeling to Analyze Crash Risk Contributing Factors for Shanghai Urban Expressway System. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2019, 5, 1–9. [Google Scholar] [CrossRef]
- Carter, P.M.; Flannagan, C.A.C.; Reed, M.P.; Cunningham, R.M.; Rupp, J.D. Comparing the effects of age, BMI and gender on severe injury (AIS 3+) in motor-vehicle crashes. Accid. Anal. Prev. 2014, 72, 146–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, F.; Cheng, W.; Wang, C.; Liu, H.; Bai, J. Investigating the severity of expressway crash based on the random parameter logit model accounting for unobserved heterogeneity. Adv. Mech. Eng. 2021, 13, 1–13. [Google Scholar] [CrossRef]
- Yuan, Q.; Xu, X.; Zhao, J.; Zeng, Q. Investigation of injury severity in urban expressway crashes: A case study from Beijing. PLoS ONE 2020, 15, e0236911. [Google Scholar] [CrossRef]
- Zhang, H.; Li, S.; Wu, C.; Zhang, Q.; Wang, Y. Predicting Crash Frequency for Urban Expressway considering Collision Types Using Real-Time Traffic Data. J. Adv. Transp. 2020, 1–8. [Google Scholar] [CrossRef]
- Hyodo, S.; Todoroki, T. An Analysis of Risk Factors for Rear-Ender Accident on Urban Expressway Considering Accident Severity. Transp. Res. Procedia 2018, 34, 203–210. [Google Scholar] [CrossRef]
- Yu, R.; Wang, X.; Yang, K.; Abdel-Aty, M. Crash risk analysis for Shanghai urban expressways: A Bayesian semi-parametric modeling approach. Accid. Anal. Prev. 2016, 95, 495–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, X.; Yang, Y.; Liu, Z.; Jin, S.; Weng, J. Potential crash risks of expressway on-ramps and off-ramps: A case study in Beijing, China. Saf. Sci. 2014, 70, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Fountas, G.; Anastasopoulos, P.C.; Mannering, F.L. Analysis of vehicle accident-injury severities: A comparison of segment- versus accident-based latent class ordered probit models with class-probability functions. Anal. Methods Accid. Res. 2018, 18, 15–32. [Google Scholar] [CrossRef]
- Lee, J.; Chae, J.; Yoon, T.; Yang, H. Traffic accident severity analysis with rain-related factors using structural equation modeling—A case study of Seoul City. Accid. Anal. Prev. 2018, 112, 1–10. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, Y.; Liang, F. Crash Injury Severity Analysis Using Bayesian Ordered Probit Models. J. Transp. Eng. 2009, 135, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Anarkooli, A.J.; Hosseinpour, M.; Kardar, A. Investigation of factors affecting the injury severity of single-vehicle rollover crashes: A random-effects generalized ordered probit model. Accid. Anal. Prev. 2017, 106, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Lu, X.; Chien, S.I.-J.; Hu, D.W. Investigating factors influencing pedestrian injury severity at intersections. Traffic Inj. Prev. 2018, 19, 159–164. [Google Scholar] [CrossRef]
- Jung, S.; Qin, X.; Noyce, D.A. Injury Severity of Multivehicle Crash in Rainy Weather. J. Transp. Eng. 2012, 138, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Savolainen, P.T.; Mannering, F.L.; Lord, D.; Quddus, M.A. The statistical analysis of highway crash-injury severities: A review and assessment of methodological alternatives. Accid. Anal. Prev. 2011, 43, 1666–1676. [Google Scholar] [CrossRef] [Green Version]
- Theofilatos, A.; Graham, D.; Yannis, G. Factors Affecting Accident Severity Inside and Outside Urban Areas in Greece. Traffic Inj. Prev. 2012, 13, 458–467. [Google Scholar] [CrossRef]
- Michalaki, P.; Quddus, M.A.; Pitfield, D.; Huetson, A. Exploring the factors affecting motorway accident severity in England using the generalised ordered logistic regression model. J. Saf. Res. 2015, 55, 89–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Chen, Q.; Chen, L.; Zhang, G. Analysis of risk factors affecting driver injury and crash injury with drivers under the influence of alcohol (DUI) and non-DUI. Traffic Inj. Prev. 2016, 17, 796–802. [Google Scholar] [CrossRef]
- Dabbour, E.; Easa, S.; Haider, M. Using fixed-parameter and random-parameter ordered regression models to identify significant factors that affect the severity of drivers’ injuries in vehicle-train collisions. Accid. Anal. Prev. 2017, 107, 20–30. [Google Scholar] [CrossRef] [PubMed]
- GB 18667–2002; Assessment for Body Impairment of the Injured in Road Traffic Accident. National Standards of the People’s Republic of China: Beijing, China, 2002.
- Wu, X.G.; Hou, L.; Wen, Y.C.; Liu, W.Y.; Wu, Z. Research on the relationship between causal factors and consequences of incidents occurred in tank farm using ordered logistic regression. J. Loss Prevent Proc. 2019, 61, 287–297. [Google Scholar] [CrossRef]
- Evans, L.; Gerrish, P.H. Gender and Age Influence on Fatality Risk from the Same Physical Impact Determined using Two-Car Crashes. In Proceedings of the SAE 2001 World Congress, Detroit, MI, USA, 5–8 March 2001. [Google Scholar] [CrossRef] [Green Version]
- Fountas, G.; Anastasopoulos, P.C.; Abdel-Aty, M. Analysis of accident injury-severities using a correlated random parameters ordered probit approach with time variant covariates. Anal. Methods Accid. Res. 2018, 18, 57–68. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, W.; Liu, J.; Feng, Z.; Wang, C.; Hu, Z.; Huang, W. Exploring the factors affecting myopic drivers’ driving skills and risk perception in nighttime driving. Cogn. Technol. Work 2018, 21, 275–285. [Google Scholar] [CrossRef]
- Harré, N.; Field, J.; Kirkwood, B. Gender differences and areas of common concern in the driving behaviors and attitudes of adolescents. J. Saf. Res. 1996, 27, 163–173. [Google Scholar] [CrossRef]
- DeJoy, D.M. An examination of gender differences in traffic accident risk perception. Accid. Anal. Prev. 1992, 24, 237–246. [Google Scholar] [CrossRef]
- Evans, L. Age and fatality risk from similar severity impacts. J. Traffic Med. 2001, 29, 10–19. [Google Scholar]
- Bédard, M.; Guyatt, G.H.; Stones, M.J.; Hirdes, J.P. The independent contribution of driver, crash, and vehicle characteristics to driver fatalities. Accid. Anal. Prev. 2002, 34, 717–727. [Google Scholar] [CrossRef]
- Segui-Gomez, M. Driver airbag effectiveness by severity of crash. Am. Public Health 2000, 90, 1575–1581. [Google Scholar]
- Sullivan, J.M.; Flannagan, M.J. The role of ambient light level in fatal crashes: Inferences from daylight saving time transitions. Accid. Anal. Prev. 2002, 34, 487–498. [Google Scholar] [CrossRef]
- Sivak, M.; Schoettle, B.; Tsimhoni, O. Moon Phases and Night-time Road Crashes Involving Pedestrians. Leukos 2007, 4, 129–131. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, J.; Wang, K.; Zhao, J.; Cong, H.; He, P. Exploring factors affecting the severity of night-time vehicle accidents under low illumination conditions. Adv. Mech. Eng. 2019, 11. [Google Scholar] [CrossRef]
- Theofilatos, A.; Antoniou, C.; Yannis, G. Exploring injury severity of children and adolescents involved in traffic crashes in Greece. J. Traffic Transp. Eng. 2021, 8, 596–604. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, W.; Jin, L.; Feng, Z.; Zhu, D.; Cong, H.; Yu, H. Diagnostic analysis of environmental factors affecting the severity of traffic crashes: From the perspective of pedestrian–vehicle and vehicle–vehicle collisions. Traffic Inj. Prev. 2022, 23, 17–22. [Google Scholar] [CrossRef]
- Lee, J.; Nam, B.; Abdel-Aty, M. Effects of Pavement Surface Conditions on Traffic Crash Severity. J. Transp. Eng. 2015, 141, 04015020. [Google Scholar] [CrossRef]
- Lee, C.; Li, X. Analysis of injury severity of drivers involved in single- and two-vehicle crashes on highways in Ontario. Accid. Anal. Prev. 2014, 71, 286–295. [Google Scholar] [CrossRef]
- Fountas, G.; Anastasopoulos, P.C. A random thresholds random parameters hierarchical ordered probit analysis of highway accident injury-severities. Anal. Methods Accid. Res. 2007, 15, 1–16. [Google Scholar] [CrossRef]
- Watanabe, R.; Katsuhara, T.; Miyazaki, H.; Kitagawa, Y.; Yasuki, T. Research of the Relationship of Pedestrian Injury to Collision Speed, Car-type, Impact Location and Pedestrian Sizes using Human FE model (THUMS Version 4). In Proceedings of the 56th Stapp Car Crash Conference, Savannah, GA, USA, 29–31 October 2012. [Google Scholar] [CrossRef]
- Stigson, H.; Kullgren, A.; Krafft, M. Use of car crashes resulting in injuries to identify system weakenesses. In Proceedings of the 22nd International Technical Conference on the ESV, Washington, DC, USA, 13–16 June 2011. [Google Scholar]
- Shi, C.; Deng, Y. Analysis of factors influencing severity of urban expressway accidents in Guangdong province. In Proceedings of the 2019 5th International Conference on Transportation Information and Safety (ICTIS), Liverpool, UK, 14–17 July 2019; pp. 243–246. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Q.; Quddus, M.; Fan, T.; Fang, S. Speed, speed variation and crash relationships for urban arterials. Accid. Anal. Prev. 2018, 113, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Zhou, H.; Wang, J.; Chang, F.; Ma, M. A multivariate spatial model of crash frequency by transportation modes for urban intersections. Anal. Methods Accid. Res. 2017, 14, 10–21. [Google Scholar] [CrossRef]
- Yang, K.; Wang, X.; Yu, R. A Bayesian dynamic updating approach for urban expressway real-time crash risk evaluation. Transp. Res. Part C Emerg. Technol. 2018, 96, 192–207. [Google Scholar] [CrossRef]
- Brooks, J.O.; Crisler, M.C.; Klein, N.; Goodenough, R.; Beeco, R.W.; Guirl, C.; Tyler, P.J.; Hilpert, A.; Miller, Y.; Grygier, J.; et al. Speed choice and driving performance in simulated foggy conditions. Accid. Anal. Prev. 2011, 43, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Tu, H.; Sun, L.; Sze, N.; Song, Z.; Shi, H. Impacts of reduced visibility under hazy weather condition on collision risk and car-following behavior: Implications for traffic control and management. Int. J. Sustain. Transp. 2019, 14, 635–642. [Google Scholar] [CrossRef]
- Zhu, X.; Srinivasan, S. A comprehensive analysis of factors influencing the injury severity of large-truck crashes. Accid. Anal. Prev. 2011, 43, 49–57. [Google Scholar] [CrossRef]
- Sekiguchi, Y.; Tanishita, M.; Sunaga, D. Characteristics of Cyclist Crashes Using Polytomous Latent Class Analysis and Bias-Reduced Logistic Regression. Sustainability 2022, 14, 5497. [Google Scholar] [CrossRef]
Attribute | Range | Traffic Collision | Percent of Traffic Collision (%) | Death | Percent of Death (%) |
---|---|---|---|---|---|
Gender | male | 903 | 92.615 | 82 | 78.095 |
female | 72 | 7.385 | 23 | 21.905 | |
Collision modality | vehicle–pedestrian/cyclist collision | 101 | 10.359 | 39 | 37.143 |
vehicle–vehicle collision | 874 | 89.641 | 66 | 62.857 | |
Collision time | daytime | 622 | 63.795 | 41 | 39.048 |
nighttime | 353 | 36.205 | 64 | 60.952 | |
Road pavement conditions | good | 959 | 98.359 | 99 | 94.286 |
bad | 16 | 1.641 | 6 | 5.714 | |
Road surface conditions | dry | 887 | 90.974 | 85 | 80.952 |
wet | 88 | 9.026 | 20 | 19.048 | |
Road alignment | linear section | 810 | 83.077 | 85 | 80.952 |
nonlinear section | 165 | 16.923 | 20 | 19.048 | |
Presence of roadside protection | no | 173 | 17.744 | 12 | 11.429 |
yes | 802 | 82.256 | 93 | 88.571 | |
Traffic sign and marking | complete | 936 | 96.000 | 93 | 88.571 |
incomplete | 39 | 4.000 | 12 | 11.429 | |
Visibility (meter) | <50 | 62 | 6.359 | 5 | 4.762 |
50–100 | 113 | 11.590 | 31 | 29.524 | |
100–200 | 297 | 30.462 | 32 | 30.476 | |
>200 | 503 | 51.590 | 37 | 35.238 | |
Weather | sunny | 754 | 77.333 | 82 | 78.095 |
cloudy | 72 | 7.385 | 7 | 6.667 | |
rainy | 149 | 15.282 | 16 | 15.238 |
Visibility Conditions (Meter) | Parameter Coding | ||
---|---|---|---|
Visibility 1 (<50) | Visibility 2 (50~100) | Visibility 3 (100~200) | |
Visibility 1 (<50) | 0 | 0 | 0 |
Visibility 2 (50~100) | 1 | 0 | 0 |
Visibility 3 (100~200) | 0 | 1 | 0 |
Visibility 4 (>200) | 0 | 0 | 1 |
Attribute | Collinear Statistics | Attribute | Collinear Statistics | ||
---|---|---|---|---|---|
Tolerance | VIF | Tolerance | VIF | ||
Gender | 0.985 | 1.016 | Road alignment | 0.520 | 1.923 |
Collision modality | 0.910 | 1.098 | Presence of a roadside protection | 0.542 | 1.846 |
Collision time | 0.883 | 1.132 | Traffic sign and marking | 0.945 | 1.058 |
Road pavement conditions | 0.959 | 1.043 | Visibility | 0.784 | 1.276 |
Road surface conditions | 0.671 | 1.491 | Weather | 0.692 | 1.445 |
Independent Variables | B | Exp (B) | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|
Lower | Upper | ||||
Gender (base: female) | −1.197 | 0.302 | 0.002 | −1.938 | −0.456 |
Collision modality (base: vehicle–vehicle collision) | 2.016 | 7.508 | <0.000 | 1.384 | 2.648 |
Collision time (base: nighttime) | −0.210 | 0.811 | 0.459 | −0.767 | 0.346 |
Road pavement conditions (base: bad) | −2.255 | 0.105 | <0.000 | −3.479 | −1.03 |
Road surface conditions (base: wet) | −0.926 | 0.396 | 0.009 | −1.619 | −0.233 |
Road alignment (base: nonlinear section) | 0.935 | 2.547 | 0.067 | −0.065 | 1.936 |
Presence of a roadside protection (base: yes) | −0.89 | 0.411 | 0.085 | −1.902 | 0.122 |
Traffic sign and marking (base: incomplete) | 0.957 | 2.604 | 0.156 | −0.364 | 2.279 |
Visibility (base: >200 m. unit: meters) | |||||
<50 | 1.535 | 4.641 | 0.005 | 0.455 | 2.615 |
50–100 | 1.282 | 3.604 | 0.001 | 0.492 | 2.071 |
100–200 | 0.813 | 2.255 | 0.013 | 0.168 | 1.458 |
Weather (base: rainy) | |||||
Sunny | 0.476 | 1.610 | 0.357 | −0.538 | 1.490 |
Cloudy | −0.666 | 1.514 | 0.366 | −2.111 | 0.779 |
Intercepts (base: fatal collision) | |||||
Slight collisions | 0.946 | 2.575 | 0.431 | −1.409 | 3.302 |
Severity collisions | 1.233 | 3.432 | 0.305 | −1.124 | 3.59 |
Fitting indexes | |||||
Log-likelihood at zero | 603.880 | ||||
Log-likelihood at convergence | 494.223 | ||||
Nagelkerke R2 | 0.230 | ||||
AIC | 518.223 | ||||
Overall prediction accuracy | 92.205% |
Factor Attribute | This Study | Previous Studies on the Severity of Urban Expressway Collision | |
---|---|---|---|
Gender (reference: female) | − | − | Ye et al., 2021 [7] |
Collision modality (reference: vehicle–vehicle collision) | + | Rarely attempted | |
Road pavement conditions (reference: bad) | − | Rarely attempted | |
Road surface conditions (reference: wet) | − | − | Lee and Li, 2014 [40] |
+ | Zhu and Srinivasan, 2011 [50] | ||
Visibility | − | − | Shi and Deng, 2019 [44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Feng, X.; Li, H.; Ren, Y. Exploring Influential Factors Affecting the Severity of Urban Expressway Collisions: A Study Based on Collision Data. Int. J. Environ. Res. Public Health 2022, 19, 8362. https://doi.org/10.3390/ijerph19148362
Wang K, Feng X, Li H, Ren Y. Exploring Influential Factors Affecting the Severity of Urban Expressway Collisions: A Study Based on Collision Data. International Journal of Environmental Research and Public Health. 2022; 19(14):8362. https://doi.org/10.3390/ijerph19148362
Chicago/Turabian StyleWang, Kun, Xiaoyuan Feng, Hongbo Li, and Yilong Ren. 2022. "Exploring Influential Factors Affecting the Severity of Urban Expressway Collisions: A Study Based on Collision Data" International Journal of Environmental Research and Public Health 19, no. 14: 8362. https://doi.org/10.3390/ijerph19148362
APA StyleWang, K., Feng, X., Li, H., & Ren, Y. (2022). Exploring Influential Factors Affecting the Severity of Urban Expressway Collisions: A Study Based on Collision Data. International Journal of Environmental Research and Public Health, 19(14), 8362. https://doi.org/10.3390/ijerph19148362