Change in Blink Rate in the Metaverse VR HMD and AR Glasses Environment
Abstract
:1. Introduction
1.1. Wearable Display of Metaverse (VR and AR)
1.1.1. Optical See-through Display Type
1.1.2. Video See-through Display Type
1.1.3. Non-See-through Display Type
2. Materials and Methods
2.1. Participants
2.2. Experimental Environment
2.3. Research Data Analysis
3. Results
3.1. Comparison of the Blink Rate in the Natural Environment and Monitor Environment
3.2. Comparison of the Blink Rate in the Natural Environment and VR HMD Environment
3.3. Comparison of the Blink Rate in the Natural Environment and AR Glasses Environment
3.4. Comparison of the Blink Rate in the Monitor Environment and VR HMD Environment
3.5. Comparison of the Blink Rate in the Monitor Environment and AR Glasses Environment
3.6. Comparison of the Blink Rate in the VR HMD Environment and AR Glasses Environment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kuppers, H. Schule der Farben: Grundzüge der: Farbentheorie fur Computeranwender und andere. DUMONT Lit. Und Kunst Verl. 1992, 1, 1–187. [Google Scholar]
- Gardner, J.J.; Sherman, A. Vision Requirements in Sport; Sports Vision; Loran, D.F.C., MacEwan, C.J., Eds.; Butterworth-Heinemann: London, UK, 1995; pp. 167–170. [Google Scholar]
- Jerald, J. The VR Book: Human-Centered Design for Virtual Reality. In ACM Books, 1st ed.; Morgan&Claypool: San Rafael, CA, USA, 2015; pp. 85–109. [Google Scholar]
- Sibony, P.A.; Evinger, C.; Manning, K.A. Eyelid movements in facial paralysis. Arch. Ophthalmol. 1991, 109, 1555–1561. [Google Scholar] [CrossRef] [PubMed]
- Evinger, C.; Manning, K.A.; Sibony, P.A. Eyelid movements: Mechanisms and normal data. Invest. Ophthalmol. Vis. Sci. 1991, 32, 387–400. [Google Scholar] [PubMed]
- Evinger, C.; Shau, M.D.; Peck, C.K.; Manning, K.A.; Baker, R. Blinking and associated eye movements in humans, guinea pigs, and rabbits. J. Neurophysiol. 1984, 52, 323–339. [Google Scholar] [CrossRef] [Green Version]
- Langbehn, E.; Steinicke, F.; Lappe, M.; Welch, R.F.; Bruder, G. In the Blink of an Eye—Leveraging Blink-Induced Suppression for Imperceptible Position and Orientation Redirection in Virtual Reality. ACM Trans. Graph. 2018, 37, 66. [Google Scholar] [CrossRef]
- Cheng, D.T.; Jacobson, S.W.; Jacobson, J.L.; Molteno, C.D.; Stanton, M.E.; Desmond, J.E. Eyeblink classical conditioning in alcoholism and fetal alcohol spectrum disorders. Front. Psychiatry 2005, 6, 155. [Google Scholar] [CrossRef] [Green Version]
- Duke-Elder, S. System of Ophthalmology; The Physiology of the Eye and of Vision; The C. V. Mosby Co.: St. Louis, MO, USA, 1968; pp. 414–419. [Google Scholar]
- Newell, F.W. Ophthalmology, 6th ed.; The C. V. Mosby Co.: St. Louis, MO, USA, 1986; pp. 201–202. [Google Scholar]
- Lee, B.J.; Hong, J.H.; Jung, D.I.; Park, M.J. A study on the confidence of dry eye diagnosis methods. J. Korean Ophthalmic. Opt. Soc. 2008, 13, 15–20. [Google Scholar]
- Doughty, M.J. Consideration of three types of spontaneous eyeblink activity in normal humans: During reading and video display terminal use, in primary gaze, and while in conversation. Optom. Vis. Sci. 2001, 78, 712–725. [Google Scholar] [CrossRef]
- Gowrisankaran, S.; Nahar, N.K.; Hayes, J.R.; Sheedy, J.E. Asthenopia and blink rate under visual and cognitive loads. Optom. Vis. Sci. 2012, 89, 97–104. [Google Scholar] [CrossRef]
- Schlote, T.; Kadner, G.; Freudenthaler, N. Marked reduction and distinct patterns of eye blinking in patients with moderately dry eyes during video display terminal use. Graefe’s Arch. Clin. Exp. Ophthalmol. 2004, 242, 306–312. [Google Scholar] [CrossRef]
- Himebaugh, N.L.; Begley, C.G.; Bradley, A.; Wilkinson, J.A. Blinking and tear break-up during four visual tasks. Optom. Vis. Sci. 2009, 86, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Henderson, R.; Bradley, L.; Galloway, B.; Hunter, L. Effect of visual display unit use on blink rate and tear stability. Optom. Vis. Sci. 1991, 68, 888–892. [Google Scholar] [CrossRef] [PubMed]
- Al-Abdulmunem, M.; Briggs, S.T. Spontaneous blink rate of a normal population sample. Int. Contact Lens Clin. 1999, 26, 29–32. [Google Scholar] [CrossRef]
- Mackintosh, J.H.; Kumar, R.; Kitamura, T. Blink rate in psychiatric illness. Br. J. Psychiatry 1983, 143, 55–57. [Google Scholar] [CrossRef]
- Stern, J.A. What’s behind blinking? Sciences 1988, 28, 43–44. [Google Scholar] [CrossRef]
- Kong, M.B.; Kim, Y.M. A Study of Eye Blinking: I. J. Hum. Eng. Soc. Korea 1985, 4, 1–4. [Google Scholar]
- Sheedy, J.E.; Hayes, J.N.; Engle, J. Is all asthenopia the same? Optom. Vis. Sci. 2003, 80, 732–739. [Google Scholar] [CrossRef] [Green Version]
- Listed, N.A. The definition and classification of dry eye disease: Report of the definition and classification subcommittee of the international Dry Eye Workshop. Ocul. Surf. 2007, 5, 75–92. [Google Scholar]
- Kim, Y.S. Virtual reality applied to the field of technology education simulation technology. Korea Inf. Processing Soc. Rev. 2011, 18, 56–59. [Google Scholar]
- Bae, J.H.; Kim, J.J.; Noh, G.Y. An Experimental of the Effects of User Experience and Driving Attitude on Driving Simulation Game in Virtual Environment. J. Korea Game Soc. 2015, 15, 7–18. [Google Scholar] [CrossRef]
- Lee, T.H.; Chae, E.M. The study of method of 3D installation art contents through new technology—With the case of 3D projection mapping technology expressing reality & virtual reality. J. Digit. Des. 2011, 11, 25–34. [Google Scholar]
- Azuma, R.T. A Survey of Augmented Reality. Teleoperators Virtual Environ. 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Choi, M.S. Augmented Reality and Storytelling. J. Korean Lang. Cult. 2020, 73, 433–459. [Google Scholar]
- Lee, J.H. Research Issues and Major Design Considerations on Video See-through HMDs. J. Converg. Cult. Technol. 2019, 4, 345–353. [Google Scholar]
- Lee, S.H.; Ha, G.T.; Cha, J.K.; Kim, J.H.; Lee, H.J.; Kim, S.H. CyberTouch-Touch and Cursor Interface for VR-HMD. Commun. Comput. Inf. Sci. 2015, 528, 503–507. [Google Scholar]
- Palter, S.F.; Sobko-Koziupa, O.; Gilhuly, T.; Pyer, C. Use of a Head Mounted Display (HMD) Virtual Reality (VR) Headset as a Patient Distraction Device for Surgical Procedures Under Local Anesthesia/Sedation. Fertil. Steril. 2000, 74, s203. [Google Scholar] [CrossRef]
- Andreassi, J.L. Psychophysiology: Human Behavior and Physiological Response, 4th ed.; Psychology Press: New York, NY, USA, 2000; pp. 1–23. [Google Scholar]
- Benedetto, S.; Pedrotti, M.; Minin, L.; Baccino, T.; Alessandra, R.; Montanari, R. Driver workload and eye blink duration. Transp. Res. Part F Traffic Psychol. Behav. 2011, 14, 199–208. [Google Scholar] [CrossRef]
- Deuschl, G.; Goddemeier, C. Spontaneous and reflex activity of facial muscles in dystonia, Parkinson’s disease, and in normal subjects. J. Neurol. Neurosurg. Psychiatry 1998, 64, 320–324. [Google Scholar] [CrossRef]
- Caffier, P.P.; Erdmann, U.; Ullsperger, P. Experimental evaluation of eye-blink parameters as a drowsiness measure. Eur. J. Appl. Physiol. 2003, 89, 3–4. [Google Scholar] [CrossRef]
- Toda, I.; Fujishima, H.; Tsubota, K. Ocular fatigue is the major symptom of dry eye. Acta. Ophthalmol. 1993, 71, 347–352. [Google Scholar] [CrossRef]
- Orchard, L.N.; Stern, J.A. Blinks as an index of cognitive activity during reading. Integr. Physiol. Behav. Sci. 1991, 26, 108–116. [Google Scholar] [CrossRef] [PubMed]
M ± SD | Z | p-Value | ||
---|---|---|---|---|
Natural | 18.05 ± 2.56 | −4.050 | 57.466 | p < 0.001 |
Monitor | 15.81 ± 2.09 |
M ± SD | Z | p-Value | ||
---|---|---|---|---|
Natural | 18.05 ± 2.56 | −4.017 | 57.466 | p < 0.001 |
VR HMD | 10.81 ± 3.89 |
M ± SD | Z | p-Value | ||
---|---|---|---|---|
Natural | 18.05 ± 2.56 | −4.047 | 57.466 | p < 0.001 |
AR Glasses | 14.19 ± 1.97 |
M ± SD | Z | p-Value | ||
---|---|---|---|---|
Monitor | 15.81 ± 2.09 | −3.834 | 57.466 | p < 0.001 |
VR HMD | 10.81 ± 3.89 |
M ± SD | Z | p-Value | ||
---|---|---|---|---|
Monitor | 15.81 ± 2.09 | −4.102 | 57.466 | p < 0.001 |
AR Glasses | 14.19 ± 1.97 |
M ± SD | Z | p-Value | ||
---|---|---|---|---|
VR HMD | 10.81 ± 3.89 | −3.148 | 57.466 | 0.002 |
AR Glasses | 14.19 ± 1.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Hwang, L.; Kwon, S.; Lee, S. Change in Blink Rate in the Metaverse VR HMD and AR Glasses Environment. Int. J. Environ. Res. Public Health 2022, 19, 8551. https://doi.org/10.3390/ijerph19148551
Kim J, Hwang L, Kwon S, Lee S. Change in Blink Rate in the Metaverse VR HMD and AR Glasses Environment. International Journal of Environmental Research and Public Health. 2022; 19(14):8551. https://doi.org/10.3390/ijerph19148551
Chicago/Turabian StyleKim, Jungho, Leehwan Hwang, Soonchul Kwon, and Seunghyun Lee. 2022. "Change in Blink Rate in the Metaverse VR HMD and AR Glasses Environment" International Journal of Environmental Research and Public Health 19, no. 14: 8551. https://doi.org/10.3390/ijerph19148551
APA StyleKim, J., Hwang, L., Kwon, S., & Lee, S. (2022). Change in Blink Rate in the Metaverse VR HMD and AR Glasses Environment. International Journal of Environmental Research and Public Health, 19(14), 8551. https://doi.org/10.3390/ijerph19148551