Building Process-Oriented Data Science Solutions for Real-World Healthcare
Abstract
:1. COVID-19 as an Eye-Opener
2. The Process Oriented Data Science Solution for Healthcare
Author Contributions
Funding
Conflicts of Interest
References
- Khanna, R.C.; Cicinelli, M.V.; Gilbert, S.S.; Honavar, S.G.; Murthy, G.V.S. COVID-19 pandemic: Lessons learned and future directions. Indian J. Ophthalmol. 2020, 68, 703–710. [Google Scholar] [CrossRef]
- Chang, W.H. The influences of the COVID-19 pandemic on medical service behaviors. Taiwan. J. Obstet. Gynecol. 2020, 59, 821–827. [Google Scholar] [CrossRef]
- Rose, S. Medical Student Education in the Time of COVID-19. JAMA 2020, 323, 2131–2132. [Google Scholar] [CrossRef]
- Park, S.S. Caregivers’ mental health and somatic symptoms during COVID-19. J. Gerontol. Ser. B 2021, 76, e235–e240. [Google Scholar] [CrossRef]
- Fang, F.C.; Benson, C.A.; del Rio, C.; Edwards, K.M.; Fowler, V.G., Jr.; Fredricks, D.N.; Limaye, A.P.; Murray, B.E.; Naggie, S.; Pappas, P.G.; et al. COVID-19—Lessons Learned and Questions Remaining. Clin. Infect. Dis. 2021, 72, 2225–2240. [Google Scholar] [CrossRef]
- Khoo, E.J.; Lantos, J.D. Lessons learned from the COVID-19 pandemic. Acta Paediatr. 2020. [Google Scholar] [CrossRef] [Green Version]
- Ruiu, M.L. Mismanagement of Covid-19: Lessons learned from Italy. J. Risk Res. 2020, 23, 1007–1020. [Google Scholar] [CrossRef]
- Domínguez-Gil, B.; Coll, E.; Fernández-Ruiz, M.; Corral, E.; del Río, F.; Zaragoza, R.; Rubio, J.J.; Hernández, D. COVID-19 in Spain: Transplantation in the midst of the pandemic. Am. J. Transplant. 2020, 20, 2593–2598. [Google Scholar] [CrossRef]
- Garcia-Rojo, E.; Manfredi, C.; Santos-Perez-de-la Blanca, R.; Tejido-Senchez, A.; Garcia-Gomez, B.; Aliaga-Benítez, M.; Romero-Otero, J.; Rodriguez-Antolin, A. Impact of COVID-19 outbreak on urology surgical waiting lists and waiting lists prioritization strategies in the post-COVID-19 era. Actas Urol. Esp. (Engl. Ed.) 2021, 45, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Horbach, S.P.J.M. Pandemic publishing: Medical journals strongly speed up their publication process for COVID-19. Quant. Sci. Stud. 2020, 1, 1056–1067. [Google Scholar] [CrossRef]
- Kuhl, E. Data-driven modeling of COVID-19—Lessons learned. Extrem. Mech. Lett. 2020, 40, 100921. [Google Scholar] [CrossRef]
- Mamlin, B.W.; Tierney, W.M. The Promise of Information and Communication Technology in Healthcare: Extracting Value from the Chaos. Am. J. Med. Sci. 2016, 351, 59–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd-Sherlock, P.; Sempe, L.; McKee, M.; Guntupalli, A. Problems of Data Availability and Quality for COVID-19 and Older People in Low- and Middle-Income Countries. Gerontologist 2021, 61, 141–144. [Google Scholar] [CrossRef]
- Saez, C.; Romero, N.; Conejero, J.A.; Garcia-Gomez, J.M. Potential limitations in COVID-19 machine learning due to data source variability: A case study in the nCov2019 dataset. J. Am. Med. Inform. Assoc. 2021, 28, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Pryor, R.; Atkinson, C.; Cooper, K.; Doll, M.; Godbout, E.; Stevens, M.P.; Bearman, G. The electronic medical record and COVID-19: Is it up to the challenge? Am. J. Infect. Control 2020, 48, 966–967. [Google Scholar] [CrossRef] [PubMed]
- Rathert, C.; Porter, T.H.; Mittler, J.N.; Fleig-Palmer, M. Seven years after Meaningful Use: Physicians’ and nurses’ experiences with electronic health records. Health Care Manag. Rev. 2019, 44, 30–40. [Google Scholar] [CrossRef]
- Joukes, E.; Keizer, N.F.D.; Bruijne, M.C.D.; Abu-Hanna, A.; Cornet, R. Impact of Electronic versus Paper-Based Recording before EHR Implementation on Health Care Professionals’ Perceptions of EHR Use, Data Quality, and Data Reuse. Appl. Clin. Inform. 2019, 10, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Kraus, S.; Schiavone, F.; Pluzhnikova, A.; Invernizzi, A.C. Digital transformation in healthcare: Analyzing the current state-of-research. J. Bus. Res. 2021, 123, 557–567. [Google Scholar] [CrossRef]
- Ahuja, A.S. The impact of artificial intelligence in medicine on the future role of the physician. PeerJ 2019, 7, e7702. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; See, K.C. Artificial Intelligence for COVID-19: Rapid Review. J. Med. Internet Res. 2020, 22, e21476. [Google Scholar] [CrossRef] [PubMed]
- Naudé, W. Artificial Intelligence against Covid-19: An Early Review; SSRN Scholarly Paper 3568314; Social Science Research Network: Rochester, NY, USA, 2020. [Google Scholar] [CrossRef]
- Miani, C.; Robin, E.; Horvath, V.; Manville, C.; Cave, J.; Chataway, J. Health and Healthcare: Assessing the Real World Data Policy Landscape in Europe; Technical Report; RAND Corporation: Santa Monica, CA, USA, 2014. [Google Scholar]
- Gray, M. Value based healthcare. BMJ 2017, 356, j437. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.B.M.; Godinho Filho, M. Lean healthcare: Review, classification and analysis of literature. Prod. Plan. Control 2016, 27, 823–836. [Google Scholar]
- Munoz-Gama, J.; Martin, N.; Fernandez-Llatas, C.; Johnson, O.A.; Sepúlveda, M.; Helm, E.; Galvez-Yanjari, V.; Rojas, E.; Martinez-Millana, A.; Aloini, D.; et al. Process mining for healthcare: Characteristics and challenges. J. Biomed. Inform. 2022, 127, 103994. [Google Scholar] [CrossRef] [PubMed]
- Martin, N.; De Weerdt, J.; Fernández-Llatas, C.; Gal, A.; Gatta, R.; Ibáñez, G.; Johnson, O.; Mannhardt, F.; Marco-Ruiz, L.; Mertens, S.; et al. Recommendations for enhancing the usability and understandability of process mining in healthcare. Artif. Intell. Med. 2020, 109, 101962. [Google Scholar] [CrossRef] [PubMed]
- Gatta, R.; Vallati, M.; Fernandez-Llatas, C.; Martinez-Millana, A.; Orini, S.; Sacchi, L.; Lenkowicz, J.; Marcos, M.; Munoz-Gama, J.; Cuendet, M.; et al. Clinical Guidelines: A Crossroad of Many Research Areas. Challenges and Opportunities in Process Mining for Healthcare. In Proceedings of the Business Process Management Workshops, Vienna, Austria, 1–6 September 2019; Springer: Cham, Switzerland, 2019; pp. 545–556. [Google Scholar] [CrossRef]
- De Roock, E.; Martin, N. Process mining in healthcare–An updated perspective on the state of the art. J. Biomed. Inform. 2022, 127, 103995. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Llatas, C. Interactive Process Mining in Healthcare; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Martin, N.; Martinez-Millana, A.; Valdivieso, B.; Fernández-Llatas, C. Interactive Data Cleaning for Process Mining: A Case Study of an Outpatient Clinic’s Appointment System. In Proceedings of the Business Process Management Workshops, Vienna, Austria, 1–6 September 2019; Di Francescomarino, C., Dijkman, R., Zdun, U., Eds.; Lecture Notes in Business Information Processing. Springer International Publishing: Cham, Switzerland, 2019; pp. 532–544. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez-Llatas, C.; Martin, N.; Johnson, O.; Sepulveda, M.; Helm, E.; Munoz-Gama, J. Building Process-Oriented Data Science Solutions for Real-World Healthcare. Int. J. Environ. Res. Public Health 2022, 19, 8427. https://doi.org/10.3390/ijerph19148427
Fernandez-Llatas C, Martin N, Johnson O, Sepulveda M, Helm E, Munoz-Gama J. Building Process-Oriented Data Science Solutions for Real-World Healthcare. International Journal of Environmental Research and Public Health. 2022; 19(14):8427. https://doi.org/10.3390/ijerph19148427
Chicago/Turabian StyleFernandez-Llatas, Carlos, Niels Martin, Owen Johnson, Marcos Sepulveda, Emmanuel Helm, and Jorge Munoz-Gama. 2022. "Building Process-Oriented Data Science Solutions for Real-World Healthcare" International Journal of Environmental Research and Public Health 19, no. 14: 8427. https://doi.org/10.3390/ijerph19148427