Mitigating Extreme Summer Heat Waves with the Optimal Water-Cooling Island Effect Based on Remote Sensing Data from Shanghai, China
Abstract
:1. Introduction
2. Research Region
3. Methodology
3.1. Selection and Quantification of Impact Factors
- (1)
- WCI in summer daytime is used, as the focus of this study is mitigating summer heat waves using WCI.
- (2)
- Although the wind has a valid influence on WCI, it is difficult to control this factor in research influenced by complex real-world uncertainties.
- (3)
- Linear UWB usually leads to different WCI results in different sections because the space is too wide. This makes the abstraction of impact factors difficult.
3.2. Acquisition of Temperature Data
- (1)
- The weather should be clear with few clouds. This provides a clear RS image, and missing pixels can be avoided;
- (2)
- The season should be summer, when WCI is the most important, as only summer WCI is discussed in this study;
- (3)
- There should be no wind or a gentle breeze.
3.3. Quantification of WCI
3.4. Methodology of Statistical Analysis
3.5. Selection of Research Samples
4. Result
4.1. Overview of Data
4.2. Correlation between Impact Factors
4.3. Analysis of WCI Impact Factors
4.4. Regress Model of WCI
4.4.1. Range of WCI
4.4.2. Amplitude of WCI
4.4.3. WCI Gradient
5. Discussion
5.1. WCI and Self-Features
5.2. WCI and Landscape Pattern in the Surrounding Area
5.3. Regression Model of WCI
5.4. Suggestion for WCI Design and Planning
5.5. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- AghaKouchak, A.; Chiang, F.; Huning, L.S.; Love, C.A.; Mallakpour, I.; Mazdiyasni, O.; Moftakhari, H.; Papalexiou, S.M.; Ragno, E.; Sadegh, M. Climate Extremes and Compound Hazards in a Warming World. Annu. Rev. Earth Planet. Sci. 2020, 48, 519–548. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghussain, L. Global warming: Review on driving forces and mitigation. Environ. Prog. Sustain. Energy 2019, 38, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Arora, V. Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Rev. Geophys. 2020, 40, 3-1–3-26. [Google Scholar] [CrossRef] [Green Version]
- Bi, X.; Wu, C.; Wang, C.; Wang, Y.; Wang, X.; Song, C.; Li, J.; Fu, C. Impacts of air temperature and its extremes on human mortality in Shanghai, China. Urban Clim. 2022, 41, 101072. [Google Scholar] [CrossRef]
- Campbell, S.; Remenyi, T.A.; White, C.J.; Johnston, F.H. Heatwave and health impact research: A global review. Health Place 2018, 53, 210–218. [Google Scholar] [PubMed]
- Cao, X.; Ding, S. Landscape pattern dynamics of water body in Kaifeng city in the 20th century. J. Geogr. Sci. 2005, 15, 106–114. [Google Scholar] [CrossRef]
- Chen, X.; Su, Y.; Li, D.; Huang, G.; Chen, W.; Chen, S. Study on the cooling effects of urban parks on surrounding environments using Landsat TM data: A case study in Guangzhou, southern China. Int. J. Remote Sens. 2012, 33, 5889–5914. [Google Scholar] [CrossRef]
- Chew, L.W.; Liu, X.; Li, X.-X.; Norford, L.K. Interaction between heat wave and urban heat island: A case study in a tropical coastal city, Singapore. Atmos. Res. 2021, 247, 1–13. [Google Scholar] [CrossRef]
- González-Garay, A.; Mac Dowell, N.; Shah, N. A carbon neutral chemical industry powered by the sun. Discov. Chem. Eng. 2021, 1, 2. [Google Scholar] [CrossRef]
- Grau, E.; Gastellu-Etchegorry, J.-P. Radiative transfer modeling in the Earth–Atmosphere system with DART model. Remote Sens. Environ. 2013, 139, 149–170. [Google Scholar] [CrossRef]
- Hathway, E.A.; Sharples, S. The interaction of rivers and urban form in mitigating the Urban Heat Island effect: A UK case study. Build. Environ. 2012, 58, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Hua, L.; Zhang, X.; Nie, Q.; Sun, F.; Tang, L. The Impacts of the Expansion of Urban Impervious Surfaces on Urban Heat Islands in a Coastal City in China. Sustainability 2020, 12, 475. [Google Scholar] [CrossRef] [Green Version]
- Hughes, T.P.; Kerry, J.T.; Connolly, S.R.; Baird, A.H.; Eakin, C.M.; Heron, S.F.; Hoey, A.S.; Hoogenboom, M.O.; Jacobson, M.; Liu, G.; et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Change 2019, 9, 40–43. [Google Scholar] [CrossRef]
- Jin, M.S.; Kerry, J.T.; Connolly, S.R.; Baird, A.H.; Eakin, C.M.; Heron, S.F.; Hoey, A.S.; Hoogenboom, M.O.; Jacobson, M.; Liu, G.; et al. Satellite-Observed Urbanization Characters in Shanghai, China: Aerosols, Urban Heat Island Effect, and Land–Atmosphere Interactions. Remote Sens. 2011, 3, 83–99. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yan, Z. Rapid rises in the magnitude and risk of extreme regional heat wave events in China. Weather Clim. Extrem. 2021, 34, 100379. [Google Scholar] [CrossRef]
- Karl, T.R.; Easterling, D.R. Climate extremes:selected review and future research directions. Clim. Change 1999, 42, 309–325. [Google Scholar] [CrossRef]
- Khan, N.; Shahid, S.; Ismail, T.; Ahmed, K.; Nawaz, N. Trends in heat wave related indices in Pakistan. Stoch. Environ. Res. Risk Assess. 2019, 33, 287–302. [Google Scholar] [CrossRef]
- Kotharkar, R.; Ghosh, A. Review of heat wave studies and related urban policies in South Asia. Urban Clim. 2021, 36, 100777. [Google Scholar] [CrossRef]
- Leiserowitz, A.; Maibach, E.; Rosenthal, S.; Kotcher, J.; Bergquist, P.; Gustafson, A.; Ballew, M.T.; Goldberg, M.H. Politics and Global Warming: November 2019; Yale University and George Mason University: New Haven, CT, USA, 2020. [Google Scholar]
- Mauro, F.; Haxtema, Z.; Temesgen, H. Comparison of sampling methods for estimation of nearest-neighbor index values. Can. J. For. Res. 2017, 47, 703–715. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, Y.; Bastiaanssen, W.; Savenije, H.; Hurk, B.V.D.; Finlayson, C. Wetland versus open water evaporation: An analysis and literature review. Phys. Chem. Earth Parts A/B/C 2011, 47, 114–121. [Google Scholar] [CrossRef]
- Park, M.; Hagishima, A.; Tanimoto, J.; Narita, K.-I. Effect of urban vegetation on outdoor thermal environment: Field measurement at a scale model site. Build. Environ. 2012, 56, 38–46. [Google Scholar] [CrossRef]
- Santamouris, M.; Synnefa, A.; Karlessi, T. Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Sol. Energy 2011, 85, 3085–3102. [Google Scholar] [CrossRef]
- Shi, J.; Deng, J.; Wang, X.; Luo, C.; Qiu, X. Thermal Effect and Adjusting Mechanism of Rural Landscape Patterns. Sci. Silvae Sin. 2011, 47, 7–15. [Google Scholar]
- Solomon, S.; Manning, M.; Marquis, M.; Qin, D. Climate Change 2007-the Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Stott, P.A.; Stone, D.A.; Allen, M.R. Human contribution to the European heatwave of 2003. Nature 2004, 432, 610–614. [Google Scholar] [CrossRef]
- Su, Y.; Huang, G.Q.; Chen, X.Z.; Chen, S.S. The cooling effect of Guangzhou City parks to surrounding environments. Acta Ecol. Sin. 2010, 30, 4905–4918. [Google Scholar]
- Sun, R.; Chen, A.; Chen, L.; Lü, Y. Cooling effects of wetlands in an urban region: The case of Beijing. Ecol. Indic. 2012, 20, 57–64. [Google Scholar] [CrossRef]
- Syafii, N.I.; Ichinose, M.; Wong, N.H.; Kumakura, E.; Jusuf, S.K.; Chigusa, K. Experimental study on the influence of urban water body on thermal environment at outdoor scale model. Procedia Eng. 2016, 169, 191–198. [Google Scholar] [CrossRef]
- Toosi, N.B.; Soffianian, A.R.; Fakheran, S.; Waser, L.T. Mapping disturbance in mangrove ecosystems: Incorporating landscape metrics and PCA-based spatial analysis. Ecol. Indic. 2022, 136, 108718. [Google Scholar] [CrossRef]
- Weng, Q.; Rajasekar, U.; Hu, X. Modeling Urban Heat Islands and Their Relationship With Impervious Surface and Vegetation Abundance by Using ASTER Images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4080–4089. [Google Scholar] [CrossRef]
- Wu, J.; Li, C.; Zhang, X.; Zhao, Y.; Liang, J.; Wang, Z. Seasonal variations and main influencing factors of the water cooling islands effect in Shenzhen. Ecol. Indic. 2020, 117, 106699. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y. Water Bodies’ Cooling Effects on Urban Land Daytime Surface Temperature: Ecosystem Service Reducing Heat Island Effect. Sustainability 2019, 11, 787. [Google Scholar] [CrossRef] [Green Version]
- Xueru, Z.; Xiao, J.; Yue, Q. Ecological land cold island effect evaluation based on land surface temperature retrieval. In Proceedings of the 2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics), IEEE, Hangzhou, China, 6–9 August 2018. [Google Scholar]
- Yang, B.; Meng, F.; Ke, X.; Ma, C. The Impact Analysis of Water Body Landscape Pattern on Urban Heat Island: A Case Study of Wuhan City. Adv. Meteorol. 2015, 2015, 416728. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, T.; Hu, C.; Fan, J.; Ji, C.; Fu, X. Spatial-temporal Characteristics of the Cooling Island for Blue-Green Space and Its Driving Factors in Suzhou, China. Resour. Environ. Yangtze Basin 2021, 3, 677–688. [Google Scholar]
- Yu, K.; Chen, Y.; Liang, L.; Gong, A.; Li, J. Quantitative analysis of the interannual variation in the seasonal water cooling island (WCI) effect for urban areas. Sci. Total Environ. 2020, 727, 138750. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, G.; Zuo, S.; Jørgensen, G.; Koga, M. Critical review on the cooling effect of urban blue-green space: A threshold-size perspective. Urban For. Urban Green. 2020, 49, 126630. [Google Scholar] [CrossRef]
- Yue, W.; Xu, L. Thermal environment effect of urban water landscape. Acta Ecol. Sin. 2013, 33, 1852–1859. [Google Scholar]
- Zhou, S.; Shu, J. Urban Climatology; China Meteorological Press: Beijing, China, 1994. [Google Scholar]
Impact Factors | Indicators |
---|---|
Size | Area (S) |
Shape | landscape Shape Index (LSI) |
Surrounding environment | Percentage of impervious (PI) |
Percentage of green land (PG) | |
Mean nearest neighbor index of green land (MNNg) | |
Mean nearest neighbor index of impervious (MNNi) |
Satellite/Sensor | Track No. | Date | Image Quality |
---|---|---|---|
Landsat-7 ETM+ | 118/38, 118/39 | 1 August 2000 | No cloud |
Landsat-5 TM | 118/38, 118/39 | 19 July 2004 | No cloud |
Landsat-5 TM | 118/38, 118/39 | 28 July 2007 | No cloud |
Landsat-8 TIRS | 118/38, 118/39 | 3 August 2015 | No cloud |
Constant | TIRS1 | TIRS2 |
---|---|---|
K1 | 774.89 | 480.89 |
K2 | 1321.08 | 1201.4 |
No. | Average LST (°C) | L (km) | ΔT (°C) | G (°C/km) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 2004 | 2007 | 2015 | 2000 | 2004 | 2007 | 2015 | 2000 | 2004 | 2007 | 2015 | 2000 | 2004 | 2007 | 2015 | |
1 | 34.46 | 36.48 | 38.56 | 38.17 | 0.86 | 0.81 | 0.68 | 0.67 | 2.55 | 2.73 | 3.04 | 2.51 | 2.96 | 3.35 | 4.49 | 3.75 |
2 | 33.05 | 35.08 | 37.42 | 36.95 | 0.17 | 0.49 | 0.59 | 0.37 | 4.88 | 4.11 | 4.25 | 4.69 | 28.15 | 8.34 | 7.17 | 12.69 |
3 | 33.50 | 35.72 | 37.29 | 36.97 | 0.88 | 1.03 | 1.07 | 1.05 | 4.75 | 4.96 | 5.62 | 5.29 | 5.41 | 4.80 | 5.24 | 5.03 |
4 | 33.55 | 35.53 | 36.80 | 36.84 | 0.99 | 0.91 | 0.85 | 0.80 | 4.82 | 5.22 | 5.42 | 5.28 | 4.87 | 5.72 | 6.34 | 6.59 |
5 | 36.21 | 38.14 | 39.50 | 39.31 | 0.54 | 0.67 | 0.71 | 0.78 | 2.63 | 3.35 | 2.39 | 2.90 | 4.90 | 5.01 | 3.38 | 3.72 |
6 | 33.58 | 35.81 | 37.02 | 37.07 | 1.00 | 0.92 | 1.24 | 1.00 | 4.55 | 4.14 | 4.65 | 4.23 | 4.53 | 4.52 | 3.75 | 4.23 |
7 | 31.78 | 34.06 | 35.37 | 35.77 | 0.90 | 0.79 | 0.72 | 0.95 | 5.72 | 6.15 | 5.35 | 5.91 | 6.38 | 7.80 | 7.38 | 6.22 |
8 | 35.12 | 36.65 | 38.52 | 38.25 | 1.67 | 1.71 | 1.36 | 1.47 | 3.77 | 3.00 | 4.07 | 3.48 | 2.26 | 1.76 | 2.99 | 2.37 |
9 | 34.21 | 36.37 | 37.67 | 37.49 | 0.58 | 0.29 | 0.38 | 0.43 | 3.66 | 4.24 | 3.67 | 3.90 | 6.31 | 14.50 | 9.76 | 9.07 |
10 | 32.42 | 33.92 | 35.48 | 35.72 | 1.25 | 1.19 | 1.63 | 1.42 | 3.70 | 4.00 | 3.87 | 4.11 | 2.97 | 3.35 | 2.38 | 2.63 |
11 | 32.53 | 34.45 | 36.19 | 36.24 | 0.54 | 0.64 | 0.48 | 0.60 | 1.99 | 2.06 | 1.91 | 1.58 | 3.70 | 3.25 | 3.95 | 3.74 |
12 | 34.28 | 35.76 | 37.80 | 37.72 | 0.55 | 0.21 | 0.35 | 0.43 | 1.64 | 2.16 | 1.82 | 1.61 | 3.00 | 10.17 | 5.16 | 3.74 |
13 | 35.70 | 37.16 | 39.54 | 39.14 | 0.81 | 1.13 | 1.16 | 1.00 | 1.56 | 1.74 | 1.82 | 1.67 | 1.91 | 1.54 | 1.57 | 1.67 |
14 | 34.59 | 37.19 | 38.06 | 38.42 | 0.49 | 0.35 | 0.57 | 0.39 | 3.28 | 2.77 | 3.28 | 3.31 | 6.70 | 7.97 | 5.79 | 8.49 |
15 | 34.10 | 36.25 | 37.61 | 37.84 | 0.58 | 0.62 | 0.63 | 0.67 | 4.40 | 4.30 | 4.97 | 4.53 | 7.57 | 6.96 | 7.87 | 6.75 |
16 | 33.53 | 35.82 | 37.32 | 37.40 | 0.46 | 0.29 | 0.31 | 0.38 | 3.28 | 3.36 | 3.53 | 3.84 | 7.11 | 11.50 | 11.48 | 10.10 |
17 | 35.11 | 36.88 | 38.93 | 38.61 | 1.03 | 0.95 | 0.93 | 0.83 | 3.36 | 2.86 | 3.26 | 2.77 | 3.26 | 3.00 | 3.52 | 3.34 |
18 | 34.41 | 36.19 | 38.02 | 38.00 | 0.74 | 0.59 | 0.69 | 0.58 | 2.00 | 1.63 | 1.40 | 1.40 | 2.69 | 2.75 | 2.03 | 2.42 |
No. | S (ha) | LSI | PI | PG | MNNg | MNNi |
---|---|---|---|---|---|---|
1 | 2.78 | 3.28 | 0.74 | 0.25 | 1.32 | 0.87 |
2 | 4.64 | 5.71 | 0.67 | 0.31 | 0.54 | 0.72 |
3 | 6.53 | 1.51 | 0.50 | 0.48 | 2.11 | 1.06 |
4 | 2.57 | 1.89 | 0.57 | 0.43 | 1.33 | 1.60 |
5 | 2.40 | 1.32 | 0.86 | 0.14 | 1.16 | 0.83 |
6 | 7.52 | 1.84 | 0.66 | 0.33 | 1.40 | 2.05 |
7 | 3.28 | 1.51 | 0.54 | 0.43 | 1.43 | 2.00 |
8 | 1.18 | 1.81 | 0.49 | 0.49 | 0.76 | 1.51 |
9 | 1.14 | 2.66 | 0.68 | 0.32 | 0.82 | 0.82 |
10 | 12.18 | 1.62 | 0.42 | 0.58 | 1.26 | 1.84 |
11 | 3.84 | 2.20 | 0.66 | 0.33 | 1.23 | 0.79 |
12 | 1.18 | 3.37 | 0.87 | 0.13 | 0.89 | 0.86 |
13 | 8.66 | 1.37 | 0.68 | 0.19 | 1.17 | 1.12 |
14 | 1.11 | 3.48 | 0.82 | 0.18 | 0.92 | 0.79 |
15 | 2.16 | 2.81 | 0.72 | 0.27 | 0.96 | 0.99 |
16 | 1.25 | 5.79 | 0.76 | 0.24 | 0.95 | 1.87 |
17 | 2.17 | 1.98 | 0.65 | 0.28 | 1.11 | 1.01 |
18 | 1.60 | 2.10 | 0.75 | 0.25 | 1.22 | 0.42 |
LSI | PI | PG | MNNg | MNNi | |
---|---|---|---|---|---|
S | −0.334 | −0.542 * | 0.458 | 0.412 | 0.382 |
LSI | 0.396 | −0.326 | −0.569 * | −0.136 | |
PI | −0.966 ** | −0.375 | −0.538 * | ||
PG | 0.359 | 0.538 * | |||
MNNg | 0.239 |
S | LSI | PI | MNNi | MNNg | |
---|---|---|---|---|---|
L | 0.509 ** | −0.621 ** | −0.723 ** | 0.468 ** | 0.333 ** |
ΔT | 0.133 | −0.017 | −0.549 ** | 0.550 ** | 0.285 * |
G | −0.230 | 0.620 ** | 0.150 | −0.033 | −0.357 ** |
Weight Factors | Quality | |
---|---|---|
Constant | 2.050 | R2 = 0.689 F = 26.59 Significance p < 0.01 |
S | 0.014 | |
LSI | −0.134 | |
PI | −1.282 | |
MNNg | −0.220 | |
MNNi | 0.109 |
Weight Factors | Quality | |
---|---|---|
Constant | 4.691 | R2 = 0.409 F = 14.289 Significance p < 0.01 |
PI | −3.663 | |
MNNg | 0.247 | |
MNNi | 0.856 |
Weight Factors | Quality | |
---|---|---|
Constant | 0.936 | R2 = 0.362 F = 17.879 Significance p < 0.01 |
LSI | 1.842 | |
MNNg | −0.027 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, H.; Zhou, F. Mitigating Extreme Summer Heat Waves with the Optimal Water-Cooling Island Effect Based on Remote Sensing Data from Shanghai, China. Int. J. Environ. Res. Public Health 2022, 19, 9149. https://doi.org/10.3390/ijerph19159149
Du H, Zhou F. Mitigating Extreme Summer Heat Waves with the Optimal Water-Cooling Island Effect Based on Remote Sensing Data from Shanghai, China. International Journal of Environmental Research and Public Health. 2022; 19(15):9149. https://doi.org/10.3390/ijerph19159149
Chicago/Turabian StyleDu, Hongyu, and Fengqi Zhou. 2022. "Mitigating Extreme Summer Heat Waves with the Optimal Water-Cooling Island Effect Based on Remote Sensing Data from Shanghai, China" International Journal of Environmental Research and Public Health 19, no. 15: 9149. https://doi.org/10.3390/ijerph19159149
APA StyleDu, H., & Zhou, F. (2022). Mitigating Extreme Summer Heat Waves with the Optimal Water-Cooling Island Effect Based on Remote Sensing Data from Shanghai, China. International Journal of Environmental Research and Public Health, 19(15), 9149. https://doi.org/10.3390/ijerph19159149