Land Use Dynamic Evolution and Driving Factors of Typical Open-Pit Coal Mines in Inner Mongolia
Abstract
:1. Introduction
2. Study Area
3. Data Sources and Methods
3.1. Data Sources
3.2. Methods
3.2.1. Dynamic Degree of Land Use
3.2.2. Geographical Detector Model (GDM)
4. Results
4.1. Dynamic Evolution of Land Use in the Typical Open-Pit Coal Mine Area
4.1.1. Land Use Pattern
4.1.2. Dynamic Degree of Land Use
4.2. Spatial Driving Factor Analysis of Land Use Change in Typical Open-Pit Coal Mining Areas in Inner Mongolia
4.2.1. Analysis of the Factors Influencing Mining and Reclamation in Mining Activities
4.2.2. Geographical Detector Model-Based Analysis of Natural and Geographic Drivers
5. Discussion
5.1. Uncertainties
5.2. Comparison of the Mining Activities
5.3. Policy Significance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, G.S.; Ulgiati, S.; Zhang, Y.S.; Yu, B.H.; Kang, M.Y.; Jin, Y.; Dong, X.B.; Zhang, X.S. The false promises of coal exploitation: How mining affects herdsmen well-being in the grassland ecosystems of Inner Mongolia. Energy Policy 2014, 67, 146–153. [Google Scholar] [CrossRef]
- Goncalves, L.C.; Sebastiao, P.; Souto, N.; Correia, A. 5G mobile challenges: A feasibility study on achieving carbon neutrality. In Proceedings of the International Conference on Telecommunications, Thessaloniki, Greece, 16–18 May 2016; pp. 1–5. [Google Scholar]
- Li, X.; Gao, J.; Zhang, J.; Wang, R.; Jin, L.; Zhou, H. Adaptive strategies to overcome challenges in vegetation restoration to coalmine wasteland in a frigid alpine setting. Catena 2019, 182, 104142. [Google Scholar] [CrossRef]
- Areendran, G.; Rao, P.; Raj, K.; Mazumdar, S.; Puri, K. Land use/land cover change dynamics analysis in mining areas of Singrauli district in Madhya Pradesh, India. Trop. Ecol. 2013, 54, 239–250. [Google Scholar]
- Bandyopadhyay, S.; Maiti, S.K. Application of statistical and machine learning approach for prediction of soil quality index formulated to evaluate trajectory of ecosystem recovery in coal mine degraded land. Ecol. Eng. 2021, 170, 106351. [Google Scholar] [CrossRef]
- Rademeyer, M.C. Investigating the outcome for South African coal supply to the domestic market when faced with declining demand for exported coal. Miner. Econ. 2021, 34, 441–453. [Google Scholar] [CrossRef]
- Thakur, T.K.; Dutta, J.; Upadhyay, P.; Patel, D.K.; Thakur, A.; Kumar, M.; Kumar, A. Assessment of land degradation and restoration in coal mines of central India: A time series analysis. Ecol. Eng. 2022, 175, 106493. [Google Scholar] [CrossRef]
- Garai, D.; Narayana, A.C. Land use/land cover changes in the mining area of Godavari coal fields of southern India. Egypt. J. Remote Sens. Space Sci. 2018, 21, 375–381. [Google Scholar] [CrossRef]
- Huang, Y. Drivers of rising global energy demand: The importance of spatial lag and error dependence. Energy 2014, 76, 254–263. [Google Scholar] [CrossRef]
- Li, Q. The view of technological innovation in coal industry under the vision of carbon neutralization. Int. J. Coal Sci. Technol. 2021, 8, 1197–1207. [Google Scholar] [CrossRef]
- Bell, F.G.; Bullock, S.; Hälbich, T.; Lindsay, P. Environmental impacts associated with an abandoned mine in the Witbank Coalfield, South Africa. Int. J. Coal Geol. 2001, 45, 195–216. [Google Scholar] [CrossRef]
- Kumar, A.; Subrahmanyam, G.; Mondal, R.; Cabral-Pinto, M.M.S.; Shabnam, A.A.; Jigyasu, D.K.; Malyan, S.K.; Fagodiya, R.K.; Khan, S.A.; Kumar, A.; et al. Bio-remediation approaches for alleviation of cadmium contamination in natural resources. Chemosphere 2021, 268, 128855. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Feng, Y. Temporal and spatial change of land use in a large-scale opencast coal mine area: A complex network approach. Land Use Policy 2019, 86, 375–386. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Zhang, M.; Tang, Q. Characterizing and attributing the vegetation coverage changes in North Shanxi coal base of China from 1987 to 2020. Resour. Policy 2021, 74, 102331. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, J.; Zhang, M.; Li, S. Measurement and prediction of land use conflict in an opencast mining area. Resour. Policy 2021, 71, 101999. [Google Scholar] [CrossRef]
- He, D.; Le, B.T.; Xiao, D.; Mao, Y.; Shan, F.; Ha, T.T.L. Coal mine area monitoring method by machine learning and multispectral remote sensing images. Infrared Phys. Technol. 2019, 103, 103070. [Google Scholar] [CrossRef]
- Chen, J.; Li, K.; Chang, K.-J.; Sofia, G.; Tarolli, P. Open-pit mining geomorphic feature characterisation. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 76–86. [Google Scholar] [CrossRef]
- Loupasakis, C. Contradictive mining–induced geocatastrophic events at open pit coal mines: The case of Amintaio coal mine, West Macedonia, Greece. Arab. J. Geosci. 2020, 13, 582. [Google Scholar] [CrossRef]
- Amichev, B.Y.; Burger, J.A.; Rodrigue, J.A. Carbon sequestration by forests and soils on mined land in the Midwestern and Appalachian coalfields of the U.S. For. Ecol. Manag. 2008, 256, 1949–1959. [Google Scholar] [CrossRef] [Green Version]
- Emerson, P.; Skousen, J.; Ziemkiewicz, P. Survival and growth of hardwoods in brown versus gray sandstone on a surface mine in West Virginia. J. Environ. Qual. 2009, 38, 1821–1829. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Singh, A.K.; Ghosh, P. Distribution of soil organic carbon and glomalin related soil protein in reclaimed coal mine-land chronosequence under tropical condition. Sci. Total Environ. 2018, 625, 1341–1350. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, Z.; Niu, S.; Bai, Z. The reclaimed coal mine ecosystem diverges from the surrounding ecosystem and reaches a new self-sustaining state after 20-23 years of succession in the Loess Plateau area, China. Sci. Total Environ. 2020, 727, 138739. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wang, L.; Bai, Z.; Pan, Z.; Wang, Y. Development of population structure and spatial distribution patterns of a restored forest during 17-year succession (1993–2010) in Pingshuo opencast mine spoil, China. Environ. Monit. Assess. 2015, 187, 431. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Pahari, D.P. Underground and Opencast Coal Mining Methods in India: A Comparative Assessment. Space Cult. India 2019, 7, 39–55. [Google Scholar] [CrossRef]
- Ahirwal, J.; Maiti, S.K. Assessment of soil properties of different land uses generated due to surface coal mining activities in tropical Sal (Shorea robusta) forest, India. Catena 2016, 140, 155–163. [Google Scholar] [CrossRef]
- Wang, J.; Qin, Q.; Bai, Z. Characterizing the effects of opencast coal-mining and land reclamation on soil macropore distribution characteristics using 3D CT scanning. Catena 2018, 171, 212–221. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota. Environ. Resour. Econ. 2010, 48, 219–242. [Google Scholar] [CrossRef]
- Nelson, E.; Sander, H.; Hawthorne, P.; Conte, M.; Ennaanay, D.; Wolny, S.; Manson, S.; Polasky, S. Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS ONE 2010, 5, e14327. [Google Scholar] [CrossRef] [Green Version]
- Wardrop, D.H.; Glasmeier, A.K.; Peterson-Smith, J.; Eckles, D.; Ingram, H.; Brooks, R.P. Wetland ecosystem services and coupled socioeconomic benefits through conservation practices in the Appalachian Region. Ecol. Appl. 2011, 21, S93–S115. [Google Scholar] [CrossRef]
- Wu, Z.; Lei, S.; Qingqing, L.; Bian, Z.-F. Impacts of Large-Scale Open-Pit Coal Base on the Landscape Ecological Health of Semi-Arid Grasslands. Remote Sens. 2019, 11, 1820. [Google Scholar] [CrossRef] [Green Version]
- Xia, M.; Dong, S.; Chen, Y.; Liu, H. Study on evolution of groundwater-lake system in typical prairie open-pit coal mine area. Environ. Geochem. Health 2021, 43, 4075–4087. [Google Scholar] [CrossRef]
- Li, X.; Lei, S.; Liu, Y.; Chen, H.; Zhao, Y.; Gong, C.; Bian, Z.; Lu, X. Evaluation of Ecological Stability in Semi-Arid Open-Pit Coal Mining Area Based on Structure and Function Coupling during 2002–2017. Remote Sens. 2021, 13, 5040. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.; Zipper, C.E.; Shen, Y.; Miao, H.; Donovan, P.F. Identification of the disturbance and trajectory types in mining areas using multitemporal remote sensing images. Sci. Total Environ. 2018, 644, 916–927. [Google Scholar] [CrossRef]
- Tang, Q.; Wang, J.; Jing, Z.; Yan, Y.; Niu, H. Response of ecological vulnerability to land use change in a resource-based city, China. Resour. Policy 2021, 74, 102324. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Lal, R. Carbon and nitrogen pools in reclaimed land under forest and pasture ecosystems in Ohio, USA. Geoderma 2010, 157, 196–205. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, F.; Xie, X.; Liu, X.; Tang, Z. Asymptotic stability of bidirectional associative memory neural networks with time-varying delays via delta operator approach. Neurocomputing 2013, 117, 40–46. [Google Scholar] [CrossRef]
- Matschullat, J.; Borba, R.P.; Deschamps, E.; Figueiredo, B.R.; Gabrio, T.; Schwenk, M. Human and environmental contamination in the Iron Quadrangle, Brazil. Appl. Geochem. 2000, 15, 181–190. [Google Scholar] [CrossRef]
- Brink, A.B.; Eva, H.D. Monitoring 25 years of land cover change dynamics in Africa: A sample based remote sensing approach. Appl. Geogr. 2009, 29, 501–512. [Google Scholar] [CrossRef]
- Wang, L.; Yang, L.; Wang, W.; Chen, B.; Sun, X. Monitoring Mining Activities Using Sentinel-1A InSAR Coherence in Open-Pit Coal Mines. Remote Sens. 2021, 13, 4485. [Google Scholar] [CrossRef]
- Ma, B.; Yang, X.; Yu, Y.; Shu, Y.; Che, D. Investigation of Vegetation Changes in Different Mining Areas in Liaoning Province, China, Using Multisource Remote Sensing Data. Remote Sens. 2021, 13, 5168. [Google Scholar] [CrossRef]
- Raval, S.; Shamsoddini, A. A monitoring framework for land use around kaolin mining areas through Landsat TM images. Earth Sci. Inform. 2014, 7, 153–163. [Google Scholar] [CrossRef]
- Sonter, L.J.; Moran, C.J.; Barrett, D.J.; Soares-Filho, B.S. Processes of land use change in mining regions. J. Clean. Prod. 2014, 84, 494–501. [Google Scholar] [CrossRef] [Green Version]
- Wohlfart, C.; Mack, B.; Liu, G.; Kuenzer, C. Multi-faceted land cover and land use change analyses in the Yellow River Basin based on dense Landsat time series: Exemplary analysis in mining, agriculture, forest, and urban areas. Appl. Geogr. 2017, 85, 73–88. [Google Scholar] [CrossRef]
- Padmanaban, R.; Bhowmik, A.; Cabral, P. A Remote Sensing Approach to Environmental Monitoring in a Reclaimed Mine Area. ISPRS Int. J. Geo-Inf. 2017, 6, 401. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Hamud, A.M.; Shafri, H.Z.M.; Shaharum, N.S.N. Monitoring Urban Expansion And Land Use/Land Cover Changes In Banadir, Somalia Using Google Earth Engine (GEE). IOP Conf. Ser. Earth Environ. Sci. 2021, 767, 012041. [Google Scholar] [CrossRef]
- Lin, L.; Hao, Z.; Post, C.J.; Mikhailova, E.A.; Yu, K.; Yang, L.; Liu, J. Monitoring Land Cover Change on a Rapidly Urbanizing Island Using Google Earth Engine. Appl. Sci. 2020, 10, 7336. [Google Scholar] [CrossRef]
- Bar, S.; Parida, B.R.; Pandey, A.C. Landsat-8 and Sentinel-2 based Forest fire burn area mapping using machine learning algorithms on GEE cloud platform over Uttarakhand, Western Himalaya. Remote Sens. Appl. Soc. Environ. 2020, 18, 100324. [Google Scholar] [CrossRef]
- Liang, J.; Xie, Y.; Sha, Z.; Zhou, A. Modeling urban growth sustainability in the cloud by augmenting Google Earth Engine (GEE). Comput. Environ. Urban Syst. 2020, 84, 101542. [Google Scholar] [CrossRef]
- Zhou, B.; Okin, G.S.; Zhang, J. Leveraging Google Earth Engine (GEE) and machine learning algorithms to incorporate in situ measurement from different times for rangelands monitoring. Remote Sens. Environ. 2020, 236, 111521. [Google Scholar] [CrossRef]
- Freeman, S. The Current Global Reality: Poverty and Income Inequality. Semin. Pediatric Neurol. 2018, 27, 1–9. [Google Scholar] [CrossRef]
- Inner Mongolia Autonomous Region Statistics Bureau. Inner Mongolia Statistical Yearbook. Available online: http://tj.nmg.gov.cn/tjyw/jpsj/ (accessed on 1 August 2021).
- Inner Mongolia Autonomous Region People’s Government. Regulations of Inner Mongolia Autonomous Region on Mineral Resources Management. Available online: https://www.nmg.gov.cn/zwgk/zfgb/1999n_5236/199909/199909/t19990901_308952.html (accessed on 21 August 2021).
- Inner Mongolia Autonomous Region People’s Government. Statistical Bulletin of National Economic and Social Development of Inner Mongolia Autonomous Region. Available online: https://www.nmg.gov.cn/tjsj/sjfb/tjsj/tjgb/202202/t20220228_2010485.html (accessed on 30 August 2021).
- Li, P.; Zuo, D.; Xu, Z.; Zhang, R.; Han, Y.; Sun, W.; Pang, B.; Ban, C.; Kan, G.; Yang, H. Dynamic changes of land use/cover and landscape pattern in a typical alpine river basin of the Qinghai-Tibet Plateau, China. Land Degrad. Dev. 2021, 32, 4327–4339. [Google Scholar] [CrossRef]
- Kafy, A.-A.; Naim, M.N.H.; Subramanyam, G.; Faisal, A.-A.; Ahmed, N.U.; Rakib, A.A.; Kona, M.A.; Sattar, G.S. Cellular Automata approach in dynamic modelling of land cover changes using RapidEye images in Dhaka, Bangladesh. Environ. Chall. 2021, 4, 100084. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Duan, Q.; Tan, M. Using a geographical detector to identify the key factors that influence urban forest spatial differences within China. Urban For. Urban Green. 2020, 49, 126623. [Google Scholar] [CrossRef]
- Deslatte, A.; Szmigiel-Rawska, K.; Tavares, A.F.; Ślawska, J.; Karsznia, I.; Łukomska, J. Land use institutions and social-ecological systems: A spatial analysis of local landscape changes in Poland. Land Use Policy 2022, 114, 105937. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Zhai, T.; Li, Z.; Huang, L.; Yuan, S. Gradient characteristics of China’s land use patterns and identification of the east-west natural-socio-economic transitional zone for national spatial planning. Land Use Policy 2021, 109, 105671. [Google Scholar] [CrossRef]
- Shi, X.; Zhou, F.; Wang, Z. Research on optimization of ecological service function and planning control of land resources planning based on ecological protection and restoration. Environ. Technol. Innov. 2021, 24, 101904. [Google Scholar] [CrossRef]
- Shao, G.; Wu, J. On the accuracy of landscape pattern analysis using remote sensing data. Landsc. Ecol. 2008, 23, 505–511. [Google Scholar] [CrossRef]
- Bian, Z.; Lu, Q. Ecological effects analysis of land use change in coal mining area based on ecosystem service valuing: A case study in Jiawang. Environ. Earth Sci. 2012, 68, 1619–1630. [Google Scholar] [CrossRef]
- Chen, Z.; An, C.; Tan, Q.; Tian, X.; Li, G.; Zhou, Y. Spatiotemporal analysis of land use pattern and stream water quality in southern Alberta, Canada. J. Contam. Hydrol. 2021, 242, 103852. [Google Scholar] [CrossRef]
Year | Kappa | Overall Accuracy | Year | Kappa | Overall Accuracy |
---|---|---|---|---|---|
2001 | 0.863 | 0.921 | 2011 | 0.861 | 0.921 |
2002 | 0.849 | 0.914 | 2012 | 0.852 | 0.915 |
2003 | 0.857 | 0.917 | 2013 | 0.845 | 0.912 |
2004 | 0.839 | 0.909 | 2014 | 0.868 | 0.924 |
2005 | 0.841 | 0.910 | 2015 | 0.866 | 0.923 |
2006 | 0.837 | 0.908 | 2016 | 0.903 | 0.944 |
2007 | 0.847 | 0.913 | 2017 | 0.884 | 0.933 |
2008 | 0.833 | 0.906 | 2018 | 0.849 | 0.914 |
2009 | 0.852 | 0.916 | 2019 | 0.859 | 0.919 |
2010 | 0.828 | 0.903 | 2020 | 0.854 | 0.916 |
Land Use Type | Cropland | Forest | Grassland | Water Body | Residential/Industrial Square Land | Mining Land | Unused Land | |
---|---|---|---|---|---|---|---|---|
2001–2005 | Variation (km2) | 1.12 | 0.00 | −1.38 | 0.00 | 1.68 | −1.42 | 0.00 |
Dynamic Degree k(%) | 0.34 | 0.00 | −0.09 | −0.34 | 5.85 | −2.54 | 0.07 | |
2005–2010 | Variation (km2) | −13.16 | 0.00 | −5.20 | 0.11 | 2.09 | 16.97 | −0.82 |
Dynamic Degree k(%) | −3.98 | −2.50 | −0.35 | 14.73 | 5.04 | 26.53 | −8.33 | |
2010–2015 | Variation (km2) | −9.39 | 0.02 | −2.90 | 0.65 | 1.64 | 10.45 | −0.47 |
Dynamic Degree k(%) | −3.91 | 30.77 | −0.21 | 39.13 | 2.42 | 4.79 | −5.56 | |
2015–2020 | Variation (km2) | 9.63 | 0.02 | −17.44 | −0.11 | −1.72 | 8.03 | 1.59 |
Dynamic Degree k(%) | 5.17 | 13.79 | −1.31 | −2.28 | −1.98 | 2.53 | 8.70 | |
2001–2020 | Variation (km2) | −19.48 | 0.02 | −56.51 | 0.72 | 9.88 | 60.42 | 4.98 |
Dynamic Degree k(%) | −1.47 | 5.21 | −0.93 | 22.60 | 8.58 | 27.11 | 93.16 | |
Annual Change (km2) | −0.97 | 0.00 | −2.83 | 0.04 | 0.49 | 3.02 | 0.25 |
Detection Type | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 |
---|---|---|---|---|---|---|---|---|---|---|
value | 0.02 | 0.12 | 0.19 | 0.12 | 0.14 | 0.08 | 0.18 | 0.16 | 0.138 | 0.01 |
value | 0.06 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Hu, Z.; Yang, D.; Li, H.; Liu, B.; Gao, H.; Cao, C.; Zhou, Y.; Li, J.; Li, S. Land Use Dynamic Evolution and Driving Factors of Typical Open-Pit Coal Mines in Inner Mongolia. Int. J. Environ. Res. Public Health 2022, 19, 9723. https://doi.org/10.3390/ijerph19159723
Zhang L, Hu Z, Yang D, Li H, Liu B, Gao H, Cao C, Zhou Y, Li J, Li S. Land Use Dynamic Evolution and Driving Factors of Typical Open-Pit Coal Mines in Inner Mongolia. International Journal of Environmental Research and Public Health. 2022; 19(15):9723. https://doi.org/10.3390/ijerph19159723
Chicago/Turabian StyleZhang, Lijia, Zhenqi Hu, Dazhi Yang, Huanhuan Li, Bo Liu, He Gao, Congjie Cao, Yan Zhou, Junfang Li, and Shuchang Li. 2022. "Land Use Dynamic Evolution and Driving Factors of Typical Open-Pit Coal Mines in Inner Mongolia" International Journal of Environmental Research and Public Health 19, no. 15: 9723. https://doi.org/10.3390/ijerph19159723
APA StyleZhang, L., Hu, Z., Yang, D., Li, H., Liu, B., Gao, H., Cao, C., Zhou, Y., Li, J., & Li, S. (2022). Land Use Dynamic Evolution and Driving Factors of Typical Open-Pit Coal Mines in Inner Mongolia. International Journal of Environmental Research and Public Health, 19(15), 9723. https://doi.org/10.3390/ijerph19159723