How Does Government Efficiency Affect Health Outcomes? The Empirical Evidence from 156 Countries
Abstract
:1. Introduction
2. Literature Review
3. Data and Methodology
3.1. Dependent Variable
3.2. Independent Variable
3.3. Control Variables
3.4. Methodology
4. Empirical Findings and Discussion
4.1. Benchmark Estimation Results
4.2. Robustness Checks
4.3. Further Analysis
4.3.1. Heterogeneity Analysis
4.3.2. Mechanism Analysis
4.3.3. Moderating Effects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
List A1: The Country List
References
- Jiang, T.; Deng, Z.; Zhi, Y.; Cheng, H.; Gao, Q. The effect of urbanization on population health: Evidence from China. Front. Public Health 2021, 9, 706982. [Google Scholar] [CrossRef] [PubMed]
- Coccia, M. The relation between length of lockdown, numbers of infected people and deaths of COVID-19, and economic growth of countries: Lessons learned to cope with future pandemics similar to COVID-19 and to constrain the deterioration of economic system. Sci. Total Environ. 2021, 775, 145801. [Google Scholar] [CrossRef]
- Martínez-Córdoba, P.J.; Benito, B.; García-Sánchez, I.M. Efficiency in the governance of the COVID-19 pandemic: Political and territorial factors. Glob. Health 2021, 17, 113. [Google Scholar] [CrossRef] [PubMed]
- Alanezi, F.; Aljahdali, A.; Alyousef, S.M.; Alrashed, H.; Mushcab, H.; AlThani, B.; Alghamedy, F.; Alotaibi, H.; Saadah, A.; Alanzi, T. A comparative study on the strategies adopted by the United Kingdom, India, China, Italy, and Saudi Arabia to contain the spread of the COVID-19 pandemic. J. Healthc. Leadersh. 2020, 12, 117–131. [Google Scholar] [CrossRef]
- Pratap, P.; Dickson, A.; Love, M.; Zanoni, J.; Donato, C.; Flynn, M.A.; Schulte, P.A. Public health impacts of underemployment and unemployment in the United States: Exploring perceptions, gaps and opportunities. Int. J. Environ. Res. Public Health 2021, 18, 10021. [Google Scholar] [CrossRef]
- Greer, S.L.; Bekker, M.P.M.; Azzopardi-Muscat, N.; McKee, M. Political analysis in public health: Middle-range concepts to make sense of the politics of health. Eur. J. Public Health 2018, 28, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Deng, P.; Zhang, Q.; Chang, C. Is higher government efficiency bringing about higher innovation? Technol. Econ. Dev. Econ. 2021, 27, 626–655. [Google Scholar] [CrossRef]
- Glotko, A.V.; Polyakova, A.G.; Kuznetsova, M.Y. Main trends of government regulation of sectoral digitalization. Entrep. Sustain. Issues 2020, 7, 2181–2195. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J. Dictionary of International Relations; China Radio and Television Publishing House: Beijing, China, 1992. [Google Scholar]
- Alam, M.R.; Kitenge, E.; Bedane, B. Government effectiveness and economic growth. Econ. Bull. 2017, 37, 222–227. [Google Scholar]
- Vu, T.V. Economic complexity and health outcomes: A global perspective. Soc. Sci. Med. 2020, 265, 113480. [Google Scholar] [CrossRef]
- Spiteri, J.; von Brockdorff, P. Economic development and health outcomes: Evidence from cardiovascular disease mortality in Europe. Soc. Sci. Med. 2019, 224, 37–44. [Google Scholar] [CrossRef]
- Datta, S.; Barua, R.; Das, J. Application of artificial intelligence in modern healthcare system. In Alginates—Recent Uses of This Natural Polymer; IntechOpen: London, UK, 2020. [Google Scholar]
- Murray, C.J.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Nagaraja, S.B. Five insights from the global burden of disease study 2019. Lancet 2020, 396, 1135–1159. [Google Scholar] [CrossRef]
- Fomba, B.K.; Talla, D.N.D.F.; Ningaye, P. Institutional Quality and Education Quality in Developing Countries: Effects and Transmission Channels. J. Knowl. Econ. 2022. [Google Scholar] [CrossRef]
- Hahn, R.A.; Truman, B.I. Education improves public health and promotes health equity. Int. J. Health Serv. 2015, 45, 657–678. [Google Scholar] [CrossRef]
- White, L.D. Introduction to the Study of Public Administration; Macmillan: New York, NY, USA, 1955. [Google Scholar]
- Liang, L.; Mirelman, A.J. Why do some countries spend more for health? An assessment of sociopolitical determinants and international aid for government health expenditures. Soc. Sci. Med. 2014, 114, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Montes, G.C.; Paschoal, P.C. Corruption: What are the effects on government effectiveness? Empirical evidence considering developed and developing countries. Appl. Econ. Lett. 2015, 23, 146–150. [Google Scholar] [CrossRef]
- Lichand, G.; Lopes, M.F.M.; Medeiros, M.C. Is Corruption Good For Your Health? Harvard University, Pontifical Catholic University. 2016. Available online: https://scholar.harvard.edu/glichand/publications/job-market-paper (accessed on 9 June 2022).
- Hessami, Z. Political corruption, public procurement, and budget composition: Theory and evidence from OECD countries. Eur. J. Polit. Econ. 2014, 34, 372–389. [Google Scholar] [CrossRef] [Green Version]
- Abegunde, D.O.; Mathers, C.D.; Adam, T.; Ortegon, M.; Strong, K. The burden and costs of chronic diseases in low-income and middle-income countries. Lancet 2007, 370, 1929–1938. [Google Scholar] [CrossRef]
- Wen, J.; Deng, P.; Fu, Q.; Chang, C. Does health innovation relieve disease burden? The comprehensive evidence. Technol. Forecast. Soc. Change 2021, 174, 121202. [Google Scholar] [CrossRef]
- Baqir, R. Social Sector Spending in a Panel of Countries. IMF Working Paper No. 02/35. 2002. Available online: https://www.imf.org/external/pubs/ft/wp/2002/wp0235.pdf (accessed on 9 June 2022).
- Biggs, B.; King, L.; Basu, S.; Stuckler, D. Is wealthier always healthier? The impact of national income level, inequality, and poverty on public health in Latin America. Soc. Sci. Med. 2010, 71, 266–273. [Google Scholar] [CrossRef]
- Qiu, Y.; Chen, X.; Shi, W. Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China. J. Popul. Econ. 2020, 1, 1127–1172. [Google Scholar] [CrossRef]
- Chen, X.; Shao, S.; Tian, Z.; Xie, Z.; Yin, P. Impacts of air pollution and its spatial spillover effect on public health based on China’s big data sample. J. Clean. Prod. 2017, 142, 915–925. [Google Scholar] [CrossRef]
- Kawachi, I.; Kennedy, B.P. The relationship of income inequality to mortality: Does the choice of indicator matter? Soc. Sci. Med. 1997, 45, 1121–1127. [Google Scholar] [CrossRef]
- Massing, M.W.; Rosamond, W.D.; Wing, S.B.; Suchindran, C.M.; Kaplan, B.H.; Tyroler, H.A. Income, income inequality, and cardiovascular disease mortality: Relations among county populations of the United States, 1985 to 1994. South. Med. J. 2004, 97, 475–484. [Google Scholar] [CrossRef]
- Singer, B.; Ryff, C.D. The influence of inequality on health outcomes. In New Horizons in Health: An Integrative Approach; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Barr, D.A. Health Disparities in the United States: Social Class, Race, Ethnicity, and Health; Johns Hopkins University Press: Baltimore, MD, USA, 2014. [Google Scholar]
- Li, X.; Song, J.; Lin, T.; Dixon, J.; Zhang, G.; Ye, H. Urbanization and health in China, thinking at the national, local and individual levels. Environ. Health 2016, 15, S32. [Google Scholar] [CrossRef] [Green Version]
- Moore, M.; Gould, P.; Keary, B.S. Global urbanization and impact on health. Int. J. Hyg. Environ. Health 2003, 206, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Sun, M.; Wang, Z.; Jian, W. Association analysis between urbanization and non-communicable diseases and health-related behavior. J. Peking Univ. Health Sci. 2016, 48, 478–482. [Google Scholar]
- Brueckner, M. Adult mortality and urbanization: Examination of a weak connection in sub-Saharan Africa. World Dev. 2019, 122, 184–198. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.; Li, Z.; Xue, D. Urbanization, economic development and health: Evidence from China’s labor-force dynamic survey. Int. J. Equity Health 2017, 16, 207. [Google Scholar] [CrossRef] [Green Version]
- Benach, J.; Vives, A.; Amable, M.; Vanroelen, C.; Tarafa, G.; Muntaner, C. Precarious employment: Understanding an emerging social determinant of health. Annu. Rev. Public Health 2014, 35, 229–253. [Google Scholar] [CrossRef] [Green Version]
- Roelfs, D.J.; Shor, E.; Davidson, K.W.; Schwartz, J.E. Losing life and livelihood: A systematic review and meta-analysis of unemployment and all-cause mortality. Soc. Sci. Med. 2011, 72, 840–854. [Google Scholar] [CrossRef] [Green Version]
- Case, A.; Deaton, A. Rising morbidity and mortality in midlife among white non-Hispanic Americans in the 21st century. Proc. Natl. Acad. Sci. USA 2015, 112, 15078–15083. [Google Scholar] [CrossRef] [Green Version]
- McGee, R.E.; Thompson, N.J. Unemployment and depression among emerging adults in 12 states, behavioral risk factor surveillance system, 2010. Prev. Chronic Dis. 2015, 12, E38. [Google Scholar] [CrossRef] [Green Version]
- Venkataramani, A.S.; Bair, E.F.; O’Brien, R.L.; Tsai, A.C. Association between automotive assembly plant closures and opioid overdose mortality in the United States. JAMA Intern. Med. 2020, 180, 254–262. [Google Scholar] [CrossRef] [Green Version]
- Wheaton, B. Life Transitions, Role Histories, and Mental Health. Am. Sociol. Rev. 1990, 55, 209–223. [Google Scholar] [CrossRef]
- Eze, I.C.; Schaffner, E.; Fischer, E.; Schikowski, T.; Adam, M.; Imboden, M.; Tsai, M.; Carballo, D.; von Eckardstein, A.; Künzli, N.; et al. Long-term air pollution exposure and diabetes in a population-based Swiss cohort. Environ. Int. 2014, 70, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Hashim, D.; Boffetta, P. Occupational and environmental exposures and cancers in developing countries. Ann. Glob. Health 2014, 80, 393–411. [Google Scholar] [CrossRef]
- Kan, H.; Chen, R.; Tong, S. Ambient air pollution, climate change, and population health in China. Environ. Int. 2012, 42, 10–19. [Google Scholar] [CrossRef]
- Kelishadi, R.; Poursafa, P. Air pollution and non-respiratory health hazards for children. Arch. Med. Sci. 2010, 6, 483–495. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Lochner, L. Non-Production Benefits of Education: Crime, Health, and Good Citizenship. NBER Working Paper No. 16722. 2011. Available online: https://www.nber.org/system/files/working_papers/w16722/w16722.pdf (accessed on 9 June 2022).
- Brunello, G.; Fort, M.; Schneeweis, N.; Winter-Ebmer, R. The causal effect of education on health: What is the role of health behaviors? Health Econ. 2015, 25, 314–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, S.J. Educational attainment and health: Evidence from a sample of older adults. Educ. Econ. 2002, 10, 97–109. [Google Scholar] [CrossRef]
- Van Kippersluis, H.; O’Donnell, O.; van Doorslaer, E. Long run returns to education: Does schooling lead to an extended old age? J. Hum. Resour. 2011, 46, 695–721. [Google Scholar] [CrossRef]
- Kemptner, D.; Jürges, H.; Reinhold, S. Changes in compulsory schooling and the causal effect of education on health: Evidence from Germany. J. Health Econ. 2011, 30, 340–354. [Google Scholar] [CrossRef] [Green Version]
- Albouy, V.; Lequien, L. Does compulsory education lower mortality? J. Health Econ. 2009, 28, 155–168. [Google Scholar] [CrossRef]
- Braakmann, N. The causal relationship between education, health and health related behaviour: Evidence from a natural experiment in England. Int. J. Health Econ. 2011, 30, 753–763. [Google Scholar] [CrossRef] [Green Version]
- Arthur, E.; Oaikhenan, H.E. The effects of health expenditure on health outcomes in Sub-Saharan Africa (SSA). Afr. Dev. Rev. 2017, 29, 524–536. [Google Scholar] [CrossRef]
- Anyanwu, J.C.; Erhijakpor, A.E.O. Health expenditures and health outcomes in Africa. Afr. Dev. Rev. 2009, 21, 400–433. [Google Scholar] [CrossRef]
- Boachie, M.K.; Ramu, K. Effect of public health expenditure on health status in Ghana. Int. J. Health 2016, 4, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, Y. Determinants of Health in Developing Countries: Cross-Country Evidence. OSIPP Discussion Paper No. DP-2010-E-009, Osaka School of International Public Policy (OSIPP). 2010. Available online: https://www.osipp.osaka-u.ac.jp/archives/DP/2010/DP2010E009.pdf (accessed on 9 June 2022).
- Azfar, O.; Gurgur, T. Does corruption affect health outcomes in the Philippines? Econ. Gov. 2008, 9, 197–244. [Google Scholar] [CrossRef]
- Gupta, S.; Verhoeven, M.; Tiongson, E.R. The effectiveness of government spending on education and health care in developing and transition economies. Eur. J. Polit. Econ. 2002, 18, 717–737. [Google Scholar] [CrossRef]
- Fayissa, B.; Gutema, P. Estimating a health production function for Sub-Saharan Africa (SSA). Appl. Econ. 2005, 37, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Sinan, A.; Alkan, B.B. A useful approach to identify the multicollinearity in the presence of outliers. J. Appl. Stat. 2015, 42, 986–993. [Google Scholar] [CrossRef]
- Gianino, M.M.; Savatteri, A.; Politano, G.; Nurchis, M.C.; Pascucci, D.; Damiani, G. Burden of COVID-19: Disability-Adjusted Life Years (DALYs) across 16 European countries. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 5529–5541. [Google Scholar] [CrossRef]
- Prüss-Üstün, A.; Campbell-Lendrum, D.; Corvalán, C.; Woodward, A. The Global Burden of Disease Concept. In WHO Environmental Burden of Disease Series; World Health Organization (WHO): Geneva, Switzerland, 2003; Volume 1. [Google Scholar]
- Chang, A.Y.; Skirbekk, V.F.; Tyrovolas, S.; Kassebaum, N.J.; Dieleman, J.L. Measuring population ageing: An analysis of the global burden of disease study 2017. Lancet Public Health 2019, 4, e159–e167. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.P.; Wen, J.; Zheng, M.; Dong, M.; Hao, Y. Is higher government efficiency conducive to improving energy use efficiency? Evidence from OECD countries. Econ. Model. 2018, 72, 65–77. [Google Scholar] [CrossRef]
- Aghion, P.; Alesina, A.F.; Trebbi, F. Democracy, Technology, and Growth; NBER Working Papers No. 13180; National Bureau of Economic Research: Cambridge, MA, USA, 2007. [Google Scholar] [CrossRef]
- Hotez, P.J. Global urbanization and the neglected tropical diseases. PLoS Negl. Trop. Dis. 2017, 11, e0005308. [Google Scholar] [CrossRef]
- Kan, H.; Wu, T.C. Ambient air pollution, and human health in China: The past and future. Acad. J. Second Mil. Med. Univ. 2013, 34, 697–699. [Google Scholar] [CrossRef]
- Cai, J.; Zhao, A.; Zhao, J.; Chen, R.; Wang, W.; Ha, S.; Xu, X.; Kan, H. Acute effects of air pollution on asthma hospitalization in Shanghai, China. Environ. Pollut. 2014, 191, 139–144. [Google Scholar] [CrossRef]
- Ardito, C.; Leombruni, R.; Mosca, M.; Giraudo, M.; d’Errico, A. Scar on my heart: Effects of unemployment experiences on coronary heart disease. Int. J. Manpow. 2017, 38, 62–92. [Google Scholar] [CrossRef]
- Qu, G.; Slagter, B.; Sylwester, K.; Doiron, K. Explaining the standard errors of corruption perception indices. J. Comp. Econ. 2019, 47, 907–920. [Google Scholar] [CrossRef]
- Cornaggia, J.; Li, J.Y. The value of access to finance: Evidence from M&As. J. Financ. Econ. 2019, 131, 232–250. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S.R. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Zheng, M.; Feng, G.F.; Chen, S.W.; Chang, C.P. Corruption and innovation: Linear and nonlinear investigations of OECD countries. Singap. Econ. Rev. 2020, 65, 103–129. [Google Scholar] [CrossRef]
- Sainsbury, C.P.; Gray, O.P.; Cleary, J.; Davies, M.M.; Rowlandson, P.H. Care by parents of their children in hospital. Arch. Dis. Child. 1986, 61, 612–615. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Q.; Nian, Y.J.; Guo, Y.; Tang, L.; Lu, N.; Wen, L.Z.; Liu, K.J. Development and validation of three machine-learning models for predicting multiple organ failure in moderately severe and severe acute pancreatitis. BMC Gastroenterol. 2019, 19, 118. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.; Ni, X. Medical insurance governance modernization and medical supply side reform: A review and revelation of the foreign frontier research literature. Soc. Sci. Abroad 2020, 3, 132–144. [Google Scholar]
- Cotoc, I.; Johri, A.; Sosa-Padilla, C. Sovereign Spreads and the Political Leaning of Nations. NBER Working Papers No. 29197. 2021. Available online: https://www.nber.org/system/files/working_papers/w29197/w29197.pdf (accessed on 9 June 2022).
- Shadmi, E.; Chen, Y.; Dourado, I.; Faran-Perach, I.; Furler, J.; Hangoma, P.; Willems, S. Health equity and COVID-19: Global perspectives. Int. J. Equity Health 2020, 19, 104. [Google Scholar] [CrossRef]
- Jetter, M.; Agudelo, A.M.; Hassan, A.R. The effect of democracy on corruption: Income is key. World Dev. 2015, 74, 286–304. [Google Scholar] [CrossRef]
Variable Name | Measurement | Mean | Standard Deviation | Min | Max | Source |
---|---|---|---|---|---|---|
Health | Estimate | 39,650.99 | 19,393.06 | 15,517.19 | 1.87 × 105 | World Health Organization (WHO) |
Govefficiency | Estimate | 0.01 | 1.00 | −2.48 | 2.44 | World Governance Indicators (WGI) |
GDP | Constant 2015 USD | 15,021.01 | 22,137.57 | 258.63 | 1.71 × 105 | World Development Indicator (WDI) |
Urbanization | Ratio | 0.58 | 0.24 | 0.09 | 1.00 | World Development Indicator (WDI) |
Air pollution | Metric tons per capita | 4.48 | 5.46 | 0.00 | 47.70 | World Development Indicator (WDI) |
Unemployment | Ratio | 0.08 | 0.06 | 0.00 | 0.37 | World Development Indicator (WDI) |
Health expenditure | Ratio | 0.06 | 0.03 | 0.01 | 0.24 | World Development Indicator (WDI) |
Education | Ratio | 0.82 | 0.29 | 0.06 | 1.64 | World Development Indicator (WDI) |
Corruption control | Estimate | 0.01 | 1.00 | −1.87 | 2.47 | World Governance Indicators (WGI) |
Variable Name | VIF | 1/VIF |
---|---|---|
Govefficiency | 9.37 | 0.106752 |
Corruption control | 8.18 | 0.1222 |
GDP | 3.38 | 0.296236 |
Education | 3.33 | 0.299889 |
Urbanization | 2.6 | 0.384623 |
Air pollution | 2.26 | 0.441658 |
Health expenditure | 1.82 | 0.548074 |
Unemployment | 1.27 | 0.788695 |
Mean VIF | 4.03 |
Fixed Effect | Placebo Test | SYS-GMM | Variable Replacement | |||||
---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | VII | VIII | |
Lagged dep. var | 0.967 *** | 1.020 *** | ||||||
(170.69) | (104.93) | |||||||
Govefficiency | −0.036 *** | −0.024 *** | 0.001 | 0.001 | −0.017 *** | −0.006 *** | ||
(−3.28) | (−3.03) | (0.64) | (0.87) | (−8.77) | (−3.08) | |||
Bureaucracy quality | −0.068 *** | −0.059 *** | ||||||
(−5.10) | (−3.34) | |||||||
GDP | −0.028 * | −0.015 | −0.011 * | −0.051 *** | ||||
(−1.74) | (−0.92) | (−1.95) | (−3.09) | |||||
Urbanization | −0.617 *** | −0.678 *** | 0.102 *** | −0.089 | ||||
(−7.11) | (−7.77) | (6.43) | (−0.92) | |||||
Air pollution | 0.067 *** | −0.070 *** | 0.014 *** | −0.014 | ||||
(5.96) | (−6.20) | (3.46) | (−0.97) | |||||
Unemployment | 0.317 *** | −0.308 *** | −0.044 * | −0.372 *** | ||||
(3.18) | (−3.06) | (−1.77) | (−3.17) | |||||
Health expenditure | −0.685 *** | −0.593 *** | −0.178 *** | −1.368 *** | ||||
(−3.04) | (−2.60) | (−2.58) | (−5.28) | |||||
Education | −0.161 *** | −0.155 *** | −0.003 | −0.137 *** | ||||
(−5.34) | (−5.10) | (−0.48) | (−4.43) | |||||
Corruption control | −0.057 *** | −0.039 *** | 0.003 | −0.013 | ||||
(−5.52) | (−4.34) | (1.18) | (−1.26) | |||||
Constant | 10.464 *** | 11.259 *** | 10.465 *** | 11.206 *** | 0.339 *** | −0.179 | 10.614 *** | 11.292 *** |
(8525.35) | (94.54) | (8587.66) | (95.25) | (5.75) | (−1.38) | (346.48) | (92.77) | |
Sargan test | 0.631 | 0.317 | ||||||
AR (1) | 0.000 | 0.001 | ||||||
AR (2) | 0.621 | 0.265 | ||||||
R-squared | 0.003 | 0.214 | −0.065 | 0.143 | 0.016 | 0.141 | ||
country FE | YES | YES | YES | YES | YES | YES | ||
year FE | YES | YES | YES | YES | YES | YES |
DALYs 0–4 | DALYs 5–14 | DALYs 15–49 | DALYs 50–69 | DALYs 70+ | DALYs All Ages | |
---|---|---|---|---|---|---|
I | II | III | IV | V | VI | |
Govefficiency | −0.041 ** | −0.008 | −0.009 | −0.024 *** | −0.022 *** | −0.024 *** |
(−2.45) | (−0.82) | (−0.86) | (−2.81) | (−3.50) | (−3.03) | |
GDP | −0.134 *** | −0.105 *** | −0.122 *** | −0.116 *** | −0.675 *** | −0.028 * |
(−8.79) | (−6.85) | (−8.31) | (−9.78) | (−23.28) | (−1.74) | |
Urbanization | −1.208 *** | −0.973 *** | −0.814 *** | −0.782 *** | −0.433 *** | −0.617 *** |
(−7.79) | (−11.90) | (−9.93) | (−9.92) | (−6.85) | (−7.11) | |
Air pollution | −0.003 | 0.024 ** | 0.040 *** | 0.021 ** | −0.016 | 0.067 *** |
(−0.17) | (2.33) | (4.82) | (2.00) | (−1.50) | (5.96) | |
Unemployment | −0.102 | −0.097 | 0.223 ** | 0.340 *** | 0.588 *** | 0.317 *** |
(−1.09) | (−1.08) | (2.37) | (4.69) | (3.30) | (3.18) | |
Health expenditure | −0.835 *** | −0.639 *** | −1.116 *** | −0.852 *** | −2.639 *** | −0.685 *** |
(−3.93) | (−3.00) | (−5.45) | (−5.19) | (−6.54) | (−3.04) | |
Education | −0.495 *** | −0.238 *** | −0.085 *** | −0.031 | −0.001 | −0.161 *** |
(−9.17) | (−8.36) | (−2.99) | (−1.15) | (−0.03) | (−5.34) | |
Corruption control | −0.051 *** | −0.040 *** | −0.053 *** | −0.030 *** | −0.012 | −0.057 *** |
(−2.75) | (−4.09) | (−5.42) | (−3.18) | (−1.57) | (−5.52) | |
Constant | 17.711 *** | 10.961 *** | 11.433 *** | 12.509 *** | 12.967 *** | 11.259 *** |
(83.15) | (97.60) | (101.63) | (115.61) | (149.46) | (94.54) | |
R-squared | 0.617 | 0.433 | 0.252 | 0.265 | 0.199 | 0.214 |
country FE | YES | YES | YES | YES | YES | YES |
year FE | YES | YES | YES | YES | YES | YES |
Economic Growth | Health Innovation | Education | Corruption Control | |
---|---|---|---|---|
I | II | III | IV | |
Govefficiency | −0.154 *** | −0.044 *** | −0.058 ** | −0.033 *** |
(−2.63) | (−2.70) | (−2.18) | (−2.94) | |
GDP | −0.025 ** | −0.087 *** | −0.034 ** | −0.025 |
(−2.41) | (−4.48) | (−2.08) | (−1.52) | |
Urbanization | −0.615 *** | −0.453 *** | −0.634 *** | −0.617 *** |
(−7.09) | (−3.12) | (−7.33) | (−7.12) | |
Air pollution | −0.068 *** | 0.005 | 0.066 *** | 0.065 *** |
(−5.96) | (0.27) | (5.90) | (5.66) | |
Unemployment | −0.313 *** | 0.456 *** | 0.330 *** | 0.329 *** |
(−3.12) | (4.17) | (3.32) | (3.29) | |
Health expenditure | −0.688 *** | −0.661 *** | −0.703 *** | |
(−3.05) | (−2.94) | (−3.12) | ||
Health innovation | −0.144 *** | |||
(−2.61) | ||||
Education | −0.161 *** | −0.060 | −0.144 *** | −0.166 *** |
(−5.33) | (−1.54) | (−4.73) | (−5.48) | |
Corruption control | −0.057 *** | 0.006 | −0.053 *** | −0.057 *** |
(−5.49) | (0.34) | (−5.18) | (−5.55) | |
Govefficiency × GDP | −0.015 ** | |||
(−2.15) | ||||
Govefficiency × Health Innovation | −0.131 ** | |||
(−1.98) | ||||
Govefficiency × Education | −0.117 *** | |||
(−3.87) | ||||
Govefficiency × Corruption control | −0.018 * | |||
(−1.70) | ||||
Constant | 11.259 *** | 11.597 *** | 11.322 *** | 11.278 *** |
(94.50) | (71.56) | (94.61) | (94.37) | |
R-squared | 0.214 | 0.209 | 0.221 | 0.217 |
country FE | YES | YES | YES | YES |
year FE | YES | YES | YES | YES |
Ideology of the Party in Power | Degree of Democracy | |||
---|---|---|---|---|
Left-Wing Governments | Right-Wing Governments | Low Democratic Countries | High Democratic Countries | |
I | II | III | IV | |
Govefficiency | −0.002 | −0.028 ** | −0.002 *** | −0.064 *** |
(−0.20) | (−2.47) | (−3.88) | (−3.19) | |
GDP | −0.068 *** | −0.006 | −0.024 | −0.057 *** |
(−5.25) | (−0.23) | (−0.80) | (−4.48) | |
Urbanization | −0.252 *** | −0.840 *** | −0.813 *** | −0.343 *** |
(−3.64) | (−5.67) | (−5.45) | (−4.45) | |
Air pollution | 0.017 * | 0.142 *** | −0.100 *** | 0.047 *** |
(1.88) | (6.88) | (−5.10) | (4.84) | |
Unemployment | 0.424 *** | 0.181 | −0.397 | −0.264 *** |
(6.58) | (0.73) | (−1.43) | (−4.06) | |
Health expenditure | 0.149 | −0.638 * | −0.858 ** | −0.546 ** |
(0.65) | (−1.96) | (−2.52) | (−2.39) | |
Education | −0.074 *** | −0.234 *** | −0.219 *** | 0.046 |
(−2.89) | (−4.77) | (−4.26) | (1.61) | |
Corruption control | −0.037 *** | −0.075 *** | −0.039 ** | −0.030 *** |
(−4.31) | (−4.33) | (−2.24) | (−3.47) | |
Constant | 11.229 *** | 11.198 *** | 11.335 *** | 11.076 *** |
(109.47) | (58.64) | (54.48) | (102.33) | |
R-squared | 0.203 | 0.312 | 0.294 | 0.156 |
country FE | YES | YES | YES | YES |
year FE | YES | YES | YES | YES |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Chin, L.; Li, F.; Deng, P. How Does Government Efficiency Affect Health Outcomes? The Empirical Evidence from 156 Countries. Int. J. Environ. Res. Public Health 2022, 19, 9436. https://doi.org/10.3390/ijerph19159436
Ding Y, Chin L, Li F, Deng P. How Does Government Efficiency Affect Health Outcomes? The Empirical Evidence from 156 Countries. International Journal of Environmental Research and Public Health. 2022; 19(15):9436. https://doi.org/10.3390/ijerph19159436
Chicago/Turabian StyleDing, Yemin, Lee Chin, Fangyan Li, and Peidong Deng. 2022. "How Does Government Efficiency Affect Health Outcomes? The Empirical Evidence from 156 Countries" International Journal of Environmental Research and Public Health 19, no. 15: 9436. https://doi.org/10.3390/ijerph19159436
APA StyleDing, Y., Chin, L., Li, F., & Deng, P. (2022). How Does Government Efficiency Affect Health Outcomes? The Empirical Evidence from 156 Countries. International Journal of Environmental Research and Public Health, 19(15), 9436. https://doi.org/10.3390/ijerph19159436