Bi-Directional Pollution Characteristics and Ecological Health Risk Assessment of Heavy Metals in Soil and Crops in Wanjiang Economic Zone, Anhui Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Sample Collection and Testing
2.3. Evaluation Method
2.3.1. Enrichment Factor Method (EF)
2.3.2. The Geo-Accumulation Index
2.3.3. Pollution Factor (CF) and Pollution Load Index (PLI)
2.3.4. Enrichment Coefficient (Biological Concentration Factor)
2.3.5. Potential Ecological Risk Assessment
2.3.6. Health Risk Assessment
2.4. Data Processing
3. Results and Discussion
3.1. Heavy Metal Concentrations in Soil
3.2. Soil Heavy Metal Pollution Assessment
3.2.1. Geo-Accumulation Index (Igeo)
3.2.2. Enrichment Factor (EF)
3.2.3. Contamination Factor (CF) and Pollution Load Index (PLI)
3.3. Potential Ecological Risk Assessment of Heavy Metals (RI)
3.4. Traceability Analysis of Heavy Metals in Soil
3.4.1. Correlation Analysis
3.4.2. Principal Component Analysis
3.5. Migration and Accumulation Characteristics of Heavy Metals in Crops
3.5.1. Heavy Metal Concentrations and Pollution Assessments of Crops
3.5.2. Bio-Concentration Ability of Crops for Heavy Metals in Soil
3.6. Health Risks Assessment of Heavy Metals
3.6.1. Non-Carcinogenic Health Risk Assessment of Heavy Metals in Soil
3.6.2. Health Risk Assessment of Heavy Metal Carcinogenesis in Soil
3.6.3. Non-Carcinogenic Health Risk Assessment of Heavy Metals in Crops
3.6.4. Risk Assessment of Carcinogenesis of Heavy Metals in Crops
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Gu, Q.; Yu, T.; Yang, Z.; Ji, J.; Hou, Q.; Wang, L.; Wei, X.; Zhang, Q. Prediction and risk assessment of five heavy metals in maize and peanut: A case study of Guangxi, China. Environ. Toxicol. Pharmacol. 2019, 70, 103199. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.; Lu, Y.; Khan, H.; Ishtiaq, M.; Khan, S.; Waqas, M.; Wei, L.; Wang, T. Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food Chem. Toxicol. 2013, 58, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Wang, Q.; Yuan, Y.; Sun, W. Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China. Food Chem. 2020, 316, 126213. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Song, Y.; Chen, L.; Ji, J.; Li, J.; Yuan, X.; Yang, Z.; Ayoko, G.A.; Frost, R.L.; Theiss, F. Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. CATENA 2018, 175, 339–348. [Google Scholar] [CrossRef]
- Yin, Y.-M.; Zhao, W.-T.; Huang, T.; Cheng, S.-G.; Zhao, Z.-L.; Yu, C.-C. Distribution characteristics and health risk assessment of heavy metals in a soil-rice system in an e-waste dismantling area. Environ. Sci. 2018, 39, 916–926. [Google Scholar]
- Zhang, H.; Wang, H.; Tang, H.Y. Heavy metal pollution characteristics and health risk evaluation of soil and vegetables in various functional areas of lead-zinc tailings pond. Acta Sci. Circumstantiae 2020, 40, 1085–1094. [Google Scholar]
- Ye, M.; Zhang, J.-R.; Zhang, L.-L.; Li, Z.-H.; Li, X.-Y.; Zhou, Y.-Z. Transfer factor and health risk assessment of heavy metals in a soil-crop system in a high incidence area of nasopharyngeal carcinoma, Guangdong. Environ. Sci. 2020, 41, 5579–5588. [Google Scholar]
- Lin, C.-Q.; Cai, Y.-H.; Hu, G.-R.; Yu, R.-L.; Hao, C.-L.; Huang, H.-B. Bioaccessibility and health risks of the heavy metals in soil-rice system of southwest Fujian province. Environ. Sci. 2021, 42, 359–367. [Google Scholar]
- Han, W.; Wang, C.-W.; Pneg, M.; Wang, Q.-L.; Yang, F.; Xu, R.-T. Characteristics and origins of heavy metals in soil and crops in mountain area of southern Sichuan. Environ. Sci. 2021, 42, 2480–2489. [Google Scholar]
- Huang, Z.T.; Yi, S.W.; Chen, B.B.; Pend, R.; Shi, X.-F.; Li, F. Pollution properties and ecological risk assessment of heavy metals in farmland soils and crops around a typical manganese mining area. Environ. Sci. 2022, 43, 975–984. [Google Scholar]
- Zhang, T.; Xu, W.; Lin, X.; Yan, H.; Ma, M.; He, Z. Assessment of heavy metals pollution of soybean grains in North Anhui of China. Sci. Total Environ. 2019, 646, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Setia, R.; Dhaliwal, S.S.; Singh, R.; Kumar, V.; Taneja, S.; Kukal, S.S.; Pateriya, B. Phytoavailability and human risk assessment of heavy metals in soils and food crops around Sutlej river, India. Chemosphere 2020, 263, 128321. [Google Scholar] [CrossRef] [PubMed]
- Baruah, S.G.; Ahmed, I.; Das, B.; Ingtipi, B.; Boruah, H.; Gupta, S.K.; Nema, A.K.; Chabukdhara, M. Heavy metal(loid)s contamination and health risk assessment of soil-rice system in rural and peri-urban areas of lower brahmaputra valley, northeast India. Chemosphere 2020, 266, 129150. [Google Scholar] [CrossRef]
- Kharazi, A.; Leili, M.; Khazaei, M.; Alikhani, M.Y.; Shokoohi, R. Human health risk assessment of heavy metals in agricultural soil and food crops in Hamadan, Iran. J. Food Compos. Anal. 2021, 100, 103890. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, D.; Zhang, W.; Chen, X.; Zhao, Q.; Chen, X.; Zou, C.-Q. Health risk assessment of heavy metals (Zn, Cu, Cd, Pb, As and Cr) in wheat grain receiving repeated Zn fertilizers. Environ. Pollut. 2020, 257, 113581. [Google Scholar] [CrossRef]
- Yang, L.; Ren, Q.; Zheng, K.; Jiao, Z.; Ruan, X.; Wang, Y. Migration of heavy metals in the soil-grape system and potential health risk assessment. Sci. Total Environ. 2021, 806, 150646. [Google Scholar] [CrossRef]
- Zhou, B.-H.; Hu, R.-X.; Zhao, K.; Wan, X.; Wang, Y.; Liang, Y.-H.; Tang, J.-L. Spatial distribution characteristic of Cd in soils and its ecological risk assessment in the economic belt of Yangtze River in Anhui. J. Nat. Resour. 2021, 36, 3261–3270. [Google Scholar] [CrossRef]
- Li, Z.J.; Meng, Y.S.; Zheng, M.L. Spatial variability and ecological health risk assessment of heavy metals in farmland soil-rice system in a watershed of China. J. Agro-Environ. Sci. 2021, 40, 957–968. [Google Scholar]
- Wang, Q.; Zhang, G.; Tian, Y.; Yan, M.; Zhang, X. The character and influencing factors of geochemical distribution in basic farmland of economic zone along Yangzte River in Anhui. Acta Geol. Sin. 2016, 90, 1988–1997. [Google Scholar]
- Lu, X.; Yu, K.; Sun, Q.Y.; Sun, L.; Chen, C. Heavy metal content and health risk assessment of lotus roots around the Tongling mining area, China. J. Agro-Environ. Sci. 2019, 38, 2049–2056. [Google Scholar]
- Chen, X.; Chen, F.-R.; Jia, S.-J.; Chen, Y.-N. Soil geochemical baseline and background in Yangtze River-Huaihe River basin of Anhui Province. Geol. China 2012, 39, 302–310. [Google Scholar]
- Cao, Y.; Zheng, Z.; Du, Y.; Gao, F.; Qin, X.; Yang, H.; Lu, Y.; Du, Y. Ore geology and fluid inclusions of the Hucunnan deposit, Tongling, Eastern China: Implications for the separation of copper and molybdenum in skarn deposits. Ore Geol. Rev. 2017, 81, 925–939. [Google Scholar] [CrossRef]
- Loska, K.; Wiechuła, D.; Korus, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef]
- Sayadi, M.H.; Sayyed, M.R.G.; Kumar, S. Short-term accumulative signatures of heavy metals in river bed sediments in the industrial area, Tehran, Iran. Environ. Monit. Assess. 2009, 162, 465–473. [Google Scholar] [CrossRef]
- Sinex, S.A.; Wright, D.A. Distribution of trace metals in the sediments and biota of Chesapeake Bay. Mar. Pollut. Bull. 1988, 19, 425–431. [Google Scholar] [CrossRef]
- Jiang, X.L.; Xiong, Z.Q.; Liu, H.; Liu, G.; Liu, W. Distribution, source identification, and ecological risk assessment of heavy metals in wetland soils of a river-reservoir system. Environ. Sci. Pollut. Res. 2017, 24, 436–444. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, G.; Shen, M.; Hu, R.; Sun, M.; Liu, Y. Characteristics and health risk assessment of heavy metals in indoor dust from different functional areas in Hefei, China. Environ. Pollut. 2019, 251, 839–849. [Google Scholar] [CrossRef]
- Cao, L.; Lin, C.; Gao, Y.; Sun, C.; Xu, L.; Zheng, L.; Zhang, Z. Health risk assessment of trace elements exposure through the soil-plant (maize)-human contamination pathway near a petrochemical industry complex, Northeast China. Environ. Pollut. 2020, 263, 114414. [Google Scholar] [CrossRef]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Varol, M.; Sunbul, M.R.; Aytop, H.; Yilmaz, C.H. Environmental, ecological and health risks of trace elements, and their sources in soils of Harran Plain, Turkey. Chemosphere 2020, 245, 125. [Google Scholar] [CrossRef] [PubMed]
- Muller, G. Index of geoeaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Al-Haidarey, M.J.S.; Hassan, F.M.; Al-Kubaisey, A.R.A.; Douabul, A.A.Z. The geoaccumulation index of some heavy metals in Al-Hawizeh Marsh, Iraq. J. Chem. 2010, 7, S157–S162. [Google Scholar] [CrossRef]
- Kusin, F.M.; Azani, N.N.M.; Hasan, S.N.M.S.; Sulong, N.A. Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. CATENA 2018, 165, 454–464. [Google Scholar] [CrossRef]
- Madrid, L.; Díaz-Barrientos, E.; Madrid, F. Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere 2002, 49, 1301–1308. [Google Scholar] [CrossRef]
- Chakravarty, M.; Patgiri, A. Metal Pollution Assessment in Sediments of the Dikrong River, N.E. India. J. Hum. Ecol. 2009, 27, 63–67. [Google Scholar] [CrossRef]
- Han, Y.X.; Ni, Z.L.; Li, S.L.; Qu, M.H.; Tang, F.B.; Mo, R.H.; Ye, C.F.; Liu, Y.H. Distribution, relationship, and risk assessment of toxic heavy metals in walnuts and growth soil. Environ. Sci. Pollut. Res. 2018, 25, 10. [Google Scholar] [CrossRef]
- Håkanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Ni, S.J.; Tuo, X.G. Calculation of heavy metals toxicity coefficient in the evaluation of potential ecological risk index. Environ. Sci. Technol. 2008, 31, 112–115. [Google Scholar]
- US EPA. Emission Factor Documentation for AP-42 [OL]; 2013-08-20; US EPA: Washington, DC, USA, 2011.
- US EPA. Regional Screening Levels for Chemical Contaminants at Superfund Sites; US EPA: Washington, DC, USA, 2012.
- Li, Y.; Pang, F.; Wu, M.; Kuang, Y.; Wu, H. Heavy metal contamination and health risk assessment in soil-rice system near Xinqiao mine in Tongling city, Anhui province, China. Hum. Ecol. Risk Assess. 2018, 24, 743–753. [Google Scholar] [CrossRef]
- US EPA. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part F); Supplemental guidance for inhalation risk assessment; US EPA: Washington, DC, USA, 2009.
- US EPA. The Twenty Needs Report: How Research Can Improve the TMDL Program; US EPA: Washington, DC, USA, 2002.
- MEEC (Ministry of Ecology and Environment of China). GB-15618-2018; Soil Environmental Quality: Risk Control Standard for Soil Contamination of Agricultural Land. MEEC: Beijing, China, 2018. (In Chinese)
- CNEMC (China National Environmental Monitoring Center). The Background Concentrations of Soil Elements in China; China Environmental Science Press: Beijing, China, 1990; pp. 334–335. [Google Scholar]
- Hu, W.; Wang, H.; Dong, L.; Huang, B.; Borggaard, O.K.; Hansen, H.C.B.; He, Y.; Holm, P.E. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach. Environ. Pollut. 2018, 237, 650–661. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, Q.; Hu, W.; Huang, B.; Dong, L.; Liu, G. Using multi-medium factors analysis to assess heavy metal health risks along the Yangtze River in Nanjing, Southeast China. Environ. Pollut. 2018, 243, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Zhang, R.; Gan, Y.; Cai, L.; Freidenreich, A.; Wang, K.; Guo, T.; Wang, H. Multiple methods for the identification of heavy metal sources in cropland soils from a resource-based region. Sci. Total Environ. 2018, 651, 3127–3138. [Google Scholar] [CrossRef]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Luo, L.; Ma, Y.; Zhang, S.; Wei, D.; Zhu, Y.-G. An inventory of trace element inputs to agricultural soils in China. J. Environ. Manag. 2009, 90, 2524–2530. [Google Scholar] [CrossRef]
- Namaghi, H.H.; Karami, G.H.; Saadat, S. A study on chemical properties of groundwater and soil in ophiolitic rocks in Firuzabad, east of Shahrood, Iran: With emphasis to heavy metal contamination. Environ. Monit. Assess. 2011, 174, 573–583. [Google Scholar] [CrossRef]
- Szolnoki, Z.; Farsang, A.; Puskás, I. Cumulative impacts of human activities on urban garden soils: Origin and accumulation of metals. Environ. Pollut. 2013, 177, 106–115. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kaur, P.; Sidhu, G.P.S.; Bali, A.S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere 2018, 216, 449–462. [Google Scholar] [CrossRef]
- Wu, Q.; Hu, W.; Wang, H.; Liu, P.; Wang, X.; Huang, B. Spatial distribution, ecological risk and sources of heavy metals in soils from a typical economic development area, Southeastern China. Sci. Total Environ. 2021, 780, 146557. [Google Scholar] [CrossRef]
- Pan, L.-B.; Ma, J.; Wang, X.-L.; Hou, H. Heavy metals in soils from a typical county in Shanxi Province, China: Levels, sources and spatial distribution. Chemosphere 2016, 148, 248–254. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.; Carlton-Smith, C.; Chambers, B. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef]
- Mico, C.; Recatala, L.; Peris, M.; Sanchez, J. Assessing heavy metal sources in agricultural soils of an European Mediterrancan area by multivaritate analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Giersz, J.; Bartosiak, M.; Jankowski, K. Sensitive determination of hg together with Mn, Fe, Cu by combined photochemical vapor generation and pneumatic nebulization in the programmable temperature spray chamber and inductively coupled plasma optical emission spectrometry. Talanta 2017, 167, 279–285. [Google Scholar] [CrossRef] [PubMed]
- National Standards for Food Safety. GB 2762-2017; Maximum Levels of Contaminants in Foods. Ministry of Health of China: Beijing, China, 2017.
- Qing, X.; Yutong, Z.; Shenggao, L. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol. Environ. Saf. 2015, 120, 377–385. [Google Scholar] [CrossRef]
- Wei, X.; Gao, B.; Wang, P.; Zhou, H.; Lu, J. Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicol. Environ. Saf. 2015, 112, 186–192. [Google Scholar] [CrossRef]
- Salah Al-Heety, E.A.M.; Yassin, K.H.; Abd-Alsalaam, S. Health risk assessment of some heavy metals in urban community garden soils of Baghdad city, Iraq. Hum. Ecol. Risk Assess: Int. J. 2017, 23, 225–240. [Google Scholar] [CrossRef]
- Shahab, A.D.; Mahin, K.; Majid, A.; Mojgan, Y. Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicol. Environ. Saf. 2018, 163, 153–164. [Google Scholar]
Parameter | Description | Unit | Value | References | |
---|---|---|---|---|---|
Children | Adults | ||||
Csoil | HM concentration in soil | mg/kg | This study | This study | This study |
Ccrops | HM concentration in crops | mg/kg | This study | This study | This study |
EF | Exposure frequency | days/year | 350 | 350 | [40] |
ED | Exposure duration | year | 6 | 30 | [41] |
IngS | Soil ingestion rate | mg/day | 200 | 100 | [40] |
IngR_rice | Rice ingestion rate | g/day | 198.4 | 389.2 | [42] |
IngR_wheat | Wheat ingestion rate | g/day | 94.47 | 159.9 | [16] |
IngR_maize | Maize ingestion rate | g/day | 259 | 389 | [2,29] |
InhS | Soil inhalation rate | m3/day | 7.65 | 20 | [43] |
BW | Body weight | kg | 16 | 60 | [42] |
PEF | Particle emission factor | m3/kg | 1.36 × 109 | 1.36 × 109 | [44] |
AF | Adhesion factor of the skin | mg/cm | 0.2 | 0.07 | [40] |
SA | Exposed skin area | cm2/d | 2800 | 5700 | [40] |
ABS | Dermal absorption factor | Unitless | 0.001 | 0.001 | [40] |
AT-noncarcinogenic | Average time | days | 2190 | 10,950 | [40] |
AT-carcinogenic | 25,550 | 25,550 | [40] |
Elements | RfD/(mg/kg·Day) | SF/(mg/kg·Day) | ||||
---|---|---|---|---|---|---|
Ingestion | Inhalation | Dermal | Ingestion | Inhalation | Dermal | |
Cr | 3.00 × 10−3 | 2.86 × 10−5 | 6.00 × 10−5 | 8.50 × 10−3 | 4.20 × 101 | NA |
Ni | 2.00 × 10−2 | 2.06 × 10−2 | 5.40 × 10−3 | NA | 8.40 × 101 | NA |
Cu | 4.00 × 10−2 | 4.02 × 10−2 | 1.20 × 10−2 | NA | NA | NA |
Zn | 3.00 × 10−1 | 3.00 × 10−1 | 6.00 × 10−2 | NA | NA | NA |
Pb | 3.50 × 10−3 | 3.52 × 10−3 | 5.25 × 10−4 | 8.50 × 10−3 | NA | NA |
Cd | 1.00 × 10−3 | 1.00 × 10−5 | 1.00 × 10−5 | 6.10 × 100 | 6.30 × 100 | NA |
As | 3.00 × 10−4 | 1.23 × 10−4 | 1.23 × 10−4 | 1.5 × 100 | 1.51 × 101 | 3.66 × 100 |
Hg | 3.00 × 10−4 | 8.57 × 10−5 | 2.10 × 10−5 | NA | NA | NA |
Items | Parameter | pH | Cr | Ni | Cu | Zn | Pb | Cd | As | Hg |
---|---|---|---|---|---|---|---|---|---|---|
Rice soil (n = 245) | Minimum value | 4.65 | 23.20 | 10.80 | 13.50 | 30.30 | 15.70 | 0.08 | 1.80 | 0.02 |
Maximum value | 8.38 | 242.40 | 151.40 | 1015.80 | 416.90 | 441.50 | 2.45 | 91.90 | 0.30 | |
Average value | 6.50 | 70.45 | 28.80 | 43.71 | 83.62 | 37.22 | 0.34 | 11.67 | 0.09 | |
SD | 0.98 | 25.04 | 17.17 | 84.95 | 36.43 | 34.40 | 0.31 | 8.82 | 0.04 | |
CV (%) | 15.08 | 35.55 | 59.63 | 194.33 | 43.56 | 92.44 | 91.72 | 75.53 | 51.05 | |
Exceeded limits a (%) | 0.00 | 3.27 | 12.24 | 0.82 | 2.45 | 23.67 | 2.45 | 0.00 | ||
Wheat soil (n = 53) | Minimum value | 4.58 | 41.1 | 17.5 | 17.3 | 43.5 | 17.8 | 0.068 | 2.6 | 0.02 |
Maximum value | 8.03 | 330.9 | 300.9 | 61.4 | 137.3 | 49.2 | 0.846 | 29.8 | 0.33 | |
Average value | 6.15 | 88.78 | 44.96 | 31.00 | 72.94 | 27.33 | 0.15 | 11.50 | 0.05 | |
SD | 1.00 | 56.24 | 51.48 | 10.34 | 22.55 | 5.72 | 0.11 | 5.41 | 0.05 | |
CV (%) | 16.24 | 63.34 | 114.52 | 33.35 | 30.91 | 20.91 | 70.48 | 47.06 | 91.47 | |
Exceed the limits a (%) | 1.22 | 2.45 | 2.04 | 0.00 | 0.00 | 0.41 | 0.00 | 0.00 | ||
Maize soil (n = 9) | Minimum value | 5.21 | 28.30 | 12.80 | 17.00 | 51.20 | 17.40 | 0.16 | 2.57 | 0.02 |
Maximum value | 7.32 | 65.00 | 22.90 | 248.70 | 276.30 | 69.70 | 0.34 | 22.13 | 0.08 | |
Average value | 6.27 | 47.14 | 18.26 | 85.09 | 105.72 | 32.70 | 0.23 | 9.69 | 0.04 | |
SD | 0.78 | 12.03 | 3.20 | 77.12 | 68.81 | 15.46 | 0.07 | 5.71 | 0.02 | |
CV (%) | 12.40 | 25.51 | 17.51 | 90.63 | 65.09 | 47.29 | 27.95 | 58.98 | 46.07 | |
Exceed the limits a (%) | 0.00 | 0.00 | 2.04 | 0.41 | 0.00 | 0.00 | 0.00 | 0.00 | ||
Risk screening value a | 6.50 | 250.00 | 70.00 | 50.00 | 200.00 | 100.00 | 0.40 | 30.00 | 0.50 | |
Background value b | 5.85 | 69.40 | 25.00 | 24.90 | 53.20 | 25.90 | 0.10 | 9.40 | 0.04 | |
Average of China (CNEMC, 1990) | 6.80 | 57.30 | 24.90 | 20.70 | 68.00 | 23.50 | 0.08 | 9.60 | 0.04 |
Component | Initial Eigenvalues | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | ||||||
---|---|---|---|---|---|---|---|---|---|
Total | % of Variance | Cumulative (%) | Total | % of Variance | Cumulative (%) | Total | % of Variance | Cumulative (%) | |
1 | 2.279 | 28.483 | 28.483 | 2.279 | 28.483 | 28.483 | 2.255 | 28.192 | 28.192 |
2 | 2.086 | 26.074 | 54.558 | 2.086 | 26.074 | 54.558 | 2.082 | 26.028 | 54.22 |
3 | 1.067 | 13.338 | 67.896 | 1.067 | 13.338 | 67.896 | 1.094 | 13.676 | 67.896 |
4 | 0.915 | 11.433 | 79.329 | ||||||
5 | 0.812 | 10.149 | 89.478 | ||||||
6 | 0.511 | 6.382 | 95.86 | ||||||
7 | 0.297 | 3.713 | 99.573 | ||||||
8 | 0.034 | 0.427 | 100 |
Elements | Unrotated Component Matrix | Rotated Component Matrix | ||||
---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | |
Cr | 0.248 | 0.937 | 0.129 | 0.016 | 0.978 | 0.014 |
Ni | 0.284 | 0.932 | 0.095 | 0.056 | 0.977 | −0.015 |
Cu | 0.338 | −0.052 | −0.706 | 0.414 | −0.055 | −0.664 |
Zn | 0.891 | 0.013 | −0.127 | 0.874 | 0.208 | −0.06 |
Pb | 0.733 | −0.272 | −0.046 | 0.776 | −0.094 | 0.048 |
Cd | 0.765 | −0.235 | 0.126 | 0.781 | −0.03 | 0.215 |
As | 0.245 | −0.068 | 0.576 | 0.191 | 0.061 | 0.596 |
Hg | 0.211 | −0.45 | 0.421 | 0.261 | −0.334 | 0.495 |
Items | Parameter | Cr | Ni | Cu | Zn | Pb | Cd | As | Hg |
---|---|---|---|---|---|---|---|---|---|
Rice grains (n = 245) | Minimum value | 0.08 | 0.09 | 1.22 | 12.11 | 0.03 | 0.01 | 0.01 | 0.0022 |
Maximum value | 0.66 | 2.43 | 8.17 | 31.76 | 0.14 | 2.55 | 0.26 | 0.0325 | |
Average value | 0.13 | 0.50 | 3.95 | 21.66 | 0.06 | 0.13 | 0.10 | 0.0051 | |
SD | 0.06 | 0.41 | 1.16 | 3.48 | 0.02 | 0.22 | 0.04 | 0.0030 | |
CV (%) | 49.83 | 81.41 | 29.34 | 16.08 | 28.75 | 174.67 | 41.46 | 58.30 | |
Exceeded limits a (%) | 0.00 | 12.24 | 0.00 | 0.00 | 0.00 | 18.78 | 2.45 | 1.22 | |
Wheat grains (n = 53) | Minimum value | 0.11 | 0.14 | 3.69 | 15.72 | 0.05 | 0.019 | 0.03 | 0.0010 |
Maximum value | 0.38 | 1.8 | 9.92 | 78.37 | 0.33 | 0.213 | 0.064 | 0.0130 | |
Average value | 0.16 | 0.69 | 6.15 | 30.32 | 0.12 | 0.05 | 0.05 | 0.0030 | |
SD | 0.05 | 0.48 | 1.32 | 10.33 | 0.05 | 0.04 | 0.01 | 0.0021 | |
CV (%) | 32.64 | 68.74 | 21.41 | 34.08 | 44.02 | 69.97 | 20.34 | 71.52 | |
Exceed the limits a (%) | 0.00 | 5.31 | 0.00 | 0.41 | 0.41 | 1.63 | 0.00 | 0.00 | |
Maize grains (n = 9) | Minimum value | 0.12 | 0.14 | 3.67 | 22.00 | 0.05 | 0.02 | 0.03 | 0.0002 |
Maximum value | 0.30 | 0.47 | 8.42 | 28.70 | 0.31 | 0.06 | 0.05 | 0.0009 | |
Average value | 0.16 | 0.33 | 5.89 | 24.79 | 0.24 | 0.03 | 0.04 | 0.0006 | |
SD | 0.05 | 0.10 | 1.50 | 2.28 | 0.07 | 0.01 | 0.01 | 0.0002 | |
CV (%) | 31.54 | 31.47 | 25.44 | 9.20 | 30.36 | 38.49 | 21.19 | 32.83 | |
Exceed the limits a (%) | 0.00 | 0.00 | 0.00 | 0.00 | 3.27 | 0.41 | 0.00 | 0.00 | |
Risk screening value a | 1.00 | 1.00 | 10.00 | 50.00 | 0.20 | 0.20 | 0.20 | 0.020 |
Evaluation Object | HQ | HI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | Pb | Cd | As | Hg | |||
Soil sample for rice | Children | 3.22 × 10−1 | 1.74 × 10−2 | 1.32 × 10−2 | 3.39 × 10−3 | 1.30 × 10−1 | 5.22 × 10−3 | 4.70 × 10−1 | 3.60 × 10−3 | 0.96 |
Adults | 4.56 × 10−2 | 2.34 × 10−3 | 1.77 × 10−3 | 4.54 × 10−4 | 1.74 × 10−2 | 7.67 × 10−4 | 6.28 × 10−2 | 4.89 × 10−4 | 0.13 | |
Soil sample for wheat | Children | 4.05 × 10−1 | 2.72 × 10−2 | 9.38 × 10−3 | 2.96 × 10−3 | 9.53 × 10−2 | 2.34 × 10−3 | 4.63 × 10−1 | 2.26 × 10−3 | 1.01 |
Adults | 5.75 × 10−2 | 3.65 × 10−3 | 1.26 × 10−3 | 3.96 × 10−4 | 1.28 × 10−2 | 3.44 × 10−4 | 6.19 × 10−2 | 3.06 × 10−4 | 0.14 | |
Soil sample for mazie | Children | 2.15 × 10−1 | 1.11 × 10−2 | 2.57 × 10−2 | 4.28 × 10−3 | 1.14 × 10−1 | 3.61 × 10−3 | 3.90 × 10−1 | 1.85 × 10−3 | 0.77 |
Adults | 3.05 × 10−2 | 1.48 × 10−3 | 3.45 × 10−3 | 5.75 × 10−4 | 1.53 × 10−2 | 5.30 × 10−4 | 5.21 × 10−2 | 2.50 × 10−4 | 0.10 |
Evaluation Object | CR | TCR | |||||
---|---|---|---|---|---|---|---|
Cr | Ni | Pb | Cd | As | |||
Soil sample for rice | Children | 7.01 × 10−7 | 6.99 × 10−10 | 3.25 × 10−7 | 2.13 × 10−6 | 1.81 × 10−5 | 2.13 × 10−5 |
Adults | 7.08 × 10−7 | 2.44 × 10−9 | 2.17 × 10−7 | 1.42 × 10−6 | 1.21 × 10−5 | 1.45 × 10−5 | |
Soil sample for wheat | Children | 8.83 × 10−7 | 1.09 × 10−9 | 2.39 × 10−7 | 9.53 × 10−7 | 1.78 × 10−5 | 1.99 × 10−5 |
Adults | 8.92 × 10−7 | 3.80 × 10−9 | 1.59 × 10−7 | 6.35 × 10−7 | 1.19 × 10−5 | 1.36 × 10−5 | |
Soil sample for mazie | Children | 4.69 × 10−7 | 4.43 × 10−10 | 2.86 × 10−7 | 1.47 × 10−6 | 1.50 × 10−5 | 1.73 × 10−5 |
Adults | 4.74 × 10−7 | 1.54 × 10−9 | 1.90 × 10−7 | 9.81 × 10−7 | 1.01 × 10−5 | 1.17 × 10−5 |
Evaluation Object | HQ | HI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | Pb | Cd | As | Hg | |||
Rice | Children | 5.13 × 10−1 | 3.00 × 10−1 | 1.18 × 100 | 8.59 × 10−1 | 1.97 × 10−1 | 1.50 × 100 | 3.98 × 100 | 2.02 × 10−1 | 8.72 |
Adults | 2.68 × 10−1 | 1.57 × 10−1 | 6.15 × 10−1 | 4.49 × 10−1 | 1.03 × 10−1 | 7.85 × 10−1 | 2.08 × 100 | 1.80 × 100 | 6.26 | |
Wheat | Children | 6.19 × 10−1 | 4.12 × 10−1 | 1.83 × 100 | 1.20 × 100 | 4.06 × 10−1 | 6.24 × 10−1 | 1.83 × 100 | 1.19 × 10−1 | 7.04 |
Adults | 3.24 × 10−1 | 2.16 × 10−1 | 9.56 × 10−1 | 6.29 × 10−1 | 2.12 × 10−1 | 3.26 × 10−1 | 9.59 × 10−1 | 1.13 × 100 | 4.75 | |
Maize | Children | 6.43 × 10−1 | 1.95 × 10−1 | 1.75 × 100 | 9.82 × 10−1 | 8.00 × 10−1 | 3.71 × 10−1 | 1.57 × 100 | 2.47 × 10−2 | 6.34 |
Adults | 3.36 × 10−1 | 1.02 × 10−1 | 9.17 × 10−1 | 5.14 × 10−1 | 4.19 × 10−1 | 1.94 × 10−1 | 8.22 × 10−1 | 9.21 × 10−1 | 4.22 |
Evaluation Object | CR | TCR | ||||
---|---|---|---|---|---|---|
Cr | Pb | Cd | As | |||
Rice | Children | 1.12 × 10−6 | 5.03 × 10−7 | 7.85 × 10−4 | 1.53 × 10−4 | 9.40 × 10−4 |
Adults | 2.93 × 10−6 | 1.32 × 10−6 | 2.05 × 10−3 | 4.01 × 10−4 | 2.46 × 10−3 | |
Wheat | Children | 6.44 × 10−7 | 4.93 × 10−7 | 1.55 × 10−4 | 3.37 × 10−5 | 1.90 × 10−4 |
Adults | 1.45 × 10−6 | 1.11 × 10−6 | 3.51 × 10−4 | 7.60 × 10−5 | 4.29 × 10−4 | |
Maize | Children | 1.83 × 10−6 | 2.66 × 10−6 | 2.53 × 10−4 | 7.92 × 10−5 | 3.37 × 10−4 |
Adults | 3.67 × 10−6 | 5.33 × 10−6 | 5.07 × 10−4 | 1.59 × 10−4 | 6.75 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Liu, H.; Wu, J.; Gao, X.; Nyasha, N.k.; Cai, G.; Zhang, W. Bi-Directional Pollution Characteristics and Ecological Health Risk Assessment of Heavy Metals in Soil and Crops in Wanjiang Economic Zone, Anhui Province, China. Int. J. Environ. Res. Public Health 2022, 19, 9669. https://doi.org/10.3390/ijerph19159669
Wu D, Liu H, Wu J, Gao X, Nyasha Nk, Cai G, Zhang W. Bi-Directional Pollution Characteristics and Ecological Health Risk Assessment of Heavy Metals in Soil and Crops in Wanjiang Economic Zone, Anhui Province, China. International Journal of Environmental Research and Public Health. 2022; 19(15):9669. https://doi.org/10.3390/ijerph19159669
Chicago/Turabian StyleWu, Dun, Hai Liu, Jian Wu, Xia Gao, Ndhlovu kataza Nyasha, Guojun Cai, and Wenyong Zhang. 2022. "Bi-Directional Pollution Characteristics and Ecological Health Risk Assessment of Heavy Metals in Soil and Crops in Wanjiang Economic Zone, Anhui Province, China" International Journal of Environmental Research and Public Health 19, no. 15: 9669. https://doi.org/10.3390/ijerph19159669
APA StyleWu, D., Liu, H., Wu, J., Gao, X., Nyasha, N. k., Cai, G., & Zhang, W. (2022). Bi-Directional Pollution Characteristics and Ecological Health Risk Assessment of Heavy Metals in Soil and Crops in Wanjiang Economic Zone, Anhui Province, China. International Journal of Environmental Research and Public Health, 19(15), 9669. https://doi.org/10.3390/ijerph19159669