Water Quality Prediction Based on Multi-Task Learning
Abstract
:1. Introduction
2. Methodology
2.1. Definition of Water Quality Prediction
2.2. Architecture of Water Quality Prediction Model Based on Multi-Task Learning
2.3. Multi-Task Learning Structures
2.3.1. Hard Parameter Sharing Structure of Multi-Indicator Water Quality Prediction (Multi-Task-Hard)
Algorithm 1: Multi-indicator water quality prediction based on hard parameter sharing multi-task learning |
Input: water quality prediction indicators at the past time intervals Output: water quality indicators at the future time intervals |
2.3.2. Soft Parameter Sharing Structure of Multi-Indicator Water Quality Prediction (Multi-Task-Soft)
Algorithm 2: Multi-indicator water quality prediction based on soft parameter sharing multi-task learning |
Input: water quality prediction indicators at the past time intervals Output: water quality indicators at the future time intervals |
2.3.3. Gating Parameter Sharing Structure of Multi-Indicator Water Quality Prediction (Multi-Task-Gate)
Algorithm 3: Multi-task Learning of Gating Parameter Sharing Structure for Multi-indicator Water Quality Prediction |
Input: water quality prediction indicators at the past time intervals Output: water quality indicators at the future time intervals |
2.3.4. Gated Hidden Parameter Sharing Structure of Multi-Indicator Water Quality Prediction (Multi-Task-GH)
Algorithm 4: Gated Hidden Parameter Sharing Structure Multi-Task Learning for Multi-indicator Water Quality Prediction |
Input: water quality prediction indicators at the past time intervals Output: water quality indicators at the future time intervals |
2.3.5. Summary of Four Water Quality Prediction Models
3. Experiment Setup
3.1. Datasets
3.2. Evaluation Metrics
3.3. Baselines
3.4. Model Setting
4. Results and Discussion
4.1. Comparison of Prediction Performance for Single-Indicator
4.2. Comparison of Four Indicators and Three Indicators Multi-Task Learning Models
4.3. Comparison of Prediction Performance for Multi-Indicators
4.4. Tower Layer Analysis
4.5. The Difference of Predictions and Real Data
4.6. Model Training Loss and Validation Loss
4.7. Related Work Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Hyper-Parameters
Name | Experimental Set |
---|---|
MLP layer | 1, 2, 3 6.97 0.904 |
MLP hidden unit units | 16, 32, 64 0.396 0.051 |
Epoch | 100, 200, 400 0.359 0.046 |
Batch size | 8 7.708 1.0 |
Learning rate | 0.001 0.181 0.024 |
node number | 120 |
Sequence length | 10 |
Prediction targets | 4 |
Inputs | Outputs | Time Windows Size | Mean | Standard Variance | Maximum | Minimum |
---|---|---|---|---|---|---|
pH | pH | 10 | 7.240 | 0.330 | 7.950 | 6.390 |
DO | DO | 10 | 7.340 | 0.640 | 10.000 | 6.200 |
CODMn | CODMn | 10 | 1.820 | 0.450 | 3.300 | 0.800 |
NH3-N | NH3-N | 10 | 0.194 | 0.045 | 0.340 | 0.110 |
References
- Votruba, L. Analysis of Water Resource Systems; Elsevier: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Olyaie, E.; Abyaneh, H.Z.; Mehr, A.D. A comparative analysis among computational intelligence techniques for dissolved oxygen prediction in Delaware River. Geosci. Front. 2017, 8, 517–527. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Drucker, H. Improving regressors using boosting techniques. In Proceedings of the 14th International Conference on Machine Learning, San Francisco, CA, USA, 8–12 July 1997; pp. 107–115. [Google Scholar]
- Vapnik, V.; Golowich, S.; Smola, A. Support Vector Method for Function Approximation, Regression Estimation and Signal Processing. In Advances in Neural Information Processing Systems; Mozer, M.C., Jordan, M., Petsche, T., Eds.; MIT Press: Cambridge, MA, USA, 1997; pp. 281–287. [Google Scholar]
- Li, X.; Cheng, Z.; Yu, Q.; Bai, Y.; Li, C. Water-quality prediction using multimodal support vector regression: Case study of Jialing River, China. J. Environ. Eng. 2017, 143, 04017070. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Process R. Soc. Lond. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noiseassisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Yeh, J.R.; Shieh, J.S.; Huang, N.E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Adv. Adapt. Data Anal. 2010, 2, 135–156. [Google Scholar] [CrossRef]
- Leong, W.C.; Bahadori, A.; Zhang, J.; Ahmad, Z. Prediction of water quality index (WQI) using support vector machine (SVM) and least square-support vector machine (LS-SVM). Int. J. River Basin Manag. 2021, 19, 149–156. [Google Scholar] [CrossRef]
- Rashed, E.A.; Hirata, A. Infectivity upsurge by COVID-19 viral variants in Japan: Evidence from Deep Learning Modeling. Int. J. Environ. Res. Public Health 2021, 18, 7799. [Google Scholar] [CrossRef]
- Dildar, M.; Akram, S.; Irfan, M.; Khan, H.U.; Ramzan, M.; Mahmood, A.R.; Alsaiari, S.A.; Saeed, A.H.M.; Alraddadi, M.O.; Mahnashi, M.H. Skin cancer detection: A review using deep learning techniques. Int. J. Environ. Res. Public Health 2021, 18, 5479. [Google Scholar] [CrossRef]
- Banejad, H.; Olyaie, E. Application of an artificial neural network model to rivers water quality indexes prediction—A case study. J. Am. Sci. 2011, 7, 60–65. [Google Scholar]
- Heddam, S. Multilayer perceptron neural network-based approach for modeling pHycocyanin pigment concentrations: Case study from lower Charles River buoy, USA. Environ. Sci. Pollut. Res. 2016, 23, 17210–17225. [Google Scholar] [CrossRef] [PubMed]
- Heddam, S. Generalized regression neural network-based approach for modeling hourly dissolved oxygen concentration in the Upper Klamath River, Oregon, USA. Environ. Technol. 2014, 35, 1650–1657. [Google Scholar] [CrossRef] [PubMed]
- Avila, R.; Horn, B.; Moriarty, E.; Hodson, R.; Moltchanova, E. Evaluating statistical model performance in water quality prediction. J. Environ. Manag. 2018, 206, 910–919. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Feng, J. Deep Forest. Natl. Sci. Rev. 2019, 6, 74–86. [Google Scholar] [CrossRef]
- Wang, Z.; Man, Y.; Hu, Y.; Li, J.; Hong, M.; Cui, P. A deep learning based dynamic COD prediction model for urban sewage. Environ. Sci. Water Res. Technol. 2019, 5, 2210–2218. [Google Scholar] [CrossRef]
- Zou, Q.; Xiong, Q.; Li, Q.; Yi, H.; Yu, Y.; Wu, C. A water quality prediction method based on the multi-time scale bidirectional long short-term memory network. Environ. Sci. Pollut. Res. 2020, 27, 16853–16864. [Google Scholar] [CrossRef]
- Niu, C.; Tan, K.; Jia, X.; Wang, X. Deep learning based regression for optically inactive inland water quality parameter estimation using airborne hyperspectral imagery. Environ. Pollut. 2021, 286, 117534. [Google Scholar] [CrossRef]
- Yang, Y.; Xiong, Q.; Wu, C.; Zou, Q.; Yu, Y.; Yi, H.; Gao, M. A study on water quality prediction by a hybrid CNN-LSTM model with attention mechanism. Environ. Sci. Pollut. Res. 2021, 28, 55129–55139. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Tian, S.; Huang, J.J.; Zhu, X.; Wang, B.; Zhang, Z. Performance of deep learning in mapping water quality of Lake Simcoe with long-term Landsat archive. ISPRS J. Photogramm. Remote Sens. 2022, 183, 451–469. [Google Scholar] [CrossRef]
- Chen, K.; Chen, H.; Zhou, C.; Huang, Y.; Qi, X.; Shen, R.; Liu, F.; Zuo, M.; Zou, X.; Wang, J.; et al. Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water Res. 2020, 171, 115454. [Google Scholar] [CrossRef]
- Zhong, F.; Wu, J.; Dai, Y.; Deng, Z.; Cheng, S. Responses of water quality and phytoplankton assemblages to remediation projects in two hypereutrophic tributaries of Chaohu Lake. J. Environ. Manag. 2019, 248, 109276. [Google Scholar] [CrossRef] [PubMed]
- Weinberger, K.; Dasgupta, A.; Langford, J.; Smola, A.; Attenberg, J. Feature hashing for large scale multi-task learning. In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 1113–1120. [Google Scholar]
- Huang, W.; Song, G.; Hong, H.; Xie, K. Deep architecture for traffic flow prediction: Deep belief networks with multi-task learning. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2191–2201. [Google Scholar] [CrossRef]
- Mao, C.; Gupta, A.; Nitin, V.; Ray, B.; Song, S.; Yang, J.; Vondrick, C. Multi-task learning strengthens adversarial robustness. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2020; pp. 158–174. [Google Scholar]
- Yu, F.; Chen, H.; Wang, X.; Xian, W.; Chen, Y.; Liu, F.; Madhavan, V.; Darrell, T. Bdd100k: A diverse driving dataset for heterogeneous multi-task learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 2636–2645. [Google Scholar]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Lu, W.; Wu, J.; Li, Z.; Cui, N.; Cheng, S. Water quality assessment of an urban river receiving tail water using the single-factor index and principal component analysis. Water Sci. Tech. 2019, 19, 603–609. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, LA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ahmed AA, M. Prediction of dissolved oxygen in Surma River by biochemical oxygen demand and chemical oxygen demand using the artificial neural networks (ANNs). J. King Saud Univ.-Eng. Sci. 2017, 29, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Barzegar, R.; Aalami, M.T.; Adamowski, J. Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model. Stoch. Environ. Res. Risk Assess. 2020, 34, 415–433. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, C.; Sun, L.; Guo, D.; Zhang, Y.; Wang, W. A deep learning algorithm for multi-source data fusion to predict water quality of urban sewer networks. J. Clean. Prod. 2021, 318, 128533. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Processing Syst. 2017, 30, 5998–6008. [Google Scholar]
- Liu, Y.; Zhang, Q.; Song, L.; Chen, Y. Attention-based recurrent neural networks for accurate short-term and long-term dissolved oxygen prediction. Comput. Electron. Agric. 2019, 165, 104964. [Google Scholar] [CrossRef]
- Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep neural networks with multi-task learning. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 160–167. [Google Scholar]
- Lindbeck, A.; Snower, D.J. Multitask learning and the reorganization of work: From Taylorism to holistic organization. J. Labor Econ. 2000, 18, 353–376. [Google Scholar] [CrossRef]
Name | Layer | Design |
---|---|---|
Mt-Hard | Shared parameter layer | 1 × (MLP + Relu) |
Tower layer | pH: 3 × (MLP + ReLU) DO: 3 × (MLP + ReLU) CODMn: 2 × (MLP + ReLU) NH3-N: 2 × (MLP + ReLU) | |
Mt-Soft | Shared parameter layer | pH, DO, CODMn, NH3-N: 1 × (MLP + ReLU) Hidden: 2 × (MLP + ReLU) |
Tower layer | pH: 3 × (MLP + ReLU) DO: 3 × (MLP + ReLU) CODMn: 2 × (MLP + ReLU) NH3-N: 2 × (MLP + ReLU) | |
Mt-Gate | Shared parameter layer | pH, DO, CODMn, NH3-N: 1 × (MLP + ReLU) |
Tower layer | pH: Softmax + 3 × (MLP + ReLU) DO: Softmax + 3 × (MLP + ReLU) CODMn: Softmax + 2 × (MLP + ReLU) NH3-N: Softmax + 2 × (MLP + ReLU) | |
Mt-GH | Shared parameter layer | pH, DO, CODMn, NH3-N: 1 × (MLP + ReLU) Hidden: 2 × (MLP + ReLU) |
Tower layer | pH: Softmax + 3 × (MLP + ReLU) DO: Softmax + 3 × (MLP + ReLU) CODMn: Softmax + 2 × (MLP + ReLU) NH3-N: Softmax + 2 × (MLP + ReLU) |
Name | Number of Sites | D-s | D-l |
---|---|---|---|
Time | Time | ||
Total data set | 120 | 2013.1–2015.2 | 2012.6–2018.4 |
Pearl River | 8 | 2013.1–2015.2 | 2012.6–2018.4 |
The Yangtze River | 22 | 2013.1–2015.2 | 2012.6–2018.4 |
Songhua River | 11 | 2013.1–2015.2 | 2012.6–2018.4 |
Liaohe River | 7 | 2013.1–2015.2 | 2012.6–2018.4 |
The Yellow River | 12 | 2013.1–2015.2 | 2012.6–2018.4 |
Huaihe River | 26 | 2013.1–2015.2 | 2012.6–2018.4 |
Haihe River | 6 | 2013.1–2015.2 | 2012.6–2018.4 |
Taihu Lake | 6 | 2013.1–2015.2 | 2012.6–2018.4 |
Poyang Lake | 4 | 2013.1–2015.2 | 2012.6–2018.4 |
Other | 18 | 2013.1–2015.2 | 2012.6–2018.4 |
Model | pH | DO | CODMn | NH3-N | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | MAPE | RMSE | MAE | MAPE | RMSE | MAE | MAPE | RMSE | MAE | MAPE | |
Linear [16] | 0.560 | 0.413 | 0.054 | 2.657 | 1.978 | 0.299 | 2.793 | 1.236 | 0.354 | 1.366 | 0.423 | 0.948 |
XGB [31] | 0.327 | 0.245 | 0.032 | 1.594 | 1.135 | 0.121 | 1.732 | 0.614 | 0.179 | 0.487 | 0.182 | 0.335 |
MLP [33] | 0.299 | 0.211 | 0.028 | 1.218 * | 0.828 | 0.910 | 1.485 | 0.588 | 0.178 | 0.474 | 0.164 * | 0.317 |
CNN [34] | 0.429 | 0.327 | 0.043 | 2.066 | 1.506 | 0.167 | 2.541 | 1.197 | 0.350 | 0.718 | 0.347 | 0.702 |
LSTM [19] | 0.294 | 0.208 | 0.027 | 1.396 | 0.956 | 0.103 | 1.658 | 0.617 | 0.174 | 0.467 | 0.171 | 0.444 |
GRU [35] | 0.282 * | 0.206 * | 0.027 * | 1.230 | 0.821 * | 0.087 * | 1.742 | 0.610 | 0.169 | 0.457 * | 0.172 | 0.434 |
ATT [37] | 0.478 | 0.387 | 0.050 | 1.672 | 1.079 | 0.106 | 2.035 | 0.618 | 0.168 * | 0.681 | 0.193 | 0.416 |
Mt-Hard | 0.270 | 0.217 | 0.028 | 1.273 | 0.869 | 0.094 | 1.535 | 0.602 | 0.169 | 0.432 | 0.244 | 0.640 |
Mt-Soft | 0.293 | 0.209 | 0.028 | 1.186 | 0.801 | 0.087 | 1.534 | 0.597 | 0.178 | 0.430 | 0.168 | 0.386 |
Mt-Gate | 0.292 | 0.211 | 0.027 | 1.235 | 0.851 | 0.091 | 1.547 | 0.585 | 0.166 | 0.448 | 0.178 | 0.386 |
Mt-GH | 0.262 | 0.181 | 0.024 | 1.182 | 0.796 | 0.086 | 1.515 | 0.592 | 0.173 | 0.403 | 0.154 | 0.331 |
Improv. | 7.1% | 12.1% | 11.1% | 3.0% | 3.0% | 1.1 | - | - | 1.6% | 11.7% | 6.3% | - |
Model | pH | DO | CODMn | NH3-N | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | |
CNN | 0.456 | 0.047 | 0.357 | 2.049 | 0.192 | 1.547 | 1.487 | 0.346 | 1.051 | 0.323 | 0.946 | 0.188 |
LSTM | 0.268 | 0.025 | 0.195 | 1.198 | 0.110 | 0.828 | 0.939 | 0.189 | 0.582 | 0.238 | 0.430 | 0.118 |
GRU | 0.242 | 0.022 | 0.168 | 1.200 | 0.107 | 0.813 | 0.944 | 0.190 | 0.579 | 0.219 | 0.510 | 0.116 |
Mt-Soft | 0.252 | 0.023 | 0.178 | 1.196 | 0.106 | 0.823 | 0.949 | 0.188 | 0.577 | 0.222 | 0.395 | 0.114 |
Mt-Gate | 0.251 | 0.023 | 0.178 | 1.197 | 0.108 | 0.823 | 0.939 | 0.194 | 0.582 | 0.217 | 0.415 | 0.109 |
Mt-GH | 0.256 | 0.023 | 0.181 | 1.196 | 0.106 | 0.824 | 0.932 | 0.185 | 0.574 | 0.214 | 0.407 | 0.105 |
Mt-GH | 0.256 | 0.023 | 0.181 | 1.196 | 0.106 | 0.824 | 0.932 | 0.185 | 0.574 | 0.214 | 0.407 | 0.105 |
pH | DO | CODMn | NH3-N | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | |
4-task | 0.256 | 0.023 | 0.181 | 1.196 | 0.106 | 0.824 | 0.932 | 0.185 | 0.574 | 0.214 | 0.407 | 0.105 |
3-task1 | 0.324 | 0.031 | 0.235 | 1.248 | 0.116 | 0.877 | 0.959 | 0.194 | 0.592 | — | — | — |
3-task2 | — | — | — | 1.277 | 0.116 | 0.892 | 0.965 | 0.193 | 0.594 | 0.234 | 0.514 | 0.136 |
3-task3 | 0.316 | 0.030 | 0.226 | 1.242 | 0.111 | 0.861 | — | — | — | 0.222 | 0.650 | 0.127 |
3-task4 | 0.342 | 0.033 | 0.255 | — | — | — | 0.977 | 0.189 | 0.596 | 0.221 | 0.440 | 0.107 |
Model | RMSE | MAE | MAPE |
---|---|---|---|
Linear [16] | 7.376 | 4.052 | 1.656 |
XGB [31] | 4.139 | 2.177 | 0.667 |
MLP [33] | 3.476 * | 1.792 * | 0.615 * |
CNN [34] | 5.753 | 3.377 | 1.262 |
LSTM [19] | 3.814 | 1.952 | 0.748 |
GRU [35] | 3.709 | 1.809 | 0.716 |
ATT [37] | 4.866 | 2.277 | 0.730 |
Mt-Hard | 3.511 | 1.932 | 0.930 |
Mt-Soft | 3.443 | 1.775 | 0.679 |
Mt-Gate | 3.523 | 1.823 | 0.670 |
Mt-GH | 3.362 | 1.723 | 0.614 |
Improv. | 3.3% | 3.8% | 1.6% |
Tower Type | pH | DO | CODMn | NH3-N | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | MAPE | RMSE | MAE | MAPE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | |
LSTM | 7.009 | 6.975 | 0.904 | 9.178 | 8.872 | 0.919 | 4.523 | 0.735 | 2.978 | 1.080 | 0.515 | 0.343 |
GRU | 0.847 | 0.396 | 0.051 | 2.311 | 1.642 | 0.172 | 2.705 | 0.369 | 1.313 | 1.120 | 0.627 | 0.423 |
CNN | 0.464 | 0.359 | 0.046 | 1.949 | 1.407 | 0.154 | 2.576 | 0.371 | 1.304 | 0.950 | 0.896 | 0.367 |
ATT | 7.725 | 7.708 | 1.0 | 1.459 | 0.952 | 0.098 | 1.987 | 0.162 | 0.614 | 0.474 | 0.430 | 0.186 |
MLP | 0.262 | 0.181 | 0.024 | 1.182 | 0.796 | 0.086 | 1.515 | 0.173 | 0.592 | 0.403 | 0.331 | 0.154 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Cheng, S.; Xin, K.; Ma, N.; Chen, J.; Tao, L.; Gao, M. Water Quality Prediction Based on Multi-Task Learning. Int. J. Environ. Res. Public Health 2022, 19, 9699. https://doi.org/10.3390/ijerph19159699
Wu H, Cheng S, Xin K, Ma N, Chen J, Tao L, Gao M. Water Quality Prediction Based on Multi-Task Learning. International Journal of Environmental Research and Public Health. 2022; 19(15):9699. https://doi.org/10.3390/ijerph19159699
Chicago/Turabian StyleWu, Huan, Shuiping Cheng, Kunlun Xin, Nian Ma, Jie Chen, Liang Tao, and Min Gao. 2022. "Water Quality Prediction Based on Multi-Task Learning" International Journal of Environmental Research and Public Health 19, no. 15: 9699. https://doi.org/10.3390/ijerph19159699
APA StyleWu, H., Cheng, S., Xin, K., Ma, N., Chen, J., Tao, L., & Gao, M. (2022). Water Quality Prediction Based on Multi-Task Learning. International Journal of Environmental Research and Public Health, 19(15), 9699. https://doi.org/10.3390/ijerph19159699