The Evaluation of Functional Abilities Using the Modified Fullerton Functional Fitness Test Is a Valuable Accessory in Diagnosing Men with Heart Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Fullerton Functional Fitness Test
2.3. Statistical Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Einstein, A.J.; Shaw, L.J.; Hirschfeld, C.; Williams, M.C.; Villines, T.C.; Better, N.; Vitola, J.V.; Cerci, R.; Dorbala, S.; Raggi, P.; et al. International impact of COVID-19 on the diagnosis of heart disease. J. Am. Coll. Cardiol. 2021, 77, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Dunlay, S.M.; Manemann, S.M.; Chamberlain, A.M.; Cheville, A.L.; Jiang, R.; Weston, S.A.; Roger, V.L. Activities of daily living and outcomes in heart failure. Circ. Heart Fail. 2015, 8, 261–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baeza-Trinidad, R.; Mosquera-Lozano, J.D. Bendopnea: The next prognostic marker of advanced heart failure? Am. Heart J. 2017, 186, e1. [Google Scholar] [CrossRef] [PubMed]
- Walthall, H.; Floegel, T.; Boulton, M.; Jenkinson, C. Patients experience of fatigue in advanced heart failure. Contemp. Nurse 2019, 55, 71–82. [Google Scholar] [CrossRef]
- Jones, J.; Rikli, E. Measuring functional fitness of older adults. J. Act. Aging 2002, 1, 24–30. [Google Scholar]
- McDonagh, T.A.; Metra, M.; Adamo, M.; ESC Scientific Document Group; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726, Erratum in Eur. Heart J. 2021. PMID: 34447992. [Google Scholar] [CrossRef] [PubMed]
- Jankowska-Polańska, B.; Uchmanowicz, I. Wielolekowości, choroby współistniejące i upadki u chorych z przewlekłą niewydolnością serca w wieku podeszłym. Geriatria 2014, 8, 184–195. [Google Scholar]
- Rikli, R.; Jones, J. Functional fitness normative scores for community-residing older adults, ages 60–94. J. Aging Phys. Act. 1999, 7, 162–181. [Google Scholar] [CrossRef]
- Alexander, J.L.; Phillips, W.T.; Wagner, C.L. The effect of strength training on functional fitness in older patients with chronic lung disease enrolled in pulmonary rehabilitation. Rehabil. Nurs. 2008, 33, 91–97. [Google Scholar] [CrossRef]
- Budui, S.; Bigolin, F.; Giordano, F.; Leoni, S.; Berteotti, M.; Sartori, E.; Franceschini, L.; Taddei, M.; Salvetti, S.; Castiglioni, F.; et al. Effects of an Intensive Inpatient Rehabilitation Program in Elderly Patients with Obesity. Obes. Facts 2019, 12, 199–210. [Google Scholar] [CrossRef]
- Park, S.Y.; Lee, I.H. Effects on training and detraining on physical function, control of diabetes and anthropometrics in type 2 diabetes; a randomized controlled trial. Physiother. Theory Pract. 2015, 31, 83–88. [Google Scholar] [CrossRef]
- Urgacz, K.; Cholewa, J.; Uher, I.; Sahin, B.; Cholewa, J. Senior Fitness Test in assessing the effectiveness of motor rehabilitation in the context of Parkinson’s disease patients’ quality of life. Phys. Act. Rev. 2018, 6, 110–116. [Google Scholar]
- Santana-Sosa, E.; Barriopedro, M.I.; López-Mojares, L.M.; Pérez, M.; Lucia, A. Exercise training is beneficial for Alzheimer’s patients. Int. J. Sports Med. 2008, 29, 845–850. [Google Scholar] [CrossRef]
- Langhammer, B.; Stanghelle, J.K. Senior fitness test; a useful tool to measure physical fitness in persons with acquired brain injury. Brain Inj. 2019, 33, 183–188. [Google Scholar] [CrossRef]
- Soriano-Maldonado, A.; Henriksen, M.; Segura-Jiménez, V.; Aparicio, V.A.; CarbonellBaeza, A.; Delgado-Fernández, M.; Amris, K.; Ruiz, J.R. Association of Physical Fitness with Fibromyalgia Severity in Women: The al-Ándalus Project. Arch. Phys. Med. Rehabil. 2015, 96, 1599–1605. [Google Scholar] [CrossRef]
- Kocur, P.; Deskur-Smielecka, E.; Wilk, M.; Dylewicz, P. Effects of Nordic walking training on exercise capacity and fitness in men participating in early, short-term inpatient cardiac rehabilitation after an acute coronary syndrome—A controlled 71 trial. Clin. Rehabil. 2009, 23, 995–1004. [Google Scholar] [CrossRef]
- Rikli, R.; Jones, J. Development and validation of a functional fitness test for community-residing older adults. J. Aging Phys. Act. 1999, 7, 129–161. [Google Scholar] [CrossRef]
- Różanska-Kirschke, A.; Kocur, P.; Wilk, M.; Dylewicz, P. The Fullerton Fitness Test as 76 an index of fitness in the elderly. Reh Med. 2006, 2, 15–19. [Google Scholar]
- Izawa, K.P.; Watanabe, S.; Yokoyama, H.; Hiraki, K.; Morio, Y.; Oka, K.; Osada, N.; Omiya, K. Muscle strength in relation to disease severity in patients with congestive heart failure. Am. J. Phys. Med. Rehabil. 2007, 86, 893–900. [Google Scholar] [CrossRef]
- Hendrican, M.C.; McKelvie, R.S.; Smith, T.; McCartney, N.; Pogue, J.; Teo, K.K.; Yusuf, S. Functional capacity in patients with congestive heart failure. J. Card. Fail. 2000, 6, 214–219. [Google Scholar] [CrossRef]
- Suman-Horduna, I.; Roy, D.; Frasure-Smith, N.; Talajic, M.; Lespérance, F.; Blondeau, L.; Dorian, P.; Khairy, D.; AF-CHF Trial Investigators. Quality of life and functional capacity in patients with atrial fibrillation and congestive heart failure. J. Am. Coll. Cardiol. 2013, 61, 455–460. [Google Scholar] [CrossRef]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014; pp. 236–256. [Google Scholar]
- Arena, R.; Myers, J.; Guazzi, M. The clinical importance of cardiopulmonary exercise testing and aerobic training in patients with heart failure. Braz. J. Phys. Ther. 2008, 12, 75–87. [Google Scholar] [CrossRef]
- Węgrzynowska-Teodorczyk, K.; Rudzińska, E.; Jankowska, E.; Grzesło, A.; Nowakowska, K.; Łazorczyk, M.; Banasiak, W.; Ponikowski, P.; Woźniewski, M. Determinants of physical fitness in males with systolic heart fa. Kardiol. Pol. (Pol. Heart J.) 2010, 68, 146–154. [Google Scholar]
- Bittner, V.; Weiner, D.H.; Yusuf, S.; Rogers, W.J.; Mcintyre, K.M.; Bangdiwala, S.I.; Kronberg, M.V.; Kostis, J.B.; Kohn, R.M.; Guillotte, M.; et al. Prediction of mortality and morbidity with a 6-min walk test in patients with left ventricular dysfunction. JAMA 1993, 270, 1702–1707. [Google Scholar] [CrossRef]
- Opasich, C.; Pinna, G.D.; Mazza, A.; Febo, O.; Riccardi, R.; Riccardi, P.G.; Capomolla, S.; Forni, G.; Cobelli, F.; Tavazzi, L. Six-minute wal king performance in patients with moderate—To severe heart failure. Eur. Heart J. 2001, 22, 488–496. [Google Scholar] [CrossRef]
- Laoutaris, I.D.; Vasiliadis, I.K.; Dritsas, A.; Mavrogeni, S.; Kallistratos, M.S.; Manginas, A.; Chaidaroglou, A.; Degiannis, D.; Demosthenes, B.; Panagiotakos, D.B.; et al. High plasma adiponectin is related to low functional capacity in patients with chronic heart failure. Int. J. Cardiol. 2010, 144, 230–231. [Google Scholar] [CrossRef] [PubMed]
- Conraads, V.M.; Beckers, P.; Vaes, J.; Viviane Van Hoof, M.M.; Maeyer, C.D.; Possemiers, N.; Wuyts, F.L.; Vrints, C.J. Combined endurance/resistance training reduces NTporBNP levels In patients with chronic heart failure. Eur. Heart J. 2004, 25, 1797–1805. [Google Scholar] [CrossRef]
- Wong, C.Y.; Chaudhry, S.I.; Desai, M.M.; Krumholz, H.M. Trends in comorbidity, disability, and polypharmacy in heart failure. Am. J. Med. 2011, 124, 136–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rich, M.W. Pharmacotherapy of heart failure in the elderly: Adverse events. Heart Fail. Rev. 2012, 17, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Węgrzynowska-Teodorczyk, K.; Dąbrowska, E.; Łazorczyk, M.; Nowakowska, K.; Kowalska-Superlak, M.; Jankowska, E.A.; Ponikowski, P.; Banasik, W.; Woźniewski, M. Sprawność fizyczna mężczyzn z niewydolnością serca w porównaniu ze zdrowymi równolatkami. Physiother./Fizjoterapia 2007, 15, 44–53. [Google Scholar]
- Woo, M.A.; Palomares, J.A.; Macey, P.M.; Fonarow, G.C.; Harper, R.M.; Kumar, R. Global and regional brain mean diffusivity chan ges in patients with heart failure. J. Neurosci. Res. 2015, 93, 678–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, P.G.; Cigolle, C.; Blaum, C. The co-occurrence of chronic diseases and geriatric syndromes: The Health and Retirement Study. J. Am. Geriatr. Soc. 2009, 57, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Holland, G.J.; Tanaka, K.; Shigematsu, R.; Nakagaichi, M. Flexibility and physical functions of older adults: A review. J. Aging Phys. Act. 2002, 10, 169–206. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, C. Genetics of Fitness and Physical Performance; Human Kinetics: Champaign, IL, USA, 1997. [Google Scholar]
- Von Haehling, S.; Ebner, N.; dos Santos, M.R.; Springer, J.; Anker, S.D. Muscle wasting and cachexia in heart failure: Mechanisms and therapies. Nat. Rev. Cardiol. 2017, 14, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Fülster, S.; Tacke, M.; Sandek, A.; Ebner, N.; Tschöpe, C.; Doehner, W.; Anker, S.; Von Haehling, S. Muscle wasting in patients with chronic heart failure: Results from the 68 studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur. Heart J. 2012, 34, 512–519. [Google Scholar] [CrossRef] [Green Version]
- Toth, M.J.; Shaw, A.O.; Miller, M.S.; VanBuren, P.; LeWinter, M.M.; Maughan, D.W.; Ades, P.A. Reduced knee extensor function in heart failure is not explained by inactivity. Int. J. Cardiol. 2010, 143, 276–282. [Google Scholar] [CrossRef] [Green Version]
- Hülsmann, M.; Quittan, M.; Berger, R.; Crevenna, R.; Springer, C.; Nuhr, M.; Moser, P.; Pacher, R. Muscle strength as a predictor of long-term survival in severe congestive heart failure. Eur. J. Heart Fail. 2004, 6, 101–107. [Google Scholar] [CrossRef]
- Jankowska, E.A.; Wegrzynowska, K.; Superlak, M.; Nowakowska, K.; Lazorczyk, M.; Biel, B.; Kustrzycka-Kratochwil, D.; Piotrowska, K.; Banasiak, W.; Wozniewski, M.; et al. The 12-week progressive quadriceps resistance training improves muscle strength, exercise capacity and quality of life in patients with stable chronic heart failure. Int. J. Cardiol. 2008, 130, 36–43. [Google Scholar] [CrossRef]
- Izawa, K.P.; Watanabe, S.; Osada, N.; Kasahara, Y.; Yokoyama, H.; Hiraki, K.; Morio, Y.; Yoshioka, S.; Oka, K.; Omiya, K. Handgrip strength as a predictor of prognosis in Japanese patients with congestive heart failure. Eur. J. Cardiovasc. Prev. Rehabil. 2009, 16, 21–27. [Google Scholar] [CrossRef]
- Mroszczyk-McDonald, A.; Savage, P.D.; Ades, P.A. Handgrip strength in cardiac rehabilitation: Normative values, interaction with physical function, and response to training. J. Cardiopulm. Rehabil. Prev. 2007, 27, 298–302. [Google Scholar] [CrossRef]
- Ebner, N.; Sliziuk, V.; Scherbakov, N.; Sandek, A. Muscle wasting in ageing and chronic illness. ESC Heart Fail. 2015, 2, 58–68. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria | |
---|---|---|
Study group |
|
|
Control group |
|
|
8 Foot Up&Go | The patient circles the cone in the shortest possible time at a distance of 2.44 m from the sitting starting position and returns to the starting position. |
30-Second Chair Stand | The patient repeats full stands from the sitting position. Repetitions are performed within 30 s with the arms crossed over the chest. |
Arm Curl | The patient flexes the forearm with a 3.5 kg weight in 30 s. The result is the number of repetitions. |
Back Scratch | The patient tries to join the hands behind the back, leading one hand from the top, and the other from the bottom. The result given in centimeters indicates the distance between the middle fingers. The value may be negative when the patient reaches further than the fingertips. |
Chair Sit&Reach | From a sitting position on a chair, the patient tries to reach the toes with the leg straight in the knee joint. The result in centimeters shows the distance between the fingers and the toes. The value can be negative when the patient is out of range of motion. |
6-Min Walking Test (6MWT) | The test result is the number of meters the patient walked along a 30-m corridor in 6 min. |
The modification of the Fullerton functional fitness test: | |
Measuring the strength of the handgrip | The examination was performed on the dominant limb, in a sitting position, with the elbow extended and the shoulder joint flexed to 90°. Three measurements were made with a 5-s interval between attempts, and the best measurement was selected for analysis, according to the previously proposed methodology [19]. |
HF Group X(SD) | Control Group X(SD) | p | |
---|---|---|---|
N Age (years) | 30 56.2 (12.2) | 24 55.4 (10.4) | 0.60 |
BMI (kg/m2) NYHA | 28.5 (4.0) 2.4 (0.5) | 25.6 (34) - | 0.004 - |
LVEF (%) | 23.0 (6.2) | 61.6 (3.6) | <0.001 |
LVED (mm) | 72.4 (8.2) | 47.2 (5.9) | <0.001 |
RVD (mm) | 35.4 (7.2) | 29.2 (3.5) | <0.001 |
LAD (mm) | 49.8 (10.4) | 36.3 (4.3) | <0.001 |
IVS (mm) | 9.6 (1.6) | 10.0 (1.0) | 0.22 |
LVPW (mm) | 9.9 (1.1) | 9.9 (0.9) | 0.77 |
peakVO2 (%) | 55.8 (12.6) | 100.6 (25.5) | <0.001 |
peakVO2 (mL/kg/min) | 18.3 (5.6) | 33.5 (8.1) | <0.001 |
peakVO2 (L/min) | 1.6 (0.5) | 2.8 (0.7) | <0.001 |
peakVCO2 (L/min) | 1.6 (0.5) | 3.1 (0.8) | <0.001 |
VE Max (L/min) | 60.7 (15.7) | 91.1 (22.5) | <0.001 |
peakVCO2 (mL/kg/min) | 33.7 (6.8) | 40.8 (4.5) | <0.001 |
RER | 1.3 | 1.1 | |
VE/VCO2 slope | 32.5 (7.3) | 24.0 (3.5) | <0.001 |
BNP (pg/mL) | 384.9 (403) | 39.3 (58.1) | <0.001 |
NT-proBNP (pg/mL) | 1823.0 (18301.1) | 139.9 (261.5) | <0.001 |
HGB (mmol/L) | 9.0 (0.8) | 9.0 (0.8) | 0.84 |
Fullerton functional fitness test results | |||
6MTW (m) | 363.6 (125.1) | 563.8 (69.9) | >0.001 |
Chair Stand (repetitions) | 12.7 (5.2) | 18.0 (4.5) | >0.001 |
Arm Curl (repetitions) | 14.7 (4.4) | 23.3 (4.9) | >0.001 |
Chair Sit&Reach (cm) | −15.7 (12.1) | −6.8 (8.4) | 0.004 |
Back Scratch (cm) | −20.1 (16.4) | −6.2 (13.6) | 0.002 |
8-foot Up&Go (s) | 8.7 (2.2) | 6.0 (1.1) | >0.001 |
Handgrip strength (kg) | 37.9 (10.7) | 48.3 (10.7) | >0.001 |
LVEF | peakVO2 | NT-proBNP | ||||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
6MTW | 0.76 | <0.001 | 0.83 | <0.001 | −0.71 | <0.001 |
Chair Stand | 0.63 | <0.001 | 0.60 | <0.001 | −0.49 | <0.001 |
Arm Curl | 0.64 | <0.001 | 0.76 | <0.001 | −0.50 | <0.001 |
Chair Sit&Reach | 0.38 | 0.005 | 0.36 | 0.008 | −0.22 | 0.72 |
Back Scratch | 0.46 | <0.001 | 0.61 | <0.001 | −0.36 | <0.001 |
8-foot Up&Go | −0.69 | <0.001 | −0.77 | <0.001 | 0.57 | <0.001 |
Hand grip strength | 0.39 | 0.004 | 0.45 | <0.001 | −0.50 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migaj, M.; Kałużna-Oleksy, M.; Migaj, J.; Straburzyńska-Lupa, A. The Evaluation of Functional Abilities Using the Modified Fullerton Functional Fitness Test Is a Valuable Accessory in Diagnosing Men with Heart Failure. Int. J. Environ. Res. Public Health 2022, 19, 9210. https://doi.org/10.3390/ijerph19159210
Migaj M, Kałużna-Oleksy M, Migaj J, Straburzyńska-Lupa A. The Evaluation of Functional Abilities Using the Modified Fullerton Functional Fitness Test Is a Valuable Accessory in Diagnosing Men with Heart Failure. International Journal of Environmental Research and Public Health. 2022; 19(15):9210. https://doi.org/10.3390/ijerph19159210
Chicago/Turabian StyleMigaj, Magdalena, Marta Kałużna-Oleksy, Jacek Migaj, and Anna Straburzyńska-Lupa. 2022. "The Evaluation of Functional Abilities Using the Modified Fullerton Functional Fitness Test Is a Valuable Accessory in Diagnosing Men with Heart Failure" International Journal of Environmental Research and Public Health 19, no. 15: 9210. https://doi.org/10.3390/ijerph19159210