Body Composition of Female Air Force Personnel: A Comparative Study of Aircrew, Airplane, and Helicopter Pilots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedure
2.3. Materials
2.4. Statistical Analysis
3. Results
4. Discussion
Study Limitations
5. Practical Applications
- There is still no consensus about the best body composition (BC) standards for the wide range of age, job, and duties, especially in women.
- Although skeletal muscle mass and soft lean mass values were uniform among specialties, aircraft pilots had a lower body fat percentage than transport aircrew.
- These results could help to deepen our knowledge of women’s BC standards among military units with different entry requirements and distinct training protocols.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bustamante-Sánchez, Á.; Clemente-Suárez, V.J. Body Composition Differences in Military Pilots and Aircrew. Aerosp. Med. Hum. Perform. 2020, 91, 565–570. [Google Scholar]
- Cárdenas, D.; Madinabeitia, I.; Vera, J.; De Teresa, C.; Alarcón, F.; Jiménez, R.; Catena, A. Better brain connectivity is associated with higher total fat mass and lower visceral adipose tissue in military pilots. Sci. Rep. 2020, 10, 610. [Google Scholar]
- Cárdenas, D.; Madinabeitia, I.; Vera, J.; Perales, J.C.; García-Ramos, A.; Ortega, E.; Catena-Verdejo, E.; Catena, A. Strength, Affect Regulation, and Subcortical Morphology in Military Pilots. Med. Sci. Sports Exerc. 2018, 50, 722–728. [Google Scholar]
- Aandstad, A.; Sandberg, F.; Hageberg, R.; Kolle, E. Change in anthropometrics and physical fitness in norwegian cadets during 3 years of military academy education. Mil. Med. 2020, 185, E1112–E1119. [Google Scholar]
- Shaner, S.; Brooks, C.; Osborn, R.; Hull, M.; Falcone, R.E. Flight crew physical fitness: A baseline analysis. Air Med. J. 1995, 14, 30–32. [Google Scholar]
- Bustamante-Sánchez, Á.; Delgado-Terán, M.; Clemente-Suárez, V.J. Psychophysiological response of different aircrew in normobaric hypoxia training. Ergonomics 2019, 62, 277–285. [Google Scholar] [CrossRef]
- Whinnery, J.E.; Jackson, W.G. Reproducibility of +Gz tolerance testing. Aviat. Space Environ. Med. 1979, 50, 825–828. [Google Scholar]
- Shin, S.; Jee, H. ACTN-3 Genotype, Body Composition, Fitness, and +Gz Tolerance in Senior Cadets. Aerosp. Med. Hum. Perform. 2019, 90, 1055–1060. [Google Scholar]
- Buffington, B.C.; Melnyk, B.M.; Morales, S.; Lords, A.; Zupan, M.R. Effects of an energy balance educational intervention and the COPE cognitive behavioral therapy intervention for Division I U.S. Air Force Academy female athletes. J. Am. Assoc. Nurse Pract. 2016, 28, 181–187. [Google Scholar]
- Friedl, K.E. Body composition and military performance—Many things to many people. J. Strength Cond. Res. 2012, 26, S87–S100. [Google Scholar]
- Silva, R.T.; Campos, F.A.D.; Campos, L.C.B.; Takito, M.Y.; Miron, E.M.; Pellegrinotti, L.; Franchini, E. Anthropometrical and Physical Fitness Predictors of Operational Military Test Performance in Air Force Personnel. Int. J. Exerc. Sci. 2020, 13, 1028–1040. [Google Scholar]
- Nindl, B.C.; Alvar, B.A.; Dudley, J.R.; Favre, M.W.; Martin, G.J.; Sharp, M.A.; Warr, B.J.; Stephenson, M.D.; Kraemer, W.J. Executive Summary from the National Strength and Conditioning Association’s Second Blue Ribbon Panel on Military Physical Readiness. J. Strength Cond. Res. 2015, 29 (Suppl. 11), S216–S220. [Google Scholar]
- McNulty, P.A. Prevalence and contributing factors of eating disorder behaviors in active duty service women in the Army, Navy, Air Force, and Marines. Mil. Med. 2001, 166, 53–58. [Google Scholar]
- Fagnant, H.S.; Armstrong, N.J.; Lutz, L.J.; Nakayama, A.T.; Guerriere, K.I.; Ruthazer, R.; Cole, R.E.; McClung, J.P.; Gaffney-Stomberg, E.; Karl, J.P. Self-reported eating behaviors of military recruits are associated with body mass index at military accession and change during initial military training. Appetite 2019, 142, 104348. [Google Scholar]
- Eagle, S.R.; Kessels, M.; Johnson, C.D.; Nijst, B.; Lovalekar, M.; Krajewski, K.; Flanagan, S.D.; Nindl, B.C.; Connaboy, C. Bilateral Strength Asymmetries and Unilateral Strength Imbalance: Predicting Ankle Injury When Considered with Higher Body Mass in US Special Forcesa. J. Athl. Train. 2019, 54, 497–504. [Google Scholar]
- Nye, N.S.; Kafer, D.S.; Olsen, C.; Carnahan, D.H.; Crawford, P.F. Abdominal Circumference versus Body Mass Index as Predictors of Lower Extremity Overuse Injury Risk. J. Phys. Act. Health 2018, 15, 127–134. [Google Scholar]
- Kremer, M.M.; Latin, R.W.; Berg, K.E.; Stanek, K. Validity of bioelectrical impedance analysis to measure body fat in Air Force members. Mil. Med. 1998, 163, 781–785. [Google Scholar]
- Moon, J.R.; Tobkin, S.E.; Smith, A.E.; Roberts, M.D.; Ryan, E.D.; Dalbo, V.J.; Lockwood, C.M.; Walter, A.A.; Cramer, J.T.; Beck, T.W.; et al. Percent body fat estimations in college men using field and laboratory methods: A three-compartment model approach. Dyn. Med. 2008, 7, 7. [Google Scholar]
- Turner, A.A.; Bouffard, M.; Lukaski, H.C. Standard versus modified bio-electrical impedance analysis on reactance measurements. Int. J. Circumpolar Health 1998, 57 (Suppl. 1), 730–737. [Google Scholar]
- Gadekar, T.; Dudeja, P.; Basu, I.; Vashisht, S.; Mukherji, S. Correlation of visceral body fat with waist-hip ratio, waist circumference and body mass index in healthy adults: A cross sectional study. Med. J. Armed Forces India 2020, 76, 41–46. [Google Scholar]
- Belinchon-De Miguel, P.; Clemente-Suárez, V.J. Psychophysiological, Body Composition, Biomechanical and Autonomic Modulation Analysis Procedures in an Ultraendurance Mountain Race. J. Med. Syst. 2018, 42, 32. [Google Scholar]
- Ramos-Campo, D.J.; Sánchez, F.M.; García, P.E.; Arias, J.R.; Cerezal, A.B.; Clemente-Suarez, V.J.; Díaz, J.F.J. Body Composition Features in Different Playing Position of Professional Team Indoor Players: Basketball, Handball and Futsal. Int. J. Morphol. 2014, 32, 1316–1324. [Google Scholar]
- Clemente-Suarez, V.J.; Nikolaidis, P.T. Use of bioimpedianciometer as predictor of mountain marathon performance. J. Med. Syst. 2017, 41, 73. [Google Scholar]
- Sun, G.; French, C.R.; Martin, G.R.; Younghusband, B.; Green, R.C.; Xie, Y.-G.; Mathews, M.; Barron, J.R.; Fitzpatrick, D.G.; Gulliver, W.; et al. Comparison of multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of percentage body fat in a large, healthy population. Am. J. Clin. Nutr. 2005, 81, 74–78. [Google Scholar]
- Wang, Z.-M.; Heshka, S.; Pierson, R.N., Jr.; Heymsfield, S.B. Systematic organization of body-composition methodology: An overview with emphasis on component-based methods. Am. J. Clin. Nutr. 1995, 61, 457–465. [Google Scholar]
- Gibson, A.L.; Holmes, J.C.; Desautels, R.L.; Edmonds, L.B.; Nuudi, L. Ability of new octapolar bioimpedance spectroscopy analyzers to predict 4-component–model percentage body fat in Hispanic, black, and white adults. Am. J. Clin. Nutr. 2008, 87, 332–338. [Google Scholar]
- Aandstad, A.; Holtberget, K.; Hageberg, R.; Holme, I.; Anderssen, S.A. Validity and reliability of bioelectrical impedance analysis and skinfold thickness in predicting body fat in military personnel. Mil. Med. 2014, 179, 208–217. [Google Scholar]
- Ackland, W.P.T.R.; Lohman, T.G.; Sundgot-Borgen, J.; Maughan, R.J.; Meyer, N.L.; Stewart, A.; Müller, W. Current status of body composition assessment in sport. Sports Med. 2012, 42, 227–249. [Google Scholar]
- Kyle, U.G.; Schutz, Y.; Dupertuis, Y.M.; Pichard, C. Body composition interpretation: Contributions of the fat-free mass index and the body fat mass index. Nutrition 2003, 19, 597–604. [Google Scholar]
- Tomkinson, G.R.; Clark, A.J.; Blanchonette, P. Secular changes in body dimensions of Royal Australian Air Force aircrew (1971–2005). Ergonomics 2010, 53, 994–1005. [Google Scholar]
- Friedl, K.E. Can You Be Large and Not Obese? The Distinction Between Body Weight, Body Fat, and Abdominal Fat in Occupational Standards. Diabetes Technol. Ther. 2004, 6, 732–749. [Google Scholar]
- Bathalon, G.P.; McGraw, S.M.; Sharp, M.A.; Williamson, D.A.; Young, A.J.; Friedl, K.E. The Effect of Proposed Improvements to the Army Weight Control Program on Female Soldiers. Mil. Med. 2006, 171, 800–805. [Google Scholar]
- Friedl, K.E.; Westphal, K.A.; Marchitelli, L.J.; Patton, J.F.; Chumlea, W.C.; Guo, S.S. Evaluation of anthropometric equations to assess body-composition changes in young women. Am. J. Clin. Nutr. 2001, 73, 268–275. [Google Scholar]
- Wood, P.S.; Krüger, P.E.; Grant, C.C. DEXA-assessed regional body composition changes in young female military soldiers following 12-weeks of periodised training. Ergonomics 2010, 53, 537–547. [Google Scholar]
- Bustamante-Sánchez, Á.; Clemente-Suárez, V.J. Psychophysiological Response to Disorientation Training in Different Aircraft Pilots. Appl. Psychophysiol. Biofeedback 2020, 45, 241–247. [Google Scholar]
- Bustamante-Sánchez, Á.; Clemente-Suárez, V.J. Psychophysiological response in night and instrument helicopter flights. Ergonomics 2020, 63, 399–406. [Google Scholar]
- Silva, A.M.; Fields, D.A.; Heymsfield, S.B.; Sardinha, L.B. Body composition and power changes in elite judo athletes. Int. J. Sports Med. 2010, 31, 737–741. [Google Scholar]
- Baker, L.B.; Conroy, D.E.; Kenney, W.L. Dehydration impairs vigilance-related attention in male basketball players. Med. Sci. Sports Exerc. 2007, 39, 976–983. [Google Scholar]
- Silva, A.M.; Fields, D.A.; Heymsfield, S.B.; Sardinha, L.B. Relationship between changes in total-body water and fluid distribution with maximal forearm strength in elite judo athletes. J. Strength Cond. Res. 2011, 25, 2488–2495. [Google Scholar]
- Baker, L.B.; Dougherty, K.A.; Chow, M.; Kenney, W.L. Progressive dehydration causes a progressive decline in basketball skill performance. Med. Sci. Sports Exerc. 2007, 39, 1114–1123. [Google Scholar]
Airplane Pilots | Helicopter Pilots | Transport Aircrew | Specialty Effect | ||||||
---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | H (2) | p | η2 | |
Height (cm) | 165.1 | 4.84 | 166.7 | 5.87 | 165.6 | 4.95 | 2.079 | 0.364 | 0.008 |
Body Mass (kg) | 61.2 | 12.5 | 60.1 * | 10.7 | 63.4 | 10.1 | 6.049 | 0.049 | 0.015 |
BMI (kg/m2) | 22.4 | 4.15 | 21.5 * | 3.08 | 23.1 | 3.45 | 8.939 | 0.011 | 0.025 |
TBW (l) | 33.2 | 3.41 | 33.8 | 5.87 | 33.7 | 3.67 | 1.482 | 0.477 | 0.003 |
ICW (l) | 20.7 | 2.14 | 21.0 | 3.74 | 21.0 | 2.31 | 1.424 | 0.491 | 0.002 |
ECW (l) | 12.5 | 1.29 | 12.7 | 2.12 | 12.7 | 1.37 | 1.732 | 0.421 | 0.006 |
Proteins (kg) | 8.96 | 0.91 | 9.09 | 1.62 | 9.08 | 1.00 | 1.486 | 0.476 | 0.002 |
Minerals (kg) | 3.24 | 0.34 | 3.36 | 0.51 | 3.35 | 0.37 | 3.486 | 0.175 | 0.015 |
BFM (kg) | 15.8 * | 10.3 | 13.8 * | 5.21 | 17.2 | 7.58 | 10.011 | 0.007 | 0.023 |
PBF (%) | 24.0 * | 10.4 | 22.6 * | 6.32 | 26.3 | 7.51 | 8.964 | 0.011 | 0.030 |
SLM (kg) | 42.7 | 4.38 | 43.4 | 7.59 | 43.4 | 4.73 | 1.483 | 0.476 | 0.003 |
FFM (kg) | 45.4 | 4.65 | 46.2 | 7.99 | 46.2 | 5.04 | 1.552 | 0.460 | 0.003 |
SMM (kg) | 25.0 | 2.79 | 25.4 | 4.89 | 25.3 | 3.28 | 1.377 | 0.502 | 0.002 |
Airplane Pilots | Helicopter Pilots | Transport Aircrew | Specialty Effect | ||||||
---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | H (2) | p | η2 | |
FFM Right Arm (kg) | 2.27 | 0.37 | 2.30 | 0.63 | 2.31 | 0.38 | 1.469 | 0.480 | 0.001 |
FFM Left Arm (kg) | 2.23 | 0.35 | 2.27 | 0.64 | 2.27 | 0.38 | 1.847 | 0.397 | 0.002 |
FFM Trunk (kg) | 19.9 | 2.22 | 20.1 | 3.75 | 20.2 | 2.31 | 1.427 | 0.490 | 0.001 |
FFM Right Leg (kg) | 7.04 | 0.81 | 7.02 | 1.18 | 7.05 | 0.80 | 0.747 | 0.688 | 0.000 |
FFM Left Leg (kg) | 7.02 | 0.78 | 7.00 | 1.18 | 7.03 | 0.80 | 0.643 | 0.725 | 0.000 |
BFM Right Arm (kg) | 1.10 * | 0.94 | 0.85 * | 0.39 | 1.17 | 0.74 | 9.819 | 0.007 | 0.020 |
BFM Left Arm (kg) | 1.11 * | 0.95 | 0.88 * | 0.39 | 1.19 | 0.73 | 8.870 | 0.012 | 0.019 |
BFM Trunk (kg) | 7.55 * | 5.22 | 6.80 * | 3.12 | 8.53 | 3.96 | 9.449 | 0.009 | 0.024 |
BFM Right Leg (kg) | 2.51 * | 1.52 | 2.12 * | 0.61 | 2.65 | 1.02 | 11.326 | 0.003 | 0.026 |
BFM Left Leg (kg) | 2.50 * | 1.51 | 2.11 * | 0.62 | 2.63 | 1.02 | 10.868 | 0.004 | 0.026 |
Airplane Pilots | Helicopter Pilots | Transport Aircrew | Specialty Effect | ||||||
---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | H (2) | p | η2 | |
TBW Right Arm (l) | 1.76 | 0.28 | 1.79 | 0.49 | 1.79 | 0.30 | 1.532 | 0.465 | 0.001 |
TBW Left Arm (l) | 1.73 | 0.27 | 1.76 | 0.50 | 1.77 | 0.30 | 1.857 | 0.395 | 0.002 |
TBW Trunk (l) | 15.5 | 1.72 | 15.7 | 2.89 | 15.7 | 1.80 | 1.401 | 0.496 | 0.001 |
TBW Right Leg (l) | 5.47 | 0.63 | 5.46 | 0.91 | 5.48 | 0.62 | 0.704 | 0.717 | 0.000 |
TBW Left Leg (l) | 5.46 | 0.61 | 5.44 | 0.91 | 5.47 | 0.62 | 0.664 | 0.717 | 0.000 |
ICW Right Arm (l) | 1.10 | 0.17 | 1.12 | 0.30 | 1.12 | 0.18 | 1.298 | 0.523 | 0.001 |
ICW Left Arm (l) | 1.08 | 0.17 | 1.10 | 0.30 | 1.10 | 0.18 | 1.606 | 0.448 | 0.001 |
ICW Trunk (l) | 9.68 | 1.09 | 9.75 | 1.86 | 9.75 | 1.13 | 1.305 | 0.521 | 0.000 |
ICW Right Leg (l) | 3.42 | 0.39 | 3.40 | 0.58 | 3.42 | 0.39 | 0.943 | 0.624 | 0.000 |
ICW Left Leg (l) | 3.41 | 0.37 | 3.39 | 0.58 | 3.40 | 0.38 | 0.850 | 0.654 | 0.000 |
ECW Right Arm (l) | 0.66 | 0.10 | 0.67 | 0.18 | 0.67 | 0.11 | 2.065 | 0.356 | 0.002 |
ECW Left Arm (l) | 0.64 | 0.10 | 0.66 | 0.19 | 0.66 | 0.11 | 2.392 | 0.302 | 0.003 |
ECW Trunk (l) | 5.85 | 0.64 | 5.94 | 1.04 | 5.96 | 0.67 | 1.828 | 0.401 | 0.004 |
ECW Right Leg (l) | 2.04 | 0.24 | 2.05 | 0.33 | 2.06 | 0.24 | 0.559 | 0.756 | 0.001 |
ECW Left Leg (l) | 2.05 | 0.24 | 2.05 | 0.33 | 2.07 | 0.24 | 0.596 | 0.742 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustamante-Sánchez, Á.; Nikolaidis, P.T.; Clemente-Suárez, V.J. Body Composition of Female Air Force Personnel: A Comparative Study of Aircrew, Airplane, and Helicopter Pilots. Int. J. Environ. Res. Public Health 2022, 19, 8640. https://doi.org/10.3390/ijerph19148640
Bustamante-Sánchez Á, Nikolaidis PT, Clemente-Suárez VJ. Body Composition of Female Air Force Personnel: A Comparative Study of Aircrew, Airplane, and Helicopter Pilots. International Journal of Environmental Research and Public Health. 2022; 19(14):8640. https://doi.org/10.3390/ijerph19148640
Chicago/Turabian StyleBustamante-Sánchez, Álvaro, Pantelis T. Nikolaidis, and Vicente Javier Clemente-Suárez. 2022. "Body Composition of Female Air Force Personnel: A Comparative Study of Aircrew, Airplane, and Helicopter Pilots" International Journal of Environmental Research and Public Health 19, no. 14: 8640. https://doi.org/10.3390/ijerph19148640
APA StyleBustamante-Sánchez, Á., Nikolaidis, P. T., & Clemente-Suárez, V. J. (2022). Body Composition of Female Air Force Personnel: A Comparative Study of Aircrew, Airplane, and Helicopter Pilots. International Journal of Environmental Research and Public Health, 19(14), 8640. https://doi.org/10.3390/ijerph19148640