Inhalation Bioaccessibility and Risk Assessment of Metals in PM2.5 Based on a Multiple-Path Particle Dosimetry Model in the Smelting District of Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Collection and Preparation
2.3. Chemical Analyses
2.4. Bioaccessibility of Inhalation
2.5. Multiple-Path Particle Dosimetry (MPPD) Model
2.6. Exposure Risk Assessment
2.7. Monte Carlo
3. Results and Discussion
3.1. Particulate Mass and Metal Concentrations
3.2. Bioaccessibility of Metals
3.3. Deposition Fractions
3.4. Average Daily Inhaled Dose
3.5. Human Health Risk Assessment
3.6. Comparison of Differences in Human Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Franklin, M.; Zeka, A.; Schwartz, J. Association between PM2.5 and all-cause and specific-cause mortality in 27 US communities. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 279–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, L.; Zanobetti, A.; Koutrakis, P.; Schwartz, J.D. Associations of fine particulate matter species with mortality in the united states: A multicity time-series analysis. Environ. Health Perspect. 2014, 122, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.S.Z.S.; Saldiva, P.H.N.; Lavigne, E.; Matus, P.; et al. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.Y.; Yang, J.; He, J.; Yang, X.; Hubbard, R.; Ji, D. An investigation into the impact of variations of ambient air pollution and meteorological factors on lung cancer mortality in Yangtze River Delta. Sci. Total Environ. 2021, 779, 146427. [Google Scholar] [CrossRef] [PubMed]
- Khelifi, F.; Caporale, A.G.; Hamed, Y.; Adamo, P. Bioaccessibility of potentially toxic metals in soil, sediments and tailings from a north Africa phosphate-mining area: Insight into human health risk assessment. J. Environ. Manag. 2021, 279, 111634. [Google Scholar] [CrossRef]
- Lyu, Y.; Zhang, K.; Chai, F.; Cheng, T.; Yang, Q.; Zheng, Z.; Li, X. Atmospheric size-resolved trace elements in a city affected by non-ferrous metal smelting: Indications of respiratory deposition and health risk. Environ. Pollut. 2017, 224, 559–571. [Google Scholar] [CrossRef]
- Fan, M.Y.; Zhang, Y.L.; Lin, Y.C.; Cao, F.; Sun, Y.; Qiu, Y.; Xing, G.; Dao, X.; Fu, P. Specific sources of health risks induced by metallic elements in PM2.5 during the wintertime in Beijing, China. Atmos. Environ. 2021, 246, 118112. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Z.; Wang, D.; Tao, Y.; Qiao, F.; Lei, L.; Huang, J.; Ting, Z. Characteristics, source apportionment and health risk assessment of heavy metals exposure via household dust from six cities in China. Sci. Total Environ. 2021, 762, 143126. [Google Scholar] [CrossRef]
- Mazziotti Tagliani, S.; Carnevale, M.; Armiento, G.; Montereali, M.R.; Nardi, E.; Inglessis, M.; Sacco, F.; Palleschi, S.; Rossi, B.; Silvestroni, L.; et al. Content, mineral allocation and leaching behavior of heavy metals in urban PM2.5. Atmos. Environ. 2017, 153, 47–60. [Google Scholar] [CrossRef]
- Wei, W.; Wu, X.; Bai, Y.; Li, G.; Feng, Y.; Meng, H.; Li, H.; Li, M.; Zhang, X.; He, M.; et al. Lead exposure and its interactions with oxidative stress polymorphisms on lung function impairment: Results from a longitudinal population-based study. Environ. Res. 2020, 187, 109645. [Google Scholar] [CrossRef]
- Wang, C.; Wei, Z.; Han, Z.; Wang, J.; Zhang, X.; Wang, Y.; Liu, Q.; Yang, Z. Neutrophil extracellular traps promote cadmium chloride-induced lung injury in mice. Environ. Pollut. 2019, 254, 113021. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Habib, G.; Vivekanandan, P.; Kumar, A. Reactive oxygen species production and inflammatory effects of ambient PM2.5-associated metals on human lung epithelial A549 cells “one year-long study”: The Delhi chapter. Chemosphere 2021, 262, 128305. [Google Scholar] [CrossRef] [PubMed]
- ThankGod Eze, C.; Michelangeli, F.; Otitoloju, A.A. In vitro cyto-toxic assessment of heavy metals and their binary mixtures on mast cell-like, rat basophilic leukemia (RBL-2H3) cells. Chemosphere 2019, 223, 686–693. [Google Scholar] [CrossRef]
- Kim, A.; Park, S.; Sung, J.H. Cell viability and immune response to low concentrations of nickel and cadmium: An in vitro model. Int. J. Environ. Res. Public Health 2020, 17, 9218. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, Y.; Ge, X.; Nie, D.; Wang, M.; Zhou, H.; Chen, M. In vitro toxicity evaluation of heavy metals in urban air particulate matter on human lung epithelial cells. Sci. Total Environ. 2019, 678, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; An, M.J.; Shin, G.S.; Lee, H.M.; Kim, M.J.; Kim, C.H.; Kim, J.W. Mercury chloride but not lead acetate causes apoptotic cell death in human lung fibroblast mrc5 cells via regulation of cell cycle progression. Int. J. Mol. Sci. 2021, 22, 2494. [Google Scholar] [CrossRef]
- Gerlofs-Nijland, M.E.; Rummelhard, M.; Boere, A.J.F.; Leseman, D.L.A.C.; Duffin, R.; Schins, R.P.F.; Borm, P.J.A.; Sillanpää, M.; Salonen, R.O.; Cassee, F.R. Particle induced toxicity in relation to transition metal and polycyclic aromatic hydrocarbon contents. Environ. Sci. Technol. 2009, 43, 4729–4736. [Google Scholar] [CrossRef]
- Senthil Kumar, S.; Muthuselvam, P.; Pugalenthi, V.; Subramanian, N.; Ramkumar, K.M.; Suresh, T.; Suzuki, T.; Rajaguru, P. Toxicoproteomic analysis of human lung epithelial cells exposed to steel industry ambient particulate matter (PM) reveals possible mechanism of PM related carcinogenesis. Environ. Pollut. 2018, 239, 483–492. [Google Scholar] [CrossRef]
- Manojkumar, N.; Srimuruganandam, B.; Shiva Nagendra, S.M. Application of multiple-path particle dosimetry model for quantifying age specified deposition of particulate matter in human airway. Ecotoxicol. Environ. Saf. 2019, 168, 241–248. [Google Scholar] [CrossRef]
- Wang, H.; Yin, P.; Fan, W.; Wang, Y.; Dong, Z.; Deng, Q.; Zhou, M. Mortality Risk Associated with Short-Term Exposure to Particulate Matter in China: Estimating Error and Implication. Environ. Sci. Technol. 2021, 55, 1110–1121. [Google Scholar] [CrossRef]
- Lv, H.; Li, H.; Qiu, Z.; Zhang, F.; Song, J. Assessment of pedestrian exposure and deposition of PM10, PM2.5 and ultrafine particles at an urban roadside: A case study of Xi’an, China. Atmos. Pollut. Res. 2021, 12, 112–121. [Google Scholar] [CrossRef]
- Can-Terzi, B.; Ficici, M.; Tecer, L.H.; Sofuoglu, S.C. Fine and coarse particulate matter, trace element content, and associated health risks considering respiratory deposition for Ergene Basin, Thrace. Sci. Total Environ. 2021, 754, 142026. [Google Scholar] [CrossRef] [PubMed]
- Kreyling, W.G.; Möller, W.; Holzwarth, U.; Hirn, S.; Wenk, A.; Schleh, C.; Schäffler, M.; Haberl, N.; Gibson, N.; Schittny, J.C. Age-dependent rat lung deposition patterns of inhaled 20 nanometer gold nanoparticles and their quantitative biokinetics in adult rats. ACS Nano 2018, 12, 7771–7790. [Google Scholar] [CrossRef] [Green Version]
- Takenaka, S.; Karg, E.; Roth, C.; Schulz, H.; Ziesenis, A.; Takenaka, S.; Karg, E.; Roth, C.; Schulz, H.; Ziesenis, A.; et al. Pulmonary and Systemic Distribution of Inhaled Ultrafine Silver Particles in Rats. Environ. Health Perspect. 2022, 109 (Suppl. S4), 547–551. [Google Scholar]
- Guo, L.; Salimi, F.; Wang, H.; Hofmann, W.; Johnson, G.R.; Toelle, B.G.; Marks, G.B.; Morawska, L. Experimentally determined deposition of ambient urban ultrafine particles in the respiratory tract of children. Environ. Int. 2020, 145, 106094. [Google Scholar] [CrossRef]
- Wallenborn, J.G.; McGee, J.K.; Schladweiler, M.C.; Ledbetter, A.D.; Kodavanti, U.P. Systemic translocation of particulate matter-associated metals following a single intratracheal instillation in rats. Toxicol. Sci. 2007, 98, 231–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, H.; Yu, Y.; An, T. Bioaccessibilities of metal(loid)s and organic contaminants in particulates measured in simulated human lung fluids: A critical review. Environ. Pollut. 2020, 265, 115070. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, A.; Chen, Y.; Zhou, X.; Zhou, A.; Cao, H. Bioaccessibility, source impact and probabilistic health risk of the toxic metals in PM2.5 based on lung fluids test and Monte Carlo simulations. J. Clean. Prod. 2021, 283, 124667. [Google Scholar] [CrossRef]
- Gao, P.; Jian, H.; Xing, Y.; Tianxing, X.; Chen, X.; Jia, L.; Hang, J. Bioaccessiblity and exposure assessment of PM2.5- and PM10-bound rare earth elements in Oil City, Northeast China. J. Hazard. Mater. 2020, 396, 122520. [Google Scholar] [CrossRef]
- Li, H.B.; Cui, X.Y.; Li, K.; Li, J.; Juhasz, A.L.; Ma, L.Q. Assessment of in vitro lead bioaccessibility in house dust and its relationship to in vivo lead relative bioavailability. Environ. Sci. Technol. 2014, 48, 8548–8555. [Google Scholar] [CrossRef]
- Li, Y.; Juhasz, A.L.; Ma, L.Q.; Cui, X. Inhalation bioaccessibility of PAHs in PM2.5: Implications for risk assessment and toxicity prediction. Sci. Total Environ. 2019, 650, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-W.; Chang, M.; Huang, X.; Li, H.; Li, H.-B.; Ma, L.Q. Coupling in vitro assays with sequential extraction to investigate cadmium bioaccessibility in contaminated soils. Chemosphere 2021, 288, 132655. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.J.; Yuan, C.G.; Shen, Y.W.; Xie, J.; He, K.Q.; Zhu, H.T.; Zhang, K.G. Bioavailability/speciation of arsenic in atmospheric PM2.5 and their seasonal variation: A case study in Baoding city, China. Ecotoxicol. Environ. Saf. 2019, 169, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Zereini, F.; Wiseman, C.L.S.; Püttmann, W. In vitro investigations of platinum, palladium, and rhodium mobility in urban airborne particulate matter (PM10, PM2.5, and PM1) using simulated lung fluids. Environ. Sci. Technol. 2012, 46, 10326–10333. [Google Scholar] [CrossRef]
- Huang, L.; Wang, G. Chemical characteristics and source apportionment of atmospheric particles during heating period in Harbin, China. J. Environ. Sci. 2014, 26, 2475–2483. [Google Scholar] [CrossRef]
- Wiseman, C.L.S.; Zereini, F. Characterizing metal(loid) solubility in airborne PM10, PM2.5 and PM1 in Frankfurt, Germany using simulated lung fluids. Atmos. Environ. 2014, 89, 282–289. [Google Scholar] [CrossRef]
- Huang, M.; Wang, W.; Chan, C.Y.; Cheung, K.C.; Man, Y.B.; Wang, X.; Wong, M.H. Contamination and risk assessment (based on bioaccessibility via ingestion and inhalation) of metal(loid)s in outdoor and indoor particles from urban centers of Guangzhou, China. Sci. Total Environ. 2014, 479, 117–124. [Google Scholar] [CrossRef]
- Huang, H.; Jiang, Y.; Xu, X.; Cao, X. In vitro bioaccessibility and health risk assessment of heavy metals in atmospheric particulate matters from three different functional areas of Shanghai, China. Sci. Total Environ. 2018, 610, 546–554. [Google Scholar] [CrossRef]
- Soltani, N.; Keshavarzi, B.; Moore, F.; Cave, M.; Sorooshian, A.; Mahmoudi, M.R.; Ahmadi, M.R.; Golshani, R. In vitro bioaccessibility, phase partitioning, and health risk of potentially toxic elements in dust of an iron mining and industrial complex. Ecotoxicol. Environ. Saf. 2021, 212, 111972. [Google Scholar] [CrossRef]
- Hernández-Pellón, A.; Nischkauer, W.; Limbeck, A.; Fernández-Olmo, I. Metal(loid) bioaccessibility and inhalation risk assessment: A comparison between an urban and an industrial area. Environ. Res. 2018, 165, 140–149. [Google Scholar] [CrossRef]
- Rovelli, S.; Cattaneo, A.; Nischkauer, W.; Borghi, F.; Spinazzè, A.; Keller, M.; Campagnolo, D.; Limbeck, A.; Cavallo, D.M. Toxic trace metals in size-segregated fine particulate matter: Mass concentration, respiratory deposition, and risk assessment. Environ. Pollut. 2020, 266, 115242. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.A.; Zhang, J.F.; Jiang, H.M.; Yang, J.C.; Zhang, J.T.; Wang, J.Z.; Shan, H.X. Assessment of soil contamination with Cd, Pb and Zn and source identification in the area around the Huludao Zinc Plant. J. Hazard. Mater. 2010, 182, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Wang, Q.; Liang, Z.; Zheng, D. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environ. Pollut. 2008, 154, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, Y.; Zheng, N.; Hou, S.; Song, X.; Dong, W. Metallic elements in human hair from residents in smelting districts in northeast China: Environmental factors and differences in ingestion media. Environ. Res. 2020, 182, 108914. [Google Scholar] [CrossRef]
- Zhang, R.; Jing, J.; Tao, J.; Hsu, S.C.; Wang, G.; Cao, J.; Lee, C.S.L.; Zhu, L.; Chen, Z.; Zhao, Y.; et al. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys. 2013, 13, 7053–7074. [Google Scholar] [CrossRef] [Green Version]
- Ledoux, F.; Kfoury, A.; Delmaire, G.; Roussel, G.; El Zein, A.; Courcot, D. Contributions of local and regional anthropogenic sources of metals in PM2.5 at an urban site in northern France. Chemosphere 2017, 181, 713–724. [Google Scholar] [CrossRef]
- Gao, P.; Guo, H.; Wang, S.; Guo, L.; Xing, Y.; Yao, C.; Jia, L.; Fan, Q.; Hang, J. In Vitro investigations of high molecular weight polycyclic aromatic hydrocarbons in winter airborne particles using simulated lung fluids. Atmos. Environ. 2019, 201, 293–300. [Google Scholar] [CrossRef]
- Sun, S.; Zheng, N.; Wang, S.; Li, Y.; Hou, S.; Song, X.; Du, S.; An, Q.; Li, P.; Li, X.; et al. Source analysis and human health risk assessment based on entropy weight method modification of PM2.5 heavy metal in an industrial area in the northeast of China. Atmosphere 2021, 12, 852. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, X.S.; Zhao, Z.; Chen, Q.; Wu, D.; Sun, X.; Wu, L.; Jin, L. Summer–winter differences of PM2.5 toxicity to human alveolar epithelial cells (A549) and the roles of transition metals. Ecotoxicol. Environ. Saf. 2018, 165, 505–509. [Google Scholar] [CrossRef]
- Yang, H.; Chen, J.; Wen, J.; Tian, H.; Liu, X. Composition and sources of PM2.5 around the heating periods of 2013 and 2014 in Beijing: Implications for efficient mitigation measures. Atmos. Environ. 2016, 124, 378–386. [Google Scholar] [CrossRef]
- Agarwal, A.; Mangal, A.; Satsangi, A.; Lakhani, A.; Maharaj Kumari, K. Characterization, sources and health risk analysis of PM2.5 bound metals during foggy and non-foggy days in sub-urban atmosphere of Agra. Atmos. Res. 2017, 197, 121–131. [Google Scholar] [CrossRef]
- Feng, J.; Yu, H.; Su, X.; Liu, S.; Li, Y.; Pan, Y.; Sun, J.H. Chemical composition and source apportionment of PM2.5 during Chinese Spring Festival at Xinxiang, a heavily polluted city in North China: Fireworks and health risks. Atmos. Res. 2016, 182, 176–188. [Google Scholar] [CrossRef]
- Wang, X.; Wang, B.; Xiao, L.; Cui, X.; Cen, X.; Yang, S.; Mu, G.; Xu, T.; Zhou, M.; Chen, W. Sources of 24-h personal exposure to PM2.5-bound metals: Results from a panel study in Wuhan, China. Environ. Sci. Pollut. Res. 2021, 28, 27555–27564. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yu, R.; Hu, G.; Lin, X.; Liu, X. Chemical characteristics and Pb isotopic compositions of PM2.5 in Nanchang, China. Particuology 2017, 32, 95–102. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Xiong, Q.; Yang, X.; Qi, M.; Zhao, W.; Wang, X. Characteristics of PM2.5 chemical compositions and their effect on atmospheric visibility in urban Beijing, China during the heating season. Int. J. Environ. Res. Public Health 2018, 15, 1924. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.C.; Lv, Z.; Ma, W.; Xiao, J.; Lin, H.; He, G.; Li, X.; Zeng, W.; Hu, J.; Zhou, Y.; et al. Contribution of heavy metals in PM2.5 to cardiovascular disease mortality risk, a case study in Guangzhou, China. Chemosphere 2022, 297, 134102. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, J.; Wang, X.; Jia, J.; Li, J.; Wang, L.; Hao, L.; Gao, P. Distribution, bioaccessibility, and health risk assessment of heavy metals in PM2.5 and PM10 during winter heating periods in five types of cities in Northeast China. Ecotoxicol. Environ. Saf. 2021, 214, 112071. [Google Scholar] [CrossRef]
- Meza-Figueroa, D.; Barboza-Flores, M.; Romero, F.M.; Acosta-Elias, M.; Hernández-Mendiola, E.; Maldonado-Escalante, F.; Pérez-Segura, E.; González-Grijalva, B.; Meza-Montenegro, M.; García-Rico, L.; et al. Metal bioaccessibility, particle size distribution and polydispersity of playground dust in synthetic lysosomal fluids. Sci. Total Environ. 2020, 713, 136481. [Google Scholar] [CrossRef]
- Nie, D.; Wu, Y.; Chen, M.; Liu, H.; Zhang, K.; Ge, P.; Yuan, Y.; Ge, X. Bioaccessibility and health risk of trace elements in fine particulate matter in different simulated body fluids. Atmos. Environ. 2018, 186, 1–8. [Google Scholar] [CrossRef]
- Liu, X.; Ouyang, W.; Shu, Y.; Tian, Y.; Feng, Y.; Zhang, T.; Chen, W. Incorporating bioaccessibility into health risk assessment of heavy metals in particulate matter originated from different sources of atmospheric pollution. Environ. Pollut. 2019, 254, 113113. [Google Scholar] [CrossRef]
- Coufalík, P.; Mikuška, P.; Matoušek, T.; Večeřa, Z. Determination of the bioaccessible fraction of metals in urban aerosol using simulated lung fluids. Atmos. Environ. 2016, 140, 469–475. [Google Scholar] [CrossRef]
- Li, S.W.; Li, H.B.; Luo, J.; Li, H.M.; Qian, X.; Liu, M.M.; Bi, J.; Cui, X.Y.; Ma, L.Q. Influence of pollution control on lead inhalation bioaccessibility in PM2.5: A case study of 2014 Youth Olympic Games in Nanjing. Environ. Int. 2016, 94, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Zhao, Z.; Xie, J.; Luo, J.; Chen, Y.; Li, H.; Jin, L. Pulmonary bioaccessibility of trace metals in PM2.5 from different megacities simulated by lung fluid extraction and DGT method. Chemosphere 2019, 218, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Madureira, J.; Slezakova, K.; Silva, A.I.; Lage, B.; Mendes, A.; Aguiar, L.; Pereira, M.C.; Teixeira, J.P.; Costa, C. Assessment of indoor air exposure at residential homes: Inhalation dose and lung deposition of PM10, PM2.5 and ultrafine particles among newborn children and their mothers. Sci. Total Environ. 2020, 717, 137293. [Google Scholar] [CrossRef] [PubMed]
- Voliotis, A.; Bezantakos, S.; Besis, A.; Shao, Y.; Samara, C. Mass dose rates of particle-bound organic pollutants in the human respiratory tract: Implications for inhalation exposure and risk estimations. Int. J. Hyg. Environ. Health 2021, 234, 113710. [Google Scholar] [CrossRef] [PubMed]
- EPA. Risk Assessment Guidance for Superfund. Volume I Human Health Evaluation Manual (Part A); Environmental Protection Agency: Washington, DC, USA, 1989; p. 289. [Google Scholar]
- US Environmental Protection Agency. Exposure Factors Handbook: 2011 Edition; US Environmental Protection Agency: Washington, DC, USA, 2011; pp. 1–1466. [Google Scholar]
- Stocks, J.; Quanjer, P.H. Reference values for residual volume, functional residual capacity and total lung capacity: ATS Workshop on Lung Volume Measurements Official Statement of the European Respiratory Society. Eur. Respir. J. 1995, 8, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Li, H.; Wu, H.H.; Zong, X.N. Secular trends in weight, height and weight for height among children under 7 years in nine cities of China, 1975–2015: Results from five repeated cross-sectional surveys. BMJ Open 2019, 9, 3–7. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, X.; Wang, D.; Wang, Z.; Li, J.; Li, Z. Reference values for lung function screening in 10- To 81-year-old, healthy, never-smoking residents of Southeast China. Medicine 2018, 97, e11904. [Google Scholar] [CrossRef]
- Ji, C.Y.; Chen, T.J. Secular changes in stature and body mass index for Chinese youth in sixteen major cities, 1950s–2005. Am. J. Hum. Biol. 2008, 20, 530–537. [Google Scholar] [CrossRef]
- Liang, B.; Li, X.-l.; Ma, K.; Liang, S.-x. Pollution characteristics of metal pollutants in PM2.5 and comparison of risk on human health in heating and non-heating seasons in Baoding, China. Ecotoxicol. Environ. Saf. 2019, 170, 166–171. [Google Scholar] [CrossRef]
- Xie, J.; Jin, L.; Cui, J.; Luo, X.; Li, J.; Zhang, G.; Li, X. Health risk-oriented source apportionment of PM2.5-associated trace metals. Environ. Pollut. 2020, 262, 114655. [Google Scholar] [CrossRef] [PubMed]
- Blondet, I.; Schreck, E.; Viers, J.; Casas, S.; Jubany, I.; Bahí, N.; Zouiten, C.; Dufréchou, G.; Freydier, R.; Galy-Lacaux, C.; et al. Atmospheric dust characterisation in the mining district of Cartagena-La Unión, Spain: Air quality and health risks assessment. Sci. Total Environ. 2019, 693, 133496. [Google Scholar] [CrossRef] [PubMed]
- Sulaymon, I.D.; Mei, X.; Yang, S.; Chen, S.; Zhang, Y.; Hopke, P.K.; Schauer, J.J.; Zhang, Y. PM2.5 in Abuja, Nigeria: Chemical characterization, source apportionment, temporal variations, transport pathways and the health risks assessment. Atmos. Res. 2020, 237, 104833. [Google Scholar] [CrossRef]
- Hu, Y.J.; Bao, L.J.; Huang, C.L.; Li, S.M.; Zeng, E.Y. A comprehensive risk assessment of human inhalation exposure to atmospheric halogenated flame retardants and organophosphate esters in an urban zone. Environ. Pollut. 2019, 252, 1902–1909. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, Y.; Zhang, X.X.; Cheng, S.P. Health risk assessment of polycyclic aromatic hydrocarbons in the source water and drinking water of China: Quantitative analysis based on published monitoring data. Sci. Total Environ. 2011, 410, 112–118. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, K.; Lv, W.; Liu, B.; Aikawa, M.; Wang, J. Characteristics and risk assessments of heavy metals in fine and coarse particles in an industrial area of central China. Ecotoxicol. Environ. Saf. 2019, 179, 1–8. [Google Scholar] [CrossRef]
- Zhao, Z.; Luo, X.S.; Jing, Y.; Li, H.; Pang, Y.; Wu, L.; Chen, Q.; Jin, L. In vitro assessments of bioaccessibility and bioavailability of PM2.5 trace metals in respiratory and digestive systems and their oxidative potential. J. Hazard. Mater. 2021, 409, 124638. [Google Scholar] [CrossRef]
- Zhong, L.; Liu, X.; Hu, X.; Chen, Y.; Wang, H.; Lian, H. zhen In vitro inhalation bioaccessibility procedures for lead in PM2.5 size fraction of soil assessed and optimized by in vivo-in vitro correlation. J. Hazard. Mater. 2020, 381, 121202. [Google Scholar] [CrossRef]
- Huang, X.; Betha, R.; Tan, L.Y.; Balasubramanian, R. Risk assessment of bioaccessible trace elements in smoke haze aerosols versus urban aerosols using simulated lung fluids. Atmos. Environ. 2016, 125, 505–511. [Google Scholar] [CrossRef]
- Mbengue, S.; Alleman, L.Y.; Flament, P. Bioaccessibility of trace elements in fine and ultrafine atmospheric particles in an industrial environment. Environ. Geochem. Health 2015, 37, 875–889. [Google Scholar] [CrossRef]
- Yann, B.; Claude, B.; Leon, G.; Jacky, L.; Agnes, L.; Didier, L.; Esperanza, P.; Sobanska, S. Speciation of PM10 Sources of Airborne Nonferrous Metals within the 3-km Zone of Lead/Zinc Smelters. Environ. Sci. Technol. 2004, 38, 5281–5289. [Google Scholar] [CrossRef]
- Hlavay, J.; Polyák, K.; Weisz, M. Monitoring of the natural environment by chemical speciation of elements in aerosol and sediment samples. J. Environ. Monit. 2001, 3, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Lv, H.; Zhang, F.; Wang, W.; Hao, Y. Pedestrian exposure to PM2.5, BC and UFP of adults and teens: A case study in Xi’an, China. Sustain. Cities Soc. 2019, 51, 101774. [Google Scholar] [CrossRef]
- Guney, M.; Bourges, C.M.J.; Chapuis, R.P.; Zagury, G.J. Lung bioaccessibility of As, Cu, Fe, Mn, Ni, Pb, and Zn in fine fraction (<20 μm) from contaminated soils and mine tailings. Sci. Total Environ. 2017, 579, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Francová, A.; Chrastný, V.; Vítková, M.; Šillerová, H.; Komárek, M. Health risk assessment of metal(loid)s in soil and particulate matter from industrialized regions: A multidisciplinary approach. Environ. Pollut. 2020, 260, 114057. [Google Scholar] [CrossRef]
- Wang, F.; Wang, J.; Han, M.; Jia, C.; Zhou, Y. Heavy metal characteristics and health risk assessment of PM2.5 in students’ dormitories in a university in Nanjing, China. Build. Environ. 2019, 160, 106206. [Google Scholar] [CrossRef]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci. Total Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef]
- Han, W.; Gao, G.; Geng, J.; Li, Y.; Wang, Y. Ecological and health risks assessment and spatial distribution of residual heavy metals in the soil of an e-waste circular economy park in Tianjin, China. Chemosphere 2018, 197, 325–335. [Google Scholar] [CrossRef]
- Callén, M.S.; Iturmendi, A.; López, J.M. Source apportionment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons by a PMF receptor model. Assessment of potential risk for human health. Environ. Pollut. 2014, 195, 167–177. [Google Scholar] [CrossRef]
- Peng, X.; Shi, G.L.; Liu, G.R.; Xu, J.; Tian, Y.Z.; Zhang, Y.F.; Feng, Y.C.; Russell, A.G. Source apportionment and heavy metal health risk (HMHR) quantification from sources in a southern city in China, using an ME2-HMHR model. Environ. Pollut. 2017, 221, 335–342. [Google Scholar] [CrossRef]
- Zhu, X.; Li, M.Y.; Chen, X.Q.; Wang, J.Y.; Li, L.Z.; Tu, C.; Luo, Y.M.; Li, H.B.; Ma, L.Q. As, Cd, and Pb relative bioavailability in contaminated soils: Coupling mouse bioassay with UBM assay. Environ. Int. 2019, 130, 104875. [Google Scholar] [CrossRef] [PubMed]
Site | Concentrations | Bioaccessibility | |||||
---|---|---|---|---|---|---|---|
PM2.5 | Metal | Total | ALF | GS | ALF | GS | |
Xinqu Park | 74.7 ± 49.2 | Cd | 9.99 ± 3.46 | 3.48 ± 0.97 | 1.21 ± 0.78 | 34.8% | 12.1% |
Pb | 264 ± 109 | 69.5 ± 30.8 | 32.8 ± 26.2 | 26.3% | 12.4% | ||
Dongcheng District | 88.8 ± 55.4 | Cd | 11.4 ± 3.30 | 3.51 ± 1.80 | 3.04 ± 2.01 | 30.8% | 26.7% |
Pb | 452 ± 337 | 164 ± 99.9 | 83.1 ± 108 | 36.2% | 18.4% | ||
All study area | 81.7 ± 52.9 | Cd | 10.7 ± 3.46 | 3.50 ± 1.45 | 2.13 ± 1.78 | 32.8% | 19.9% |
Pb | 358 ± 268 | 117 ± 87.7 | 58.0 ± 82.2 | 32.6% | 16.2% |
Age Groups | Gender | ADDinh | LADDinh | ||||
---|---|---|---|---|---|---|---|
Cd | Pb | Cd | |||||
ALF | GS | ALF | GS | ALF | GS | ||
2–5 | Male | 0.427 | 0.260 | 14.2 | 7.07 | 0.037 | 0.022 |
Female | 0.420 | 0.255 | 14.0 | 6.95 | 0.036 | 0.022 | |
5–7 | Male | 0.337 | 0.205 | 11.3 | 5.59 | 0.029 | 0.018 |
Female | 0.322 | 0.196 | 10.7 | 5.33 | 0.028 | 0.017 | |
7–11 | Male | 0.235 | 0.143 | 7.82 | 3.89 | 0.020 | 0.012 |
Female | 0.221 | 0.135 | 7.38 | 3.67 | 0.019 | 0.012 | |
11–23 | Male | 0.147 | 0.090 | 4.91 | 2.44 | 0.013 | 0.008 |
Female | 0.137 | 0.083 | 4.58 | 2.27 | 0.012 | 0.007 | |
23–30 | Male | 0.115 | 0.070 | 3.83 | 1.90 | 0.043 | 0.026 |
Female | 0.105 | 0.064 | 3.52 | 1.75 | 0.039 | 0.024 | |
30–40 | Male | 0.107 | 0.065 | 3.57 | 1.77 | 0.040 | 0.024 |
Female | 0.096 | 0.058 | 3.19 | 1.59 | 0.036 | 0.022 | |
40–65 | Male | 0.099 | 0.060 | 3.29 | 1.64 | 0.037 | 0.022 |
Female | 0.084 | 0.051 | 2.82 | 1.40 | 0.031 | 0.019 | |
65–96 | Male | 0.074 | 0.045 | 2.48 | 1.23 | 0.028 | 0.017 |
Female | 0.068 | 0.041 | 2.27 | 1.13 | 0.025 | 0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.; Zheng, N.; Wang, S.; Li, Y.; Hou, S.; An, Q.; Chen, C.; Li, X.; Ji, Y.; Li, P. Inhalation Bioaccessibility and Risk Assessment of Metals in PM2.5 Based on a Multiple-Path Particle Dosimetry Model in the Smelting District of Northeast China. Int. J. Environ. Res. Public Health 2022, 19, 8915. https://doi.org/10.3390/ijerph19158915
Sun S, Zheng N, Wang S, Li Y, Hou S, An Q, Chen C, Li X, Ji Y, Li P. Inhalation Bioaccessibility and Risk Assessment of Metals in PM2.5 Based on a Multiple-Path Particle Dosimetry Model in the Smelting District of Northeast China. International Journal of Environmental Research and Public Health. 2022; 19(15):8915. https://doi.org/10.3390/ijerph19158915
Chicago/Turabian StyleSun, Siyu, Na Zheng, Sujing Wang, Yunyang Li, Shengnan Hou, Qirui An, Changcheng Chen, Xiaoqian Li, Yining Ji, and Pengyang Li. 2022. "Inhalation Bioaccessibility and Risk Assessment of Metals in PM2.5 Based on a Multiple-Path Particle Dosimetry Model in the Smelting District of Northeast China" International Journal of Environmental Research and Public Health 19, no. 15: 8915. https://doi.org/10.3390/ijerph19158915
APA StyleSun, S., Zheng, N., Wang, S., Li, Y., Hou, S., An, Q., Chen, C., Li, X., Ji, Y., & Li, P. (2022). Inhalation Bioaccessibility and Risk Assessment of Metals in PM2.5 Based on a Multiple-Path Particle Dosimetry Model in the Smelting District of Northeast China. International Journal of Environmental Research and Public Health, 19(15), 8915. https://doi.org/10.3390/ijerph19158915