A Discussion on the Application of Terminology for Urban Soil Sealing Mitigation Practices
Abstract
:1. Introduction
2. Urban Practices to Mitigate Soil Sealing: Typologies, Characteristics and Objectives
2.1. Sustainable Drainage Systems (SuDS)
2.2. Low Impact Developments (LIDs)
2.3. Best Management Practices (BMPs)
2.4. Water Sensitive Urban Design (WSUD)
2.5. Green Infrastructure (GI)
2.6. Nature-Based Solutions (NbS)
3. The Evolution of the Terminology Used for Urban Practices to Mitigate Soil Sealing
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pistocchi, A.; Calzolari, C.; Malucelli, F.; Ungaro, F. Soil sealing and flood risks in the plains of Emilia-Romagna, Italy. J. Hydrol. Reg. Stud. 2015, 4, 398–409. [Google Scholar] [CrossRef]
- European Commission. Guidelines on best practice to limit, mitigate or compensate soil sealing. In Commission Staff Working Document; European Commission: Brussels, Belgium, 2012; Available online: http://ec.europa.eu/environment/soil/pdf/soil_sealing_guidelines_en.pdf (accessed on 5 October 2015).
- Fini, A.; Frangi, P.; Mori, J.; Donzelli, D.; Ferrini, F. Nature based solutions to mitigate soil sealing in urban areas: Results from a 4-year study comparing permeable, porous, and impermeable pavements. Environ. Res. 2017, 156, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Scalenghe, R.; Ajmone-Marsan, F. The anthropogenic sealing of soils in urban areas. Landsc. Urban Plan. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Tóth, G.; Montanarella, L.; Rusco, E. (Eds.) Threats to Soil Quality in Europe; JRC publication 46574; Office for Official Publications of the European Communities: Rome, Italy, 2008. [Google Scholar]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Clim. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Burns, M.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Hatt, B.E. Hydrologic short-comings of conventional urban stormwater management and opportunities for reform. Landsc. Urban Plan. 2012, 105, 230–240. [Google Scholar] [CrossRef]
- Burton, G.A.J.; Pitt, R. Stormwater Effects Handbook: A Toolbox for Watershed Managers, Scientists, and Engineers; Taylor & Francis: Oxfordshire, UK, 2001. [Google Scholar]
- Shuster, W.D.; Bonta, J.; Thurston, H.; Warnemuende, E.; Smith, D.R. Impacts of impervious surface on watershed hydrology: A review. Urban Water J. 2005, 2, 263–275. [Google Scholar] [CrossRef]
- Semadeni-Davies, A.; Hernebring, C.; Svensson, G.; Gustafsson, L.-G. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Combined sewer system. J. Hydrol. 2008, 350, 100–113. [Google Scholar] [CrossRef]
- Zhou, Q. A Review of Sustainable Urban Drainage Systems Considering the Climate Change and Urbanization Impacts. Water 2014, 6, 976–992. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I. Hydrologic modeling of Low Impact Development systems at the urban catchment scale. J. Hydrol. 2015, 528, 361–368. [Google Scholar] [CrossRef]
- Woods Ballard, B.; Wilson, S.; Udale-Clarke, H.; Illman, S.; Scott, T.; Ashley, R.; Kellagher, R. The SuDS Manual; CIRIA: London, UK, 2015. [Google Scholar]
- European Commission. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities; Publications Office of the European Union; Directorate-General for Research and Innovation: Brussels, Belgium, 2015. [Google Scholar] [CrossRef]
- WWAP (United Nations World Water Assessment Programme)/UN-Water. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water; UNESCO: Paris, France, 2018; ISBN 978-92-3-100264-9. [Google Scholar]
- Sonneveld, B.G.J.S.; Merbis, M.D.; Alfarra, A.; Unver, O.; Arnal, M.A. Nature-Based Solutions for agricultural water management and food security. In FAO Landand Water Discussion Paper 12; FAO: Rome, Italy, 2018; Available online: www.fao.org/publications (accessed on 25 January 2022).
- Eggermont, H.; Balian, E.; Azevedo, J.M.N.; Beumer, V.; Brodin, T.; Claudet, J.; Fady, B.; Grube, M.; Keune, H.; Lamarque, P.; et al. Nature-based Solutions: New Influence for Environmental Management and Research in Europe. GAIA-Ecol. Perspect. Sci. Soc. 2015, 24, 243–248. [Google Scholar] [CrossRef]
- Nesshöver, C.; Assmuth, T.; Irvine, K.N. The science, policy and practice of naturebased solutions: An interdisciplinary perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef] [PubMed]
- Hanson, H.I.; Wickenberg, B.; Olsson, J.A. Working on the boundaries—How do science use and interpret the nature-based solution concept? Land Use Policy 2020, 90, 104302. [Google Scholar] [CrossRef]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research. Water Air Soil Pollut. 2012, 223, 4253–4273. [Google Scholar] [CrossRef]
- Bressy, A.; Gromaire, M.-C.; Lorgeoux, C.; Saad, M.; Leroy, F.; Chebbo, G. Efficiency of source control systems for reducing runoff pollutant loads: Feedback on experimental catchments within Paris conurbation. Water Res. 2014, 57, 234–246. [Google Scholar] [CrossRef] [Green Version]
- Charlesworth, S.M.; Perales-Momparler, S.; Lashford, C.; Warwick, F. The sustainable management of surface water at the building scale: Preliminary results of case studies in the UK and Spain. J. Water Supply Res. Technol. 2013, 62, 534–544. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Boelee, E.; Janse, J.; Le Gal, A.; Kok, M.; Alkemade, R.; Ligtvoet, W. Overcoming water challenges through nature-based solutions. Water Policy 2017, 19, 820–836. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef] [Green Version]
- Raymond, C.M.; Pam, B.; Breil, M.; Nita, M.R.; Kabisch, N.; de Bel, M.; Enzi, V.; Frantzeskaki, N.; Geneletti, D.; Cardinaletti, M.; et al. An impact evaluation framework to support planning and evaluation of nature-based solutions projects. Report prepared by the EKLIPSE expert working group on nature-based solutions to promote climate resilience in urban areas. Horizon 2017, 2020. [Google Scholar] [CrossRef]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 2019, 77, 15–24. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalantari, Z.; Ferreira, C.S.S.; Keesstra, S.; Destouni, G. Nature-based solutions for flood-drought risk mitigation in vulnerable urbanizing parts of East-Africa. Curr. Opin. Environ. Sci. Health 2018, 5, 73–78. [Google Scholar] [CrossRef]
- Sahani, J.; Kumar, P.; Debele, S.; Spyrou, C.; Loupis, M.; Aragão, L.; Porcù, F.; Shah, M.A.R.; Di Sabatino, S. Hydro-meteorological risk assessment methods and management by nature-based solutions. Sci. Total Environ. 2019, 696, 133936. [Google Scholar] [CrossRef]
- Andréassian, V. Waters and forests: From historical controversy to scientific debate. J. Hydrol. 2004, 291, 1–27. [Google Scholar] [CrossRef]
- Filoso, S.; Bezerra, M.O.; Weiss, K.C.B.; Palmer, M.A. Impacts of forest restoration on water yield: A systematic review. PLoS ONE 2017, 12, e0183210. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Liu, N.; Harper, R.; Li, Q.; Liu, K.; Wei, X.; Ning, D.; Hou, Y.; Liu, S. A global review on hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime. J. Hydrol. 2017, 546, 44–59. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L.; et al. SuDS, LID, BMPs, WSUD and more–the evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Rodríguez-Rojas, M.I.; Cuevas-Arrabal, M.M.; Moreno, B.; Martínez, G. Changing the urban drainage paradigm from a planning perspective. A methodological proposal. Bol. Asoc. Geogr. Esp. 2017, 75, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Ferrans, P.; Torres, M.N.; Temprano, J.; Sánchez, J.P.R. Sustainable Urban Drainage System (SUDS) modeling supporting decision-making: A systematic quantitative review. Sci. Total Environ. 2022, 806, 150447. [Google Scholar] [CrossRef]
- CIRIA. SuDS Manual. In Document Reference: CIRIA (C753); CIRIA: London, UK, 2015. [Google Scholar]
- Hoang, L. System interactions of stormwater management using sustainable urban drainage systems and green infrastructure. Urban Water J. 2016, 13, 739–758. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Jiang, J.; Zheng, Y.; Hong, Y.; Chung, E.S.; Shamseldin, A.Y.; Wei, Y.; Wang, X. Robustness analysis of storm water quality modelling with LID infrastructures from natural event-based field monitoring. Sci. Total Environ. 2021, 753, 142007. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Chen, Z.; Yu, G. An assessment of the hydrologic effectiveness of low impact development (LID) practices for managing runoff with different objectives. J. Environ. Manag. 2019, 231, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.L.; He, Y.; Huang, F.; Wang, S.; Li, H.Z. Analysis on LID for highly urbanized areas’ waterlogging control: Demonstrated on the example of Caohejing in Shanghai. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2013, 68, 2559–2567. [Google Scholar] [CrossRef]
- Coutts, C.; Hahn, M. Green infrastructure, ecosystem services, and human health. Int. J. Environ. Res. Public Health 2015, 12, 9768–9798. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.; Somper, C. The role of green infrastructure in climate change adaptation in London. Geogr. J. 2014, 180, 191–196. [Google Scholar] [CrossRef]
- Ghodsi, S.H.; Zahmatkesh, Z.; Goharian, E.; Kerachian, R.; Zhu, Z. Optimal design of low impact development practices in response to climate change. J. Hydrol. 2020, 580, 124266. [Google Scholar] [CrossRef]
- Roseboro, A.; Torres, M.N.; Zhu, Z.; Rabideau, A.J. The Impacts of Climate Change and Porous Pavements on Combined Sewer Overflows: A Case Study of the City of Buffalo, New York, USA. Front. Water 2021, 3, 224–238. [Google Scholar] [CrossRef]
- Rodríguez-Rojas, M.I.; Huertas-Fernández, F.; Moreno, B.; Martínez, G.; Grindlay, A.L. A study of the application of permeable pavements as a sustainable technique for the mitigation of soil sealing in cities: A case study in the south of Spain. J. Environ. Manag. 2018, 205, 151–162. [Google Scholar] [CrossRef]
- Wolf, K. Ergonomics of the city: Green infrastructure and social benefits. In Engineering Green: Proceedings of the 11th National Urban Forest Conference; American Forests: Washington DC, USA, 2003; Volume 115. [Google Scholar]
- Hamann, F.; Blecken, G.T.; Ashley, R.M.; Viklander, M. Valuing the multiple benefits of blue-green infrastructure for a Swedish case study: Contrasting the economic as-asessment tools B£ST and TEEB. J. Sustain. Water Built Environ. 2020, 6, 05020003. [Google Scholar] [CrossRef]
- Rodríguez-Rojas, M.I.; Cuevas, M.M.; Huertas, F.; Martínez, G.; Moreno, B. Indicators to evaluate water sensitive urban design in urban planning. WIT Trans. Ecol. Env. 2015, 168, 371–382. [Google Scholar] [CrossRef] [Green Version]
- Cettner, A.; Ashley, R.; Viklander, M.; Nilsson, K. Stormwater management and urban planning: Lessons from 40 years of innovation. J. Environ. Plan. Manag. 2013, 56, 786–801. [Google Scholar] [CrossRef]
- Lundy, L.; Wade, R. Integrating sciences to sustain urban ecosystem services. Prog. Phys. Geogr. 2011, 35, 653–669. [Google Scholar] [CrossRef]
- Newman, R.; Ashley, R.; Cettner, A.; Viklander, M. The Role of Context in Framing Discourses in the Transition from Piped to Sustainable Stormwater Systems; GRAIE: Lyon, France, 2013. [Google Scholar]
- Roy, A.H.; Wenger, S.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Shuster, W.D.; Thurston, H.W.; Brown, R.R. Impediments and Solutions to Sustainable, Watershed-Scale Urban Stormwater Management: Lessons from Australia and the United States. Environ. Manag. 2008, 42, 344–359. [Google Scholar] [CrossRef]
- Islam, A.; Hassini, S.; El-Dakhakhni, W. A systematic bibliometric review of optimization and resilience within low impact development stormwater management practices. J. Hydrol. 2021, 599, 126457. [Google Scholar] [CrossRef]
- Wu, J.; Wu, X.; Zhang, J. Development Trend and Frontier of Stormwater Management (1980–2019): A Bibliometric Overview Based on CiteSpace. Water 2019, 11, 1908. [Google Scholar] [CrossRef] [Green Version]
- Burrill, G.; Nolfi, J.R. A Research Report on Developing a Community Level Natural Resource Inventory System; Center for Studies in Food Self-Sufficiency, Vermont Institute of Community Involvement: London, UK, 1977. [Google Scholar]
- Coffman, L.S. Low-Impact Development Design: A New Paradigm for Stormwater Management Mimicking and Restoring the Natural Hydrologic Regime an Alternative Stormwater Management Technology; Citeseer: London, UK, 2000. [Google Scholar]
- Ashley, R.M.; Nowell, R.; Gersonius, B.; Walker, L. A Review of Current Knowledge: Surface Water Management and Urban Green Infrastructure. 2011. Available online: http://www.fwr.org/greeninf.pdf (accessed on 5 October 2015).
- Damodaram, C.; Zechman, E.M. Simulation-Optimization Approach to Design Low Impact Development for Managing Peak Flow Alterations in Urbanizing Watersheds. J. Water Resour. Plan. Manag. 2013, 139, 290–298. [Google Scholar] [CrossRef]
- Urban Water Infrastructure Management Committee. A Guide for Best Management Practice (BMP) Selection in Urban Developed Areas; American Society of Civil Engineers: Reston, VA, USA, 2001. [Google Scholar]
- U.S. Environmental Protection Agency. NPDES Best Management Practices Manual; Government Institutes, ABS Group, Inc.: Rockville, MD, USA, 1995.
- Logging and Forestry Best Management Practices. Division of Forestry, Indiana Department of Natural Resources. 30 May 2001. Available online: http://www.state.in.us/dnr/forestry/bmp/logindex.htm (accessed on 15 June 2002).
- Best Management Practices (BMPs) for Agricultural Nonpoint Source Pollution Control. North Carolina State University Water Quality Group. 15 June 2002. Available online: http://h2osparc.wq.ncsu.edu/info/bmps_for_agnps.html (accessed on 17 June 2002).
- Best Management Practices (BMPs) for Non-Agricultural Nonpoint Source Pollution Control: Nonpoint Source Pollution Control Measures—Source Categories. North Carolina State University Water Quality Group. 15 June 2002. Available online: http://h2osparc.wq.ncsu.edu/info/bmps.html (accessed on 17 June 2002).
- EPA. National Menu of Best Management Practices (BMPs) for Stormwater. National Pollutant Discharge Elimination System; EPA: Washington, DC, USA, 2016.
- Kuller, M.; Bach, P.M.; Ramirez-Lovering, D.; Deletic, A. Framing water sensitive urban design as part of the urban form: A critical review of tools for best planning practice. Environ. Model. Softw. 2017, 96, 265–282. [Google Scholar] [CrossRef]
- Radcliffe, J.C. History of water sensitive urban design/low impact development adoption in Australia and internationally. In Approaches to Water Sensitive Urban Design; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–24. [Google Scholar]
- COAG. Intergovernmental Agreement on a National Water Initiative; Council of Australian Governments (COAG): London, UK, 2004.
- BMT WBM. Evaluating Options for Water Sensitive Urban Design—A National Guide: Prepared by the Joint Steering Committee for Water Sensitive Cities: In Delivering Clause 92(ii) of the National Water Initiative; Joint Steering Committee for Water Sensitive Cities (JSCWSC): Canberra, Australia, 2011. [Google Scholar]
- Lloyd, S.D.; Wong, T.H.F.; Chesterfield, C.J. Water Sensitive Urban Design: A Stormwater Management Perspective, Industry Report; Cooperative Research Centre for Catchment Hydrology: Melbourn, Australia, 2002. [Google Scholar]
- Beecham, S. Water sensitive urban design: A technological assessment. J. Stormwater Ind. Assoc. 2003, 17, 5–13. [Google Scholar]
- Butler, D.; Memon, F.A. Water demand management. Water Intell. Online 2006, 5, 9781780402550. [Google Scholar] [CrossRef]
- Taylor, A.; Wong, T.H.F. Non-Structural Stormwater Quality Best Management Practices: An Overview of Their Use, Value, Cost and Evaluation, Technical Report; CRC for Catchment Hydrology: Melbourn, Australia, 2002. [Google Scholar]
- Ashley, R.; Booker, N.; Smith, H. Sustainable Water Services: A Procedural Guide, 1st ed.; IWA Publishing: London, UK, 2004. [Google Scholar]
- Fryd, O.; Dam, T.; Jensen, M.B. A planning framework for sustainable urban drainage systems. Water Policy 2012, 14, 865–886. [Google Scholar] [CrossRef]
- Martin, C.; Ruperd, Y.; Legret, M. Urban stormwater drainage management: The development of a multicriteria decision aid approach for best management practices. Eur. J. Oper. Res. 2007, 181, 338–349. [Google Scholar] [CrossRef]
- Wong, T.H.F.; Allen, R.; Brown, R.R.; Deletic, A.; Gangadharan, L.; Gernjak, W.; Jakob, C.; Johnstone, P.; Reeder, M.; Tapper, N.; et al. Blueprint 2013 Stormwater Management in a Water Sensitive City; Cooperative Research Centre for Water Sensitive Cities: Melbourn, Australia, 2013. [Google Scholar]
- Wong, T.H.F.; Brown, R.R. The water sensitive city: Principles for practice. Water Sci. Technol. 2009, 60, 673–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woods-Ballard, B.; Kellagher, R.; Martin, P.; Jefferies, C.; Bray, R.; Shaffer, P. The SUDS Manual, 1st ed.; Ciria: London, UK, 2007. [Google Scholar]
- Lloyd, S.D.; Wong, T.H.F.; Porter, B. The planning and construction of an urban stormwater management scheme. Water Sci. Technol. 2002, 45, 1–10. [Google Scholar] [CrossRef]
- Brown, R.R.; Farrelly, M.A. Delivering sustainable urban water management: A review of the hurdles we face. Water Sci. Technol. 2009, 59, 839–846. [Google Scholar] [CrossRef]
- Iftekhar, M.S.; Pannell, D.J. Developing an integrated investment decision-support framework for water-sensitive urban design projects. J. Hydrol. 2022, 607, 127532. [Google Scholar] [CrossRef]
- Evans, D.L.; Falagán, N.; Hardman, C.A.; Kourmpetli, S.; Liu, L.; Mead, B.R.; Davies, J.A.C. Ecosystem service delivery by urban agriculture and green infrastructure–a systematic review. Ecosyst. Serv. 2022, 54, 101405. [Google Scholar] [CrossRef]
- Mell, I.C. Can green infrastructure promote urban sustainability. Eng. Sustainab. 2009, 162, 23–34. [Google Scholar] [CrossRef]
- EEA. Green Infrastructure and Territorial Cohesion: The Concept of Green Infrastructure and Its Integration into Policies Using Monitoring Systems; Publications Office of the European Union: Luxembourg, 2011. [CrossRef]
- Haines-Young, R.; Potschin, M.P. Common International Classification of Ecosystem Services (CICES). V5.1 and Guidance on the Application of the Revised Structure. 2018. Available online: https://cices.eu/content/uploads/sites/8/2018/01/Guidance-V51-01012018.pdf (accessed on 8 February 2022).
- Díaz, S.; Pascual, U.; Stenseke, M.; Martín-López, B.; Watson, R.T.; Molnár, Z.; Hill, R.; Chan, K.M.; Base, I.A.; Brauman, K.A.; et al. Assessing nature’s contribution to people. Science 2018, 359, 270–272. [Google Scholar] [CrossRef] [Green Version]
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgström, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, Å.; Hamstead, Z.; Hansen, R.; et al. A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation. Ambio 2014, 43, 413–433. [Google Scholar] [CrossRef] [Green Version]
- Keeler, B.L.; Hamel, P.; McPhearson, T.; Hamann, M.H.; Donahue, M.L.; Prado, K.A.M.; Arkema, K.K.; Bratman, G.N.; Brauman, K.A.; Finlay, J.C.; et al. Social-ecological and technological factors moderate the value of urban nature. Nat. Sustain. 2019, 2, 29–38. [Google Scholar] [CrossRef]
- Veerkamp, C.J.; Schipper, A.M.; Hedlund, K.; Lazarova, T.; Nordin, A.; Hanson, H.I. A review of studies assessing ecosystem services provided by urban green and blue infrastructure. Ecosyst. Serv. 2021, 52, 101367. [Google Scholar] [CrossRef]
- Liu, Z.; Brown, R.D.; Zheng, S.; Jiang, Y.; Zhao, L. An in-depth analysis of the effect of trees on human energy fluxes. Urban For. Urban Green. 2020, 50, 126646. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Dahanayake, K.; Ng, E.; Chow, C.L. Temperature and cooling demand reduction by green-roof types in different climates and urban densities: A co-simulation parametric study. Energy Build. 2017, 145, 226–237. [Google Scholar] [CrossRef]
- Altunkasa, C.; Uslu, C. Use of outdoor microclimate simulation maps for a planting design to improve thermal comfort. Sustain. Cities Soc. 2020, 57, 102137. [Google Scholar] [CrossRef]
- Gatto, E.; Buccolieri, R.; Aarrevaara, E.; Ippolito, F.; Emmanuel, R.; Perronace, L.; Santiago, J.L. Impact of Urban Vegetation on Outdoor Thermal Comfort: Comparison between a Mediterranean City (Lecce, Italy) and a Northern European City (Lahti, Finland). Forests 2020, 11, 228. [Google Scholar] [CrossRef] [Green Version]
- Karimi, A.; Sanaieian, H.; Farhadi, H.; Norouzian-Maleki, S. Evaluation of the thermal indices and thermal comfort improvement by different vegetation species and materials in a medium-sized urban park. Energy Rep. 2020, 6, 1670–1684. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Kong, L.; Lau, K.K.-L.; Yuan, C.; Ng, E. A study on the impact of shadow-cast and tree species on in-canyon and neighborhood’s thermal comfort. Build. Environ. 2017, 115, 1–17. [Google Scholar] [CrossRef]
- Jacobs, C.; Klok, L.; Bruse, M.; Cortesão, J.; Lenzholzer, S.; Kluck, J. Are urban water bodies really cooling? Urban Clim. 2020, 32, 100607. [Google Scholar] [CrossRef]
- Albdour, M.S.; Baranyai, B. Water body effect on microclimate in summertime: A case study from PÉCS. Pollack Period. 2019, 14, 131–140. [Google Scholar] [CrossRef]
- Manteghi, G.; Shukri, S.M.; Lamit, H. Street geometry and river width as design factors to improve thermal comfort in Melaka City. J. Adv. Res. Fluid Mech. Therm. Sci. 2019, 58, 15–22. [Google Scholar]
- Rahul, A.; Mukherjee, M.; Sood, A. Impact of ganga canal on thermal comfort in the city of Roorkee, India. Int. J. Biometeorol. 2020, 64, 1933–1945. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Liu, L.; Duan, Y. Evaluating the Association of Regional and City-Level Environmental Greenness and Land Over Patterns with PM2.5 Pollution: Evidence from the Shanxi Province, China. Front. Environ. Sci. 2022, 10, 875619. [Google Scholar] [CrossRef]
- European Commission. Nature-Based Solutions & Re-naturing Cities. Final Report of the Horizon 2020 Expert Group on ‘Nature-Based Solutions and Re- Naturing Cities’. Directorate-General for Research and Innovation–Climate Action, Environment, Resource Efficiency and Raw Materials; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Langergraber, G.; Pucher, B.; Simperler, L.; Kisser, J.; Katsou, E.; Buehler, D.; Mateo, M.C.G.; Atanasova, N. Implementing nature-based solutions for creating a resourceful circular city. Blue-Green Syst. 2020, 2, 173–185. [Google Scholar] [CrossRef]
- Carvalho, P.N.; Finger, D.C.; Masi, F.; Cipolletta, G.; Oral, H.V.; Tóth, A.; Regelsberger, M.; Exposito, A. Nature-based solutions addressing the water-energy-food nexus: Review of theoretical concepts and urban case studies. J. Clean. Prod. 2022, 338, 130652. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions the European Green Deal COM/2019/640 Final; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions EU Biodiversity Strategy for 2030 Bringing Nature Back into Our Lives COM/2020/380 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System COM/2020/381 Final COM/2020/381; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Finger, D.C.; Saevarsdottir, G.; Svavarsson, H.G.; Björnsdóttir, B.; Arason, S.; Böhme, L. Improved Value Generation from Residual Resources in Iceland: The First Step Towards a Circular Economy. Circ. Econ. Sustain. 2021, 1, 525–543. [Google Scholar] [CrossRef]
- O’Hara, S. Editorial: Nature-Based Solutions in Urban Areas. Front. Environ. Sci. 2022, 10, 904134. [Google Scholar] [CrossRef]
- Cilliers, E.J.; Timmermans, W.; Rohr, H.; Goosen, H. Scaling Up of Nature-Based Solutions to Guide Climate Adaptation Planning: Evidence from Two Case Studies. Front. Sustain. Cities 2022, 4, 624046. [Google Scholar] [CrossRef]
- Wu, C.; Li, J.; Wang, C.; Song, C.; Haase, D.; Breuste, J.; Finka, M. Estimating the Cooling Effect of Pocket Green Space in High Density Urban Areas in Shanghai, China. Front. Environ. Sci. 2021, 9, 657969. [Google Scholar] [CrossRef]
- Snep, R.P.; Voeten, J.G.; Mol, G.; Van Hattum, T. Nature Based Solutions for Urban Resilience: A Distinction Between No-Tech, Low-Tech and High-tech Solutions. Front. Environ. Sci. 2020, 8, 599060. [Google Scholar] [CrossRef]
- Navarro-Leblond, M.; Meléndez-Pastor, I.; Navarro-Pedreño, J.; Lucas, I.G. Soil Sealing and Hydrological Changes during the Development of the University Campus of Elche (Spain). Int. J. Environ. Res. Public Health 2021, 18, 9511. [Google Scholar] [CrossRef] [PubMed]
- Vanegas-Espinosa, L.I.; Vargas-Del-Río, D.; Ochoa-Covarrubias, G.; Grindlay, A.L. Flood Mitigation in Urban Areas through Deep Aquifer Recharge: The Case of the Metropolitan Area of Guadalajara. Int. J. Environ. Res. Public Health 2022, 19, 3160. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rojas, M.I.; Huertas-Fernández, F.; Moreno, B.; Martínez, G. Middle-Term Evolution of Efficiency in Permeable Pavements: A Real Case Study in a Mediterranean Climate. Int. J. Environ. Res. Public Health 2020, 17, 7774. [Google Scholar] [CrossRef] [PubMed]
- Manchado, C.; Roldán-Valcarce, A.; Jato-Espino, D.; Andrés-Doménech, I. ArcDrain: A GIS Add-In for Automated Determination of Surface Runoff in Urban Catchments. Int. J. Environ. Res. Public Health 2021, 18, 8802. [Google Scholar] [CrossRef]
- Guo, S.; Wu, Z.; Wen, L. Urban Residents’ Acceptance Intention to Use Recycled Stormwater—An Examination of Values, Altruism, Social and Cultural Norms, and Perceived Health Risks. Int. J. Environ. Res. Public Health 2022, 19, 2825. [Google Scholar] [CrossRef]
Term | Areas Where It Is Most Used | Definition | Objectives/Environmental Benefits |
---|---|---|---|
SuDS | Europe | Water management practices to align conventional drainage systems with natural water processes | Absorb extreme rainfall and minimize the hydrological impacts of urbanization |
LIDs | America, New Zealand and Asia | Stormwater management and control measures that are more sustainable than conventional approaches | Reduce runoff volume, peak flow, pollutant load, and first flush volume while minimizing cost |
BMPs | America and Canada | Practices to protect water quality and promote soil conservation | Prevent or reduce nonpoint source pollution to help achieve water quality objectives |
WSUD | Australia | Urban planning practices to integrate the urban water cycle in cities and minimize the hydrological impact of urban development | Integrate the urban water cycle (water supply, stormwater, groundwater, and wastewater) into urban design |
GI | America, Europe and Asia | Provision and maintenance of natural and semi-natural green spaces within built “gray” infrastructure | Improve air quality regulation, regulate local temperature, decrease pollution, and create recreational opportunities |
NbS | Europe | Solutions inspired and supported by nature which are cost-effective, to provide environmental, social and economic benefits. | Promote more ecological diversity and nature into cities and landscapes through locally adapted, resource-efficient, and systemic interventions. |
Number of Articles Published | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Keyword | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Total |
SuDS | 2873 | 3150 | 3492 | 3696 | 3981 | 4505 | 4754 | 5430 | 5964 | 7451 | 45,296 |
LIDs | 67,115 | 76,153 | 83,803 | 93,720 | 102,224 | 110,700 | 122,330 | 134,430 | 156,372 | 192,212 | 1,139,059 |
BMPs | 26,697 | 29,125 | 31,830 | 34,595 | 36,370 | 37,886 | 40,724 | 43,110 | 47,967 | 56,676 | 384,980 |
WSUD | 1808 | 2316 | 2487 | 2692 | 3032 | 3465 | 3891 | 4328 | 5070 | 6395 | 35,484 |
GI | 3823 | 4621 | 5578 | 6548 | 7795 | 8921 | 9965 | 11,410 | 13,638 | 18,089 | 90,388 |
NbS | 59,893 | 68,149 | 71,773 | 80,235 | 83,870 | 90,673 | 96,054 | 103,824 | 114,592 | 132,700 | 901,763 |
Total | 162,209 | 183,514 | 198,963 | 221,486 | 237,272 | 256,150 | 277,718 | 302,532 | 343,603 | 413,523 | 2,596,970 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Rojas, M.I.; Grindlay Moreno, A.L. A Discussion on the Application of Terminology for Urban Soil Sealing Mitigation Practices. Int. J. Environ. Res. Public Health 2022, 19, 8713. https://doi.org/10.3390/ijerph19148713
Rodríguez-Rojas MI, Grindlay Moreno AL. A Discussion on the Application of Terminology for Urban Soil Sealing Mitigation Practices. International Journal of Environmental Research and Public Health. 2022; 19(14):8713. https://doi.org/10.3390/ijerph19148713
Chicago/Turabian StyleRodríguez-Rojas, María I., and Alejandro L. Grindlay Moreno. 2022. "A Discussion on the Application of Terminology for Urban Soil Sealing Mitigation Practices" International Journal of Environmental Research and Public Health 19, no. 14: 8713. https://doi.org/10.3390/ijerph19148713
APA StyleRodríguez-Rojas, M. I., & Grindlay Moreno, A. L. (2022). A Discussion on the Application of Terminology for Urban Soil Sealing Mitigation Practices. International Journal of Environmental Research and Public Health, 19(14), 8713. https://doi.org/10.3390/ijerph19148713