Relationship between Doping Prevalence and Socioeconomic Parameters: An Analysis by Sport Categories and World Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis by World Areas
2.2. Analysis by Discipline
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. List of Countries Included in the Investigation by Alphabetic Order
Colombia | Congo | Costa Rica |
Croatia | Cuba | Curacao |
Cyprus | Czech Republic | Denmark |
Dominican Republic | Ecuador | Egypt |
El Salvador | Estonia | Ethiopia |
Fiji | Finland | France |
Gabon | Georgia | Germany |
Ghana | Greece | Guam |
Guatemala | Guyana | Honduras |
Hong Kong | Hungary | Iceland |
India | Indonesia | Iran—Islamic Republic |
Iraq | Ireland | Israel |
Italy | Jamaica | Japan |
Jordan | Kazakhstan | Kenya |
Korea—Democratic People | Korea—Republic of | Kosovo |
Kuwait | Kyrgyzstan | Latvia |
Lebanon | Lesotho | Libya |
Lithuania | Luxembourg | Malawi |
Malaysia | Mali | Malta |
Mauritius | Mexico | Moldova—Republic of |
Monaco | Mongolia | Montenegro |
Morocco | Mozambique | Myanmar |
Namibia | Netherlands | New Caledonia |
New Zealand | Nicaragua | Nigeria |
North Macedonia—The former Yugoslav | Norway | Oman |
Pakistan | Palestine | Panama |
Paraguay | Peru | Philippines |
Poland | Portugal | Puerto Rico |
Qatar | Réunion | Romania |
Russian Federation | Rwanda | Saint Kitts and Nevis |
Saint Vincent and the Grenadines | Samoa | San Marino |
Saudi Arabia | Senegal | Serbia |
Seychelles | Singapore | Slovakia |
Slovenia | South Africa | Spain |
Sri Lanka | Sudan | Suriname |
Sweden | Switzerland | Syrian Arab Republic |
Tahiti | Tajikistan | Tanzania—United Republic of |
Thailand | Trinidad and Tobago | Tunisia |
Turkey | Turkmenistan | Turks And Caicos Islands |
Uganda | Ukraine | United Arab Emirates |
United Kingdom | United States | Uruguay |
Uzbekistan | Venezuela | Viet Nam |
Virgin Islands—British | Yemen | Zambia |
Zanzibar | Zimbabwe |
References
- World Anti-Doping Agency (WADA). Prohibited List: 2022: World Anti-Doping Code International Standard; World Anti-Doping Agency: Montreal, QC, Canada, 2022. [Google Scholar]
- Manonelles, P.; García-Felipe, A.; Rubio, E.; Álvarez, J. Adverse Analytical findings in European Anti-Doping Laboratories. Arch. Med. Deporte 2013, 30, 260–270. [Google Scholar]
- World Anti-Doping Agency (WADA). Anti-Doping Rule Violations (ADRVs) Reports 2013–2018; World Anti-Doping Agency: Montreal, QC, Canada, 2013–2018.
- de Hon, O.; Kuipers, H.; van Bottenburg, M. Prevalence of Doping Use in Elite Sports: A Review of Numbers and Methods. Sports Med. 2015, 45, 57–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elbe, A.-M.; Pitsch, W. Doping prevalence among Danish elite athletes. Perform. Enhanc. Health 2018, 6, 28–32. [Google Scholar] [CrossRef]
- Aguilar-Navarro, M.; Baltazar-Martins, G.; Salinero, J.J.; Muñoz-Guerra, J.; Plata, M.D.M.; Lara, B.; del Coso, J. Outcomes of adverse analytical findings in individual and team sports. Bioanalysis 2021, 13, 5–11. [Google Scholar] [CrossRef]
- Dvorak, J.; Saugy, M.; Pitsiladis, Y.P. Challenges and threats to implementing the fight against doping in sport. Br. J. Sports Med. 2014, 48, 807–809. [Google Scholar] [CrossRef] [Green Version]
- Cuddihy, B. No standarisation or harmonisation in anti-doping testing frequency. BMJ Open Sport Exerc. Med. 2020, 6, e000739. [Google Scholar] [CrossRef]
- Madigan, D.J.; Stoeber, J.; Passfield, L. Perfectionism and attitudes towards doping in junior athletes. J. Sports Sci. 2016, 34, 700–706. [Google Scholar] [CrossRef]
- Laure, P.; Binsinger, C. Doping prevalence among preadolescent athletes: A 4-year follow-up. Br. J. Sports Med. 2007, 41, 660–663. [Google Scholar] [CrossRef] [Green Version]
- Miskulin, I.; Grbic, D.S.; Miskulin, M. Doping Attitudes, Beliefs, and Practices among Young, Amateur Croatian Athletes. Sports 2021, 9, 25. [Google Scholar] [CrossRef]
- Manonelles, P.; Luque, A. Doping Prevention Guide: What Athletes Need to Know About Doping and Its Prevention, 1st ed.; Universidad Católica San Antonio de Murcia: Murcia, Spain, 2015; pp. 24–198. [Google Scholar]
- Lazuras, L.; Barkoukis, V.; Rodafinos, A.; Tzorbatzoudis, H. Predictors of Doping Intentions in Elite-Level Athletes: A Social Cognition Approach. J. Sport Exerc. Psychol. 2010, 32, 694–710. [Google Scholar] [CrossRef] [Green Version]
- Morente-Sánchez, J.; Zabala, M. Doping in Sport: A Review of Elite Athletes’ Attitudes, Beliefs, and Knowledge. Sports Med. 2013, 43, 395–411. [Google Scholar] [CrossRef]
- Peretti-Watel, P.; Pruvost, J.; Guagliardo, V.; Guibbert, L.; Verger, P.; Obadia, Y. Attitudes toward doping among young athletes in Provence. Sci. Sports 2005, 20, 33–40. [Google Scholar] [CrossRef]
- Woolway, T.; Lazuras, L.; Barkoukis, V.; Petróczi, A. “Doing What Is Right and Doing It Right”: A Mapping Review of Athletes’ Perception of Anti-Doping Legitimacy. Int. J. Drug Policy 2020, 84, 102865. [Google Scholar] [CrossRef]
- Dunn, M.; Thomas, J.O.; Swift, W.; Burns, L.; Mattick, R.P. Drug testing in sport: The attitudes and experiences of elite athletes. Int. J. Drug Policy 2010, 21, 330–332. [Google Scholar] [CrossRef]
- Petróczi, A.; Mazanov, J.; Nepusz, T.; Backhouse, S.H.; Naughton, D.P. Comfort in big numbers: Does over-estimation of doping prevalence in others indicate self-involvement? J. Occup. Med. Toxicol. 2008, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Marqueta, P.M.; García-Felipe, A.; Calvo, E.R.; Medina, J.Á.; Orellana, J.N.; Solano, J.C.C.; Vela, A.L.; Salillas, L.G. An approach to the relations between european accredited laboratories and adverse analytical findings. Arch. Med. Deporte 2011, 28, 9–20. [Google Scholar]
- Martín, I.; Vallbona, A.; Valeri, X.; Losada, I.; Fernández, M.; Benarroch, D.; Martín, P.; Fernández, F. International Comparative Study of High-Level Sport Models; Deloitte: New York, NY, USA, 2018. [Google Scholar]
- McLaren, R. The Independent Person Report; Independent Person WADA Investigation of Sochi Allegations: Montreal, QC, Canada, 16 July 2016; Available online: https://www.wada-ama.org/sites/default/files/resources/files/20160718_ip_report_newfinal.pdf?source=post_page (accessed on 15 February 2022).
- McLaren, R. The Independent Person 2nd Report; Independent Person WADA Investigation of Sochi Allegations: Montreal, QC, Canada, 9 December 2016; Available online: https://www.wada-ama.org/sites/default/files/resources/files/mclaren_report_part_ii_2.pdf (accessed on 15 February 2022).
- Conceição, P.; Kovacevic, M.; Mukhopadhyay, T. Human Development: A Perspective on Metrics. Meas. Hum. Cap. 2021, 1, 83–115. [Google Scholar] [CrossRef]
- Human Development Reports 2013–2018; Human Development Reports; United Nations: New York, NY, USA; Available online: https://hdr.undp.org/reports-and-publications (accessed on 23 October 2021).
- Fiscal Monitor, October 2013–2021: Strengthening the Credibility of Public Finances. International Monetary Fund. Available online: https://www.imf.org/en/Publications/FM/Issues/2021/10/13/fiscal-monitor-october-2021 (accessed on 25 October 2021).
- Health State Life Expectancies by National Deprivation Deciles. London. 2021. Available online: https://backup.ons.gov.uk/2021/03/22/health-state-life-expectancies-by-national-deprivation-deciles-england-2017-to-2019/ (accessed on 14 January 2022).
- Ünver, M.; Koyuncu, J.Y. The Impact of poverty on corruption. J. Econ. Libr. 2016, 3, 632–642. [Google Scholar] [CrossRef]
- Chetwynd, E.; Chetwynd, F.; Spector, B. Corruption and Poverty: A Review of Recent Literature Final Report; Management Systems International: Washington DC, USA, 2003; pp. 5–16. [Google Scholar]
- Barkoukis, V.; Lazuras, L.; Tsorbatzoudis, H.; Rodafinos, A. Motivational and social cognitive predictors of doping intentions in elite sports: An integrated approach. Scand. J. Med. Sci. Sports 2013, 23, 330–340. [Google Scholar] [CrossRef]
- Corruption Perception Index. CPI Reports. 2013–2018. Available online: https://www.transparency.org/en/cpi/ (accessed on 26 January 2022).
- World Economic Outlook Database. International Monetary Fund. 2018. Available online: https://www.imf.org/en/publications/weo (accessed on 3 March 2022).
- Rio 2016 Olympic Games Report. IOC—International Olympic Committee. Available online: https://olympics.com/ioc/news/rio-2016 (accessed on 18 December 2021).
- IOC—International Olympic Committee. Available online: https://olympics.com/ioc (accessed on 15 November 2021).
- Olympic Charter; IOC—International Olympic Committee: Lausanne, Switzerland. 2020. Available online: https://olympics.com/ioc/olympic-charter (accessed on 11 December 2021).
- Simon, R.L.; Torres, C.R.; Hager, P.F. Fair Play: The Ethics of Sport, 4th ed.; Taylor and Francis: Oxfordshire, UK, 2018; pp. 1–256. [Google Scholar]
- Mcleod, S. Maslow’s Hierarchy of Needs. Simply Psychol. 2007, 1, 1–18. [Google Scholar]
- Maslow, A.H. A theory of human motivation. Psychol. Rev. 1943, 50, 370–396. [Google Scholar] [CrossRef] [Green Version]
- Franke, W.W.; Berendonk, B. Hormonal doping and androgenization of athletes: A secret program of the German Democratic Republic government. Clin. Chem. 1997, 43, 1262–1279. [Google Scholar] [CrossRef] [Green Version]
- Peretti-Watel, P.; Guagliardo, V.; Verger, P.; Mignon, P.; Pruvost, J.; Obadia, Y. Attitudes Toward Doping and Recreational Drug Use among French Elite Student-Athletes. Sociol. Sport J. 2004, 21, 1–17. [Google Scholar] [CrossRef]
- Waddington, I.; Malcolm, D.; Roderick, M.; Naik, R.; Spitzer, G.W. Drug use in English professional football. Br. J. Sports Med. 2005, 39, 18. [Google Scholar] [CrossRef] [Green Version]
- Mottram, D.; Chester, N.; Atkinson, G.; Goode, D. Athletes’ Knowledge and Views on OTC Medication. Int. J. Sports Med. 2008, 29, 851–855. [Google Scholar] [CrossRef]
- Ang, Y. Unbundling corruption: Revisiting six questions on corruption. Global Perspectives. 2020, 1, 1–19. [Google Scholar] [CrossRef]
Variable | Area | Mean ± SD | 95% CI |
---|---|---|---|
ƩADRV-As/100,000 inhab | Africa | 0.10 ± 0.11 *†§ | 0.06–0.15 |
Asia | 0.27 ± 0.36 †§ | 0.16–0.38 | |
Australia and Oceania | 1.02 ± 0.75 | 0.33–1.71 | |
America | 0.53 ± 0.58 § | 0.32–0.73 | |
South Europe | 1.01 ± 0.88 | 0.52–1.49 | |
North-Central Europe | 1.06 ± 0.81 | 0.74–1.37 | |
Mean ADRV-As/100,000 inhab | Africa | 0.03 ± 0.04 † | 0.02–0.04 |
Asia | 0.05 ± 0.06 † | 0.03–0.07 | |
Australia and Oceania | 0.43 ± 0.42 | 0.04–0.82 | |
America | 0.18 ± 0.26 | 0.09–0.27 | |
South Europe | 0.39 ± 0.73 | −0.02–0.80 | |
North-Central Europe | 0.18 ± 0.15 | 0.13–0.24 | |
Ratio mean ADRV-As/N° Olympic athletes in Rio 2016 | Asia | 0.26 ± 0.25 | 0.18–0.34 |
Australia and Oceania | 0.10 ± 0.07 | 0.01–0.19 | |
America | 0.19 ± 0.20 | 0.11–0.26 | |
South Europe | 0.18 ± 0.12 | 0.11–0.25 | |
North-Central Europe | 0.18 ± 0.14 | 0.12–0.23 | |
Total mean ADRV-As | Africa | 4.74 ± 8.99 | 1.38–8.10 |
Asia | 11.23 ± 19.58 | 5.13–17.33 | |
Australia and Oceania | 8.02 ± 14.21 | −5.12–21.17 | |
America | 8.37 ± 14.09 | 3.38–13.37 | |
South Europe | 16.36 ± 33.99 | −2.47–35.18 | |
North-Central Europe | 23.04 ± 31.88 | 10.68–35.40 |
Ʃ ADRV-As/100,000 Inhab | Mean ADRV-As/100,000 Inhab | N° of Olympic Athletes in Rio 2016 | Total Mean ADRV-As | |
---|---|---|---|---|
N° of Olympic athletes in Rio 2016 | 0.010 | −0.098 | 1 | |
Total mean ADRVs | 0.150 | −0.036 | 0.663 * | 1 |
HDI | 0.497 * | 0.353 * | 0.424 * | 0.265 * |
PCI | 0.305 * | 0.164 | 0.285 * | 0.151 |
Corruption Index | 0.504 * | 0.474 * | 0.384 * | 0.152 |
Variable | Equation | R2 | SEE |
---|---|---|---|
Ʃ ADRV-As/100,000 inhab | −1.23 + (1.87 × HDI) − (0.01 × N° of Olympic athletes in Rio 2016) + (0.09 × Corruption Index) * | 0.33 | 0.05 |
Mean ADRV-As/100,000 inhab | −0.207 + (0.002 × Corruption Index) − (0.001 × N° of Olympic athletes in Rio 2016) + (0.319 × HDI) * | 0.32 | 0.10 |
Total mean ADRV-As | 2.248 + (0.143 × N° of Olympic athletes in Rio 2016) * | 0.43 | 17.97 |
ASOIF—AIOWF | ARISF | AIMS | Post-hoc | ||||
---|---|---|---|---|---|---|---|
Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI | p-Value | |
AAF | 7.64 ± 4.41 | 6.17–9.11 | 21.25 ± 18.10 * | 15.30–27.20 | 49.66 ± 36.48 †§ | 31.52–67.80 | <0.001 |
Medical reason | 1.26 ± 1.14 | 0.88–1.64 | 2.97 ± 4.08 | 1.63–4.31 | 1.78 ± 3.49 | 0.04–3.51 | 0.058 |
No case | 0.68 ± 0.58 | 0.49–0.88 | 0.92 ± 1.39 | 0.46–1.38 | 2.45 ± 4.91 | 0.01–4.89 | 0.029 |
No sanction | 0.81 ± 0.44 | 0.66–0.96 | 1.16 ± 2.47 | 0.34–1.97 | 0.77 ± 1.25 | 0.15–1.39 | 0.600 |
Pending | 0.68 ± 0.75 | 0.43–0.94 | 5.93 ± 8.98 | 2.97–8.88 | 14.23 ± 14.10 †§ | 7.22–21.24 | <0.001 |
ADRV-As | 4.13 ± 3.17 | 3.08–5.19 | 10.45 ± 10.90 | 6.87–14.03 | 30.43 ± 28.65 †§ | 16.19–44.68 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terreros, J.L.; Manonelles, P.; López-Plaza, D. Relationship between Doping Prevalence and Socioeconomic Parameters: An Analysis by Sport Categories and World Areas. Int. J. Environ. Res. Public Health 2022, 19, 9329. https://doi.org/10.3390/ijerph19159329
Terreros JL, Manonelles P, López-Plaza D. Relationship between Doping Prevalence and Socioeconomic Parameters: An Analysis by Sport Categories and World Areas. International Journal of Environmental Research and Public Health. 2022; 19(15):9329. https://doi.org/10.3390/ijerph19159329
Chicago/Turabian StyleTerreros, José Luís, Pedro Manonelles, and Daniel López-Plaza. 2022. "Relationship between Doping Prevalence and Socioeconomic Parameters: An Analysis by Sport Categories and World Areas" International Journal of Environmental Research and Public Health 19, no. 15: 9329. https://doi.org/10.3390/ijerph19159329