Impact of COVID-19 Pandemic on School-Aged Children’s Physical Activity, Screen Time, and Sleep in Hong Kong: A Cross-Sectional Repeated Measures Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurements
2.2.1. Questionnaires
2.2.2. Screen Time
2.2.3. Actigraph Data
Non-Wear Time
Sleep Measurements
- Sleep Period Classification
- Sleep Parameters
- Physical Activity Levels
2.3. Statistical Analysis
2.4. Ethics
3. Results
3.1. Descriptive Analysis (Table 1)
Pre-Pandemic | During School Closure | School Partially Reopened | ||
---|---|---|---|---|
Data collection period | September 2019–January 2020 | March 2020–April 2020 | October 2020–July 2021 | p-value |
N (%)/Mean (SD) | N (%)/Mean (SD) | N (%)/Mean (SD) | ||
Total valid data collected | 577 | 146 | 293 | |
School type | ||||
Primary | 267 (46%) | 87 (60%) | 137 (47%) | 0.013 |
Secondary | 310 (54%) | 59 (40%) | 156 (53%) | |
Sex | ||||
Female | 333 (58%) | 100 (68%) | 227 (77%) | <0.001 |
Male | 244 (42%) | 46 (32%) | 66 (23%) | |
Age (years) | 12.85 (2.61) | 12.14 (2.90) | 11.93 (2.11) | <0.001 |
Anthropometric parameters | ||||
Height (z-score) | −0.39 (1.50) | −0.41 (1.49) | −0.29 (1.10) | 0.535 |
Weight (z-score) | −0.10 (1.32) | −0.03 (1.38) | −0.02 (1.25) | 0.672 |
BMI (z-score) | 0.17 (1.25) | 0.24 (1.26) | 0.13 (1.29) | 0.683 |
Body fat (%) | 20.99 (9.63) | 21.38 (9.27) | 20.72 (8.67) | 0.788 |
Body Status | ||||
Underweight | 12 (2%) | 2 (1%) | 12 (4%) | 0.576 |
Normal | 442 (77%) | 111 (76%) | 227 (77%) | |
Overweight | 85 (15%) | 21 (14%) | 38 (13%) | |
Obese | 34 (6%) | 7 (5%) | 15 (5%) | |
Missing | 4 (1%) | 5 (3%) | 1 (0%) | |
Social Economic Status (SES) | −0.08 (1.53) | 0.18 (1.69) | 0.03 (1.52) | 0.301 |
3.2. Changes in PA, Sleep Time, and Screen Time (Table 2)
Pre-Pandemic (Reference) | During School Closures | Schools Partially Reopened | |||||
---|---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | β (SE) | p-Value | Mean (SD) | β (SE) | p-Value | |
Physical activity | |||||||
Step count per day | 10,969.33 (2492.15) | 8472.51 (3295.39) | −2692.83 (235.04) | <0.001 | 9547.04 (2455.05) | −1562.17 (189.24) | <0.001 |
Sedentary time per day (h) | 10.46 (1.45) | 10.64 (1.83) | 0.16 (0.16) | 0.292 | 10.85 (1.69) | 0.61 (0.12) | <0.001 |
MVPA time per day (h) | 0.47 (0.35) | 0.42 (0.49) | −0.09 (0.03) | 0.007 | 0.44 (0.33) | −0.08 (0.03) | <0.001 |
Sleep | |||||||
Latency (min) | 43.66 (50.83) | 55.61 (81.31) | 7.56 (6.48) | 0.243 | 56.83 (52.13) | 11.96 (4.72) | 0.011 |
Actual sleep duration (h) | 7.45 (1.03) | 8.76 (1.28) | 1.19 (0.11) | <0.001 | 7.55 (1.09) | −0.07 (0.09) | 0.438 |
Sleep time (HH:MM) | 23:29 (00:53) | 00:30 (01:17) | 62.43 (5.68) | <0.001 | 23:39 (00:51) | 14.92 (4.52) | 0.001 |
Wake time (HH:MM) | 07:11 (00:39) | 09:54 (01:31) | 115.14 (6.26) | <0.001 | 07:25 (00:59) | 12.53 (4.98) | 0.012 |
Efficiency (%) | 95.72 (4.18) | 91.07 (8.7) | −4.27 (0.54) | <0.001 | 95.25 (4.21) | −0.86 (0.43) | 0.047 |
SFI | 27.62 (7.34) | 35.3 (11.75) | 7.91 (0.88) | <0.001 | 27.56 (7.345) | 0.72 (0.7) | 0.306 |
Screen time | |||||||
Level of parental guidance | 1.68 (0.56) | 1.65 (0.56) | −0.05 (0.06) | 0.407 | 1.76 (0.54) | 0.03 (0.04) | 0.497 |
Non-academic screen time per day (h) | 4.38 (4.3) | 4.54 (4.55) | 1.16 (0.4) | 0.003 | 5.60 (4.22) | 1.87 (0.32) | <0.001 |
Academic screen time per day (h) | 1.01 (1.33) | 1.69 (2.14) | 0.6 (0.17) | <0.001 | 2.92 (2.24) | 1.93 (0.14) | <0.001 |
Overall screen time per day (h) | 5.39 (5.10) | 6.23 (5.80) | 1.79 (0.48) | <0.001 | 8.52 (5.40) | 3.85 (0.38) | <0.001 |
3.3. Changes in PA, SLEEP Time, and Screen Time in Primary and Secondary School Students
3.3.1. Primary Schools (Grade 1 to Grade 6) (Table 3)
Pre-Pandemic (Reference) | During School Closures | Schools Partially Reopened | |||||
---|---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | β (SE) | p-Value | Mean (SD) | β (SE) | p-Value | |
Physical activity | |||||||
Step count per day | 11,902.36 (2100.06) | 9594.29 (2445.65) | −1961.05 (312.71) | <0.001 | 10,433.02 (2493.44) | −1165.94 (258.07) | <0.001 |
School days | 11,999.24 (2026.46) | - | - | - | 10,682.54 (2663.60) | −1127.8 (256.02) | <0.001 |
Holidays | 11,713.80 (3599.98) | 9594.29 (2445.65) | −1960.99 (471.21) | <0.001 | 9836.68 (3248.60) | −1317.95 (411.12) | 0.001 |
Sedentary time per day (h) | 10.12 (1.29) | 10.07 (1.61) | −0.25 (0.19) | 0.181 | 10.13 (1.46) | 0.00 (0.15) | 0.977 |
School days | 10.23 (1.36) | - | - | - | 10.33 (1.51) | 0.21 (0.16) | 0.202 |
Holidays | 9.91 (1.80) | 10.07 (1.61) | 0.03 (0.24) | 0.899 | 9.56 (2.08) | −0.59 (0.21) | 0.005 |
MVPA time per day (h) | 0.64 (0.33) | 0.50 (0.33) | −0.11 (0.05) | 0.018 | 0.62 (0.35) | 0.02 (0.04) | 0.572 |
School days | 0.63 (0.33) | - | - | - | 0.61 (0.35) | 0.01 (0.04) | 0.881 |
Holidays | 0.68 (0.51) | 0.50 (0.33) | −0.17 (0.07) | 0.016 | 0.65 (0.49) | 0.05 (0.06) | 0.473 |
Sleep | |||||||
Latency (min) | 53.19 (40.88) | 83.68 (64.82) | 27.65 (6.78) | <0.001 | 60.31 (44.30) | 5.77 (5.54) | 0.298 |
School days | 53.96 (44.17) | - | - | - | 62.87 (42.91) | 8.58 (5.52) | 0.120 |
Holidays | 50.41 (59.49) | 83.68 (64.82) | 31.29 (9.13) | 0.001 | 52.69 (62.63) | −0.64 (8.08) | 0.937 |
Actual sleep duration (h) | 7.95 (0.79) | 8.80 (1.03) | 0.85 (0.13) | <0.001 | 7.77 (0.90) | −0.17 (0.1) | 0.089 |
School days | 7.72 (0.79) | - | - | - | 7.44 (0.83) | −0.27 (0.1) | 0.007 |
Holidays | 8.66 (1.47) | 8.80 (1.03) | 0.11 (0.21) | 0.589 | 8.85 (1.37) | 0.08 (0.18) | 0.658 |
Sleep time (HH:MM) | 23:07 (01:21) | 00:15 (01:22) | 64.3 (7.09) | <0.001 | 23:21 (00:45) | 13.25 (5.79) | 0.022 |
School days | 22:57 (00:45) | - | - | - | 23:11 (00:45) | 13.41 (5.53) | 0.015 |
Holidays | 23:37 (00:54) | 00:15 (01:22) | 35.39 (9.16) | <0.001 | 23:52 (01:11) | 10.77 (8.11) | 0.184 |
Wake time (HH:MM) | 07:16 (00:36) | 09:22 (01:15) | 119.96 (6.33) | <0.001 | 07:21 (00:39) | 6.37 (5.17) | 0.218 |
School days | 06:49 (00:26) | - | - | - | 06:51 (00:29) | 2.95 (3.41) | 0.388 |
Holidays | 08:43 (01:37) | 09:22 (01:15) | 35.78 (13.60) | 0.009 | 09:00 (01:26) | 14.83 (12.04) | 0.218 |
Efficiency (%) | 95.81 (3.53) | 94.13 (4.45) | −1.15 (0.50) | 0.023 | 95.92 (3.35) | −0.19 (0.41) | 0.639 |
School days | 97.13 (2.94) | - | - | - | 96.43 (3.66) | −0.80 (0.40) | 0.044 |
Holidays | 91.61 (8.82) | 94.13 (4.45) | 2.47 (1.08) | 0.022 | 94.28 (4.85) | 1.93 (0.95) | 0.043 |
SFI | 26.89 (6.57) | 31.11 (7.87) | 4.01 (1.00) | <0.001 | 27.23 (6.70) | 0.41 (0.82) | 0.614 |
School days | 25.44 (6.73) | - | - | - | 26.85 (6.97) | 1.24 (0.87) | 0.153 |
Holidays | 31.87 (12.06) | 31.11 (7.87) | −0.24 (1.54) | 0.874 | 28.97 (8.95) | −2.68 (1.37) | 0.050 |
Screen time | |||||||
Level of parental guidance | 1.87 (0.51) | 1.94 (0.49) | 0.04 (0.08) | 0.586 | 1.86 (0.52) | 0.02 (0.06) | 0.765 |
Non-academic screen time per day (h) | 1.81 (2.69) | 2.65 (3.60) | 0.56 (0.45) | 0.211 | 4.5 (3.78) | 2.67 (0.37) | <0.001 |
School days | 1.39 (2.42) | - | - | - | 3.87 (3.76) | 2.27 (0.34) | <0.001 |
Holidays | 2.86 (4.09) | 2.65 (3.60) | 0.95 (0.66) | 0.153 | 6.09 (5.27) | 3.62 (0.54) | <0.001 |
Academic screen time per day (h) | 0.38 (0.92) | 0.88 (1.28) | 0.55 (0.21) | 0.010 | 2.98 (2.38) | 2.44 (0.18) | <0.001 |
School days | 0.43 (0.91) | - | - | - | 3.49 (3.01) | 3.02 (0.22) | <0.001 |
Holidays | 0.54 (1.21) | 0.88 (1.28) | 0.7 (0.21) | 0.001 | 1.71 (1.87) | 0.95 (0.18) | <0.001 |
Overall screen time per day (h) | 2.28 (3.31) | 3.53 (1.65) | 1.12 (0.58) | 0.055 | 7.48 (5.32) | 5.11 (0.48) | <0.001 |
School days | 1.83 (3.02) | - | - | - | 7.36 (6.02) | 5.28 (0.49) | <0.001 |
Holidays | 3.4 (4.65) | 3.53 (1.65) | 1.65 (0.74) | 0.027 | 7.79 (5.75) | 4.56 (0.61) | <0.001 |
3.3.2. Secondary Schools (Grade 7 to Grade 12) (Table 4)
Pre-Pandemic (Reference) | During School Closures | Schools Partially Reopened | |||||
---|---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | β (SE) | p-Value | Mean (SD) | β (SE) | p-Value | |
Physical activity | |||||||
Step count per day | 9692.94 (2492.86) | 6111.86 (2196.68) | −4035.39 (381.47) | <0.001 | 8795.19 (2157.77) | −1519.01 (348.77) | <0.001 |
School days | 9997.45 (2422.58) | - | - | - | 9454.58 (2218.24) | −1333.44 (360.77) | <0.001 |
Holidays | 8786.08 (4481.52) | 6111.86 (2196.68) | −2955.5 (612.03) | <0.001 | 7550.07 (2575.63) | −1514.08 (641.59) | 0.018 |
Sedentary time per day (h) | 10.79 (1.48) | 11.61 (1.51) | 0.79 (0.27) | 0.003 | 11.48 (1.63) | 0.83 (0.23) | <0.001 |
School days | 10.93 (1.64) | - | - | - | 11.93 (1.80) | 1.07 (0.27) | <0.001 |
Holidays | 10.62 (1.82) | 11.61 (1.51) | 1.11 (0.31) | <0.001 | 10.92 (1.68) | 0.41 (0.32) | 0.194 |
MVPA time per day (h) | 0.32 (0.27) | 0.17 (0.18) | −0.15 (0.04) | 0.001 | 0.28 (0.22) | −0.07 (0.04) | 0.061 |
School days | 0.31 (0.26) | - | - | - | 0.27 (0.20) | −0.09 (0.04) | 0.020 |
Holidays | 0.41 (0.54) | 0.17 (0.18) | −0.24 (0.07) | 0.001 | 0.28 (0.24) | −0.09 (0.07) | 0.220 |
Sleep | |||||||
Latency (min) | 33.16 (58.25) | 5.08 (84.24) | −22.8 (12.02) | 0.058 | 53.97 (57.78) | 23.03 (10.02) | 0.022 |
School days | 37.32 (59.97) | - | - | - | 65.50 (61.85) | 31.19 (9.86) | 0.002 |
Holidays | 10.86 (70.18) | 5.08 (84.24) | 0.02 (15.86) | 0.999 | 26.71 (68.40) | 10.68 (15.66) | 0.495 |
Actual sleep duration (h) | 6.94 (0.95) | 8.72 (1.64) | 1.79 (0.22) | <0.001 | 7.31 (1.20) | −0.01 (0.19) | 0.976 |
School days | 6.58 (0.92) | - | - | - | 6.41 (0.99) | −0.35 (0.16) | 0.030 |
Holidays | 8.65 (1.65) | 8.72 (1.64) | 0.23 (0.31) | 0.466 | 8.87 (1.41) | 0.39 (0.32) | 0.235 |
Sleep time (HH:MM) | 23:57 (00:52) | 00:54 (01:03) | 51.12 (9.47) | <0.001 | 23:56 (00:50) | 8.57 (8.63) | 0.321 |
School days | 23:52 (00:53) | - | - | - | 23:53 (00:54) | 12.73 (8.75) | 0.146 |
Holidays | 00:29 (01:05) | 00:54 (01:03) | 16.82 (12.59) | 0.182 | 00:05 (01:05) | −21.18 (13.41) | 0.114 |
Wake time (HH:MM) | 07:05 (00:42) | 10:45 (01:30) | 207.70 (11.73) | <0.001 | 07:29 (01:12) | 11.63 (10.53) | 0.269 |
School days | 06:38 (00:27) | - | - | - | 06:26 (00:32) | −9.84 (4.71) | 0.037 |
Holidays | 09:35 (01:33) | 10:45 (1:30) | 64.15 (18.75) | 0.001 | 09:22 (01:35) | −0.86 (19.64) | 0.965 |
Efficiency (%) | 95.56 (4.31) | 85.48 (11.69) | −9.36 (1.08) | <0.001 | 94.58 (4.79) | −1.16 (0.98) | 0.236 |
School days | 96.03 (4.42) | - | - | - | 95.73 (4.78) | −0.34 (0.81) | 0.674 |
Holidays | 91.95 (8.08) | 85.48 (11.69) | −6.17 (1.67) | <0.001 | 92.27 (6.94) | −1.2 (1.75) | 0.491 |
SFI | 28.28 (7.69) | 43.12 (13.89) | 14.5 (1.62) | <0.001 | 27.82 (7.96) | 0.03 (1.48) | 0.986 |
School days | 27.53 (8.06) | - | - | - | 25.74 (9.17) | 1.07 (0.27) | <0.001 |
Holidays | 33.46 (11.11) | 43.12 (13.89) | 9.38 (2.14) | <0.001 | 31.14 (9.00) | −0.54 (2.30) | 0.813 |
Screen time | |||||||
Level of parental guidance | 1.45 (0.53) | 1.26 (0.40) | −0.16 (0.09) | 0.067 | 1.68 (0.54) | 0.04 (0.08) | 0.572 |
Non-academic screen time per day (h) | 6.6 (4.19) | 7.64 (4.27) | 0.61 (0.77) | 0.422 | 6.44 (4.36) | 0.69 (0.64) | 0.278 |
School days | 5.8 (4.43) | - | - | - | 5.62 (4.19) | 0.39 (0.68) | 0.559 |
Holidays | 8.62 (5.99) | 7.64 (4.27) | 1.36 (1.04) | 0.192 | 8.48 (5.6) | 1.46 (0.85) | 0.087 |
Academic screen time per day (h) | 1.49 (1.45) | 2.99 (2.59) | 1.29 (0.34) | <0.001 | 2.87 (2.13) | 1.36 (0.28) | <0.001 |
School days | 1.49 (1.49) | - | - | - | 3.01 (2.28) | 1.53 (0.3) | <0.001 |
Holidays | 1.49 (1.73) | 2.99 (2.59) | 1.27 (0.38) | 0.001 | 2.53 (2.28) | 1.08 (0.32) | 0.001 |
Overall screen time per day (h) | 8.09 (4.84) | 10.64 (5.25) | 1.91 (0.92) | 0.039 | 9.31 (5.34) | 2.12 (0.75) | 0.005 |
School days | 7.29 (5.11) | - | - | - | 8.63 (5.3) | 1.97 (0.81) | 0.015 |
Holidays | 10.11 (6.55) | 10.64 (5.25) | 2.65 (1.17) | 0.023 | 11.01 (6.38) | 2.86 (0.95) | 0.003 |
3.4. Influence of the Reallocation of Time Use on Sleep Quality
Predicted Difference (95% Confidence Interval) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Add 15 min | Remove 15 min | Overall | Pre-pandemic | During school closure | After school partially reopened | ||||
Screen time | MVPA | 0.865 | (0.563, 1.168) | 0.332 | (−0.177, 0.840) | 2.013 | (0.481, 3.546) | 0.546 | (−0.114, 1.206) |
Screen time | Sleep | −0.025 | (−0.063, 0.012) | −0.016 | (−0.178, 0.145) | 0.074 | (−0.063, 0.212) | −0.018 | (−0.046, 0.009) |
Screen time | Other activities | 0.013 | (−0.02, 0.045) | 0.001 | (−0.152, 0.153) | 0.099 | (−0.024, 0.223) | 0.011 | (−0.016, 0.039) |
MVPA | Screen time | −0.616 | (−0.831, −0.401) | −0.229 | (−0.834, 0.376) | −1.293 | (−2.212, −0.374) | −0.343 | (−0.759, 0.072) |
MVPA | Sleep | −0.638 | (−0.864, −0.413) | −0.242 | (−0.608, 0.124) | −1.171 | (−2.118, −0.224) | −0.362 | (−0.798, 0.074) |
MVPA | Other activities | −0.600 | (−0.816, −0.384) | −0.225 | (−0.569, 0.119) | −1.146 | (−2.092, −0.200) | −0.332 | (−0.749, 0.085) |
Sleep | Screen time | 0.022 | (−0.031, 0.075) | 0.012 | (−0.425, 0.450) | −0.123 | (−0.316, 0.070) | 0.018 | (−0.009, 0.046) |
Sleep | MVPA | 0.890 | (0.575, 1.205) | 0.348 | (−0.179, 0.874) | 1.939 | (0.372, 3.506) | 0.564 | (−0.116, 1.244) |
Sleep | Other activities | 0.038 | (0.024, 0.051) | 0.017 | (−0.008, 0.042) | 0.024 | (−0.032, 0.081) | 0.029 | (−0.008, 0.067) |
Other activities | Screen time | −0.015 | (−0.063, 0.032) | −0.004 | (−0.449, 0.441) | −0.148 | (−0.324, 0.029) | −0.010 | (−0.034, 0.015) |
Other activities | MVPA | 0.853 | (0.548, 1.158) | 0.331 | (−0.174, 0.836) | 1.914 | (0.350, 3.477) | 0.536 | (−0.126, 1.197) |
Other activities | Sleep | −0.038 | (−0.051, −0.024) | −0.017 | (−0.042, 0.008) | −0.025 | (−0.078, 0.027) | −0.028 | (−0.063, 0.006) |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cowling, B.J.; Ali, S.T.; Ng, T.W.Y.; Tsang, T.K.; Li, J.C.M.; Fong, M.W.; Liao, Q.; Kwan, M.Y.; Lee, S.L.; Chiu, S.S.; et al. Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: An observational study. Lancet Public Health 2020, 5, e279–e288. [Google Scholar] [CrossRef]
- Ashikkali, L.; Carroll, W.; Johnson, C. The indirect impact of COVID-19 on child health. Paediatr. Child Health 2020, 30, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Zhang, Z.; Kuwahara, K. Impact of COVID-19 pandemic on children and adolescents’ lifestyle behavior larger than expected. Prog. Cardiovasc. Dis. 2020, 63, 531–532. [Google Scholar] [CrossRef]
- Ruíz-Roso, M.B.; de Carvalho Padilha, P.; Matilla-Escalante, D.C.; Brun, P.; Ulloa, N.; Acevedo-Correa, D.; Peres, W.A.F.; Martorell, M.; Carrilho, T.R.B.; de Oliveira Cardoso, L.; et al. Changes of Physical Activity and Ultra-Processed Food Consumption in Adolescents from Different Countries during COVID-19 Pandemic: An Observational Study. Nutrients 2020, 12, 2289. [Google Scholar] [CrossRef]
- Wunsch, K.; Nigg, C.; Niessner, C.; Schmidt, S.C.; Oriwol, D.; Hanssen-Doose, A.; Burchartz, A.; Eichsteller, A.; Kolb, S.; Worth, A.; et al. The Impact of COVID-19 on the Interrelation of Physical Activity, Screen Time and Health-Related Quality of Life in Children and Adolescents in Germany: Results of the Motorik-Modul Study. Children 2021, 8, 98. [Google Scholar] [CrossRef]
- Di Renzo, L.; Gualtieri, P.; Pivari, F.; Soldati, L.; Attinà, A.; Cinelli, G.; Leggeri, C.; Caparello, G.; Barrea, L.; Scerbo, F.; et al. Eating habits and lifestyle changes during COVID-19 lockdown: An Italian survey. J. Transl. Med. 2020, 18, 229–02399. [Google Scholar] [CrossRef]
- Dragun, R.; Veček, N.N.; Marendić, M.; Pribisalić, A.; Đivić, G.; Cena, H.; Polašek, O.; Kolčić, I. Have Lifestyle Habits and Psychological Well-Being Changed among Adolescents and Medical Students Due to COVID-19 Lockdown in Croatia? Nutrients 2020, 13, 97. [Google Scholar] [CrossRef]
- Yomoda, K.; Kurita, S. Influence of social distancing during the COVID-19 pandemic on physical activity in children: A scoping review of the literature. J. Exerc. Sci. Fit. 2021, 19, 195–203. [Google Scholar] [CrossRef]
- Nagata, J.M.; Cortez, C.A.; Cattle, C.J.; Ganson, K.T.; Iyer, P.; Bibbins-Domingo, K.; Baker, F.C. Screen Time Use Among US Adolescents During the COVID-19 Pandemic: Findings From the Adolescent Brain Cognitive Development (ABCD) Study. JAMA Pediatr. 2021, 176, e214334. [Google Scholar] [CrossRef]
- Stiglic, N.; Viner, R.M. Effects of screentime on the health and well-being of children and adolescents: A systematic review of reviews. BMJ Open 2019, 9, e023191. [Google Scholar] [CrossRef]
- Kaditis, A.G.; Ohler, A.; Gileles-Hillel, A.; Choshen-Hillel, S.; Gozal, D.; Bruni, O.; Aydinoz, S.; Cortese, R.; Kheirandish-Gozal, L. Effects of the COVID-19 lockdown on sleep duration in children and adolescents: A survey across different continents. Pediatr. Pulmonol. 2021, 56, 2265–2273. [Google Scholar] [CrossRef] [PubMed]
- Sinha, M.; Pande, B.; Sinha, R. Impact of COVID-19 lockdown on sleep-wake schedule and associated lifestyle related behavior: A national survey. J. Public Health Res. 2020, 9, 1826. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Aggarwal, S.; Madaan, P.; Saini, L.; Bhutani, M. Impact of COVID-19 pandemic on sleep in children and adolescents: A systematic review and meta-analysis. Sleep Med. 2021, 84, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, A.; DeFina, L.F.; Natale, B.L.; Thiele, S.E.; Walker, T.J.; Craig, D.W.; Vint, G.R.; Leonard, D.; Haskell, W.L.; Kohl, H.W. Keeping children healthy during and after COVID-19 pandemic: Meeting youth physical activity needs. BMC Public Health 2021, 21, 485–10545. [Google Scholar] [CrossRef]
- Guo, Y.-F.; Liao, M.-Q.; Cai, W.-L.; Yu, X.-X.; Li, S.-N.; Ke, X.-Y.; Tan, S.-X.; Luo, Z.-Y.; Cui, Y.-F.; Wang, Q.; et al. Physical activity, screen exposure and sleep among students during the pandemic of COVID-19. Sci. Rep. 2021, 11, 8529–88071. [Google Scholar] [CrossRef] [PubMed]
- Lokhandwala, S.; Holmes, J.F.; Mason, G.M.; Laurent, C.W.S.; Delvey, C.; Hanron, O.; Andre, C.; Rodheim, K.; Kaur, S.; Spencer, R.M.C. Sleep and Coping in Early Childhood During the COVID-19 Pandemic. Front. Pediatr. 2021, 9, 716608. [Google Scholar] [CrossRef]
- Steel, D. Repeated cross-sectional design. In Encyclopedia of Survery Research Methods; Layrakas, P.J., Ed.; SAGE Publications: Thousand Oaks, CA, USA, 2008; pp. 714–716. [Google Scholar]
- Beidas, R.S.; Williams, N.J.; Becker-Haimes, E.M.; Aarons, G.A.; Barg, F.K.; Evans, A.C.; Jackson, K.; Jones, D.; Hadley, T.; Hoagwood, K.; et al. A repeated cross-sectional study of clinicians’ use of psychotherapy techniques during 5 years of a system-wide effort to implement evidence-based practices in Philadelphia. Implement. Sci. 2019, 14, 67. [Google Scholar] [CrossRef]
- Lo, C.K.M.; Ho, F.K.; Wong, R.S.; Tung, K.T.S.; Tso, W.W.Y.; Ho, M.S.P.; Chow, C.B.; Chan, K.L.; Ip, P. Prevalence of Child Maltreatment and Its Association with Parenting Style: A Population Study in Hong Kong. Int. J. Environ. Res. Public Health 2019, 16, 1130. [Google Scholar] [CrossRef]
- Aadland, E.; Johannessen, K. Agreement of objectively measured physical activity and sedentary time in preschool children. Prev. Med. Rep. 2015, 2, 635–639. [Google Scholar] [CrossRef]
- Cole, R.J.; Kripke, D.F.; Gruen, W.; Mullaney, D.J.; Gillin, J.C. Automatic sleep/wake identification from wrist activity. Sleep 1992, 15, 461–469. [Google Scholar] [CrossRef]
- Evenson, K.R.; Catellier, D.J.; Gill, K.; Ondrak, K.S.; McMurray, R.G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 2008, 26, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Galland, B.; Taylor, R.; Meredith-Jones, K. ActiGraph GT3X+ and Actical Wrist and Hip Worn Accelerometers for Sleep and Wake Indices in Young Children Using an Automated Algorithm: Validation With Polysomnography. Front. Psychiatry 2020, 10, 958. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.S.; Tung, K.T.S.; Rao, N.; Leung, C.; Hui, A.N.; Tso, W.W.; Fu, K.W.; Jiang, F.; Zhao, J.; Ip, P. Parent Technology Use, Parent-Child Interaction, Child Screen Time, and Child Psychosocial Problems among Disadvantaged Families. J. Pediatr. 2020, 226, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Tudor-Locke, C.; Barreira, T.V.; Schuna, J.M., Jr.; Mire, E.F.; Katzmarzyk, P.T. Fully automated waist-worn accelerometer algorithm for detecting children’s sleep-period time separate from 24-h physical activity or sedentary behaviors. Appl. Physiol. Nutr. Metab. 2014, 39, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Choi, L.; Liu, Z.; Matthews, C.E.; Buchowski, M.S. Validation of accelerometer wear and nonwear time classification algorithm. Med. Sci. Sports Exerc. 2011, 43, 357–364. [Google Scholar] [CrossRef]
- Rich, C.; Geraci, M.; Griffiths, L.; Sera, F.; Dezateux, C.; Cortina-Borja, M. Quality control methods in accelerometer data processing: Defining minimum wear time. PLoS ONE 2013, 8, e67206. [Google Scholar] [CrossRef]
- Quante, M.; Kaplan, E.R.; Cailler, M.; Rueschman, M.; Wang, R.; Weng, J.; Taveras, E.M.; Redline, S. Actigraphy-based sleep estimation in adolescents and adults: A comparison with polysomnography using two scoring algorithms. Nat. Sci. Sleep 2018, 10, 13–20. [Google Scholar] [CrossRef]
- Sadeh, A.; Sharkey, K.M.; Carskadon, M.A. Activity-based sleep-wake identification: An empirical test of methodological issues. Sleep 1994, 17, 201–207. [Google Scholar] [CrossRef]
- Knutson, K.L.; Van, C.E.; Zee, P.; Liu, K.; Lauderdale, D.S. Cross-sectional associations between measures of sleep and markers of glucose metabolism among subjects with and without diabetes: The Coronary Artery Risk Development in Young Adults (CARDIA) Sleep Study. Diabetes Care 2011, 34, 1171–1176. [Google Scholar] [CrossRef]
- Chandler, J.L.; Brazendale, K.; Beets, M.W.; Mealing, B.A. Classification of physical activity intensities using a wrist-worn accelerometer in 8-12-year-old children. Pediatr. Obes. 2016, 11, 120–127. [Google Scholar] [CrossRef]
- Palarea-Albaladejo, J.; Martin-Fernandez, J.A. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 2015, 143, 85–96. [Google Scholar] [CrossRef]
- Dunton, G.F.; Do, B.; Wang, S.D. Early effects of the COVID-19 pandemic on physical activity and sedentary behavior in children living in the U.S. BMC Public Health 2020, 20, 1351–09429. [Google Scholar] [CrossRef]
- Moore, S.A.; Faulkner, G.; Rhodes, R.E.; Brussoni, M.; Chulak-Bozzer, T.; Ferguson, L.J.; Mitra, R.; O’Reilly, N.; Spence, J.C.; Vanderloo, L.M.; et al. Impact of the COVID-19 virus outbreak on movement and play behaviours of Canadian children and youth: A national survey. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 85. [Google Scholar] [CrossRef]
- Pombo, A.; Luz, C.; Rodrigues, L.P.; Ferreira, C.; Cordovil, R. Correlates of children’s physical activity during the COVID-19 confine.ement in Portugal. Public Health 2020, 189, 14–19. [Google Scholar] [CrossRef]
- Census and Statistics Department. Healthy Exercise for All Campaign—Physical Fitness Test for the Community; Hong Kong Monthly Digest of Statistics: Hong Kong, China, 2013. [Google Scholar]
- Ho, F.K.; Louie, L.H.; Chow, C.B.; Wong, W.H.; Ip, P. Physical activity improves mental health through resilience in Hong Kong Chinese adolescents. BMC Pediatr. 2015, 15, 48. [Google Scholar] [CrossRef]
- Ip, P.; Ho, F.K.; Louie, L.H.; Chung, T.W.-H.; Cheung, Y.-F.; Lee, S.-L.; Hui, S.S.-C.; Ho, W.K.-Y.; Ho, D.S.-Y.; Wong, W.H.-S.; et al. Childhood Obesity and Physical Activity-Friendly School Environments. J. Pediatr. 2017, 191, 110–116. [Google Scholar] [CrossRef]
- Gobbi, E.; Maltagliati, S.; Sarrazin, P.; Di Fronso, S.; Colangelo, A.; Cheval, B.; Escriva-Boulley, G.; Tessier, D.; Demirhan, G.; Erturan, G.; et al. Promoting Physical Activity during School Closures Imposed by the First Wave of the COVID-19 Pandemic: Physical Education Teachers’ Behaviors in France, Italy and Turkey. Int. J. Environ. Res. Public Health 2020, 17, 9431. [Google Scholar] [CrossRef]
- Tso, W.W.Y.; Wong, R.S.; Tung, K.T.S.; Rao, N.; Fu, K.W.; Yam, J.C.S.; Chua, G.T.; Chen, E.Y.H.; Lee, T.M.C.; Chan, S.K.W.; et al. Vulnerability and resilience in children during the COVID-19 pandemic. Eur. Child. Adolesc. Psychiatry 2020, 31, 161–176. [Google Scholar] [CrossRef]
- Paruthi, S.; Brooks, L.J.; D’Ambrosio, C.; Hall, W.; Kotagal, S.; Lloyd, R.M.; Malow, B.A.; Maski, K.; Nichols, C.; Quan, S.F.; et al. Recommended Amount of Sleep for Pediatric Populations: A Consensus Statement of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2016, 12, 785–786. [Google Scholar] [CrossRef]
- Leng, Y.; Musiek, E.S.; Hu, K.; Cappuccio, F.P.; Yaffe, K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 2019, 18, 307–318. [Google Scholar] [CrossRef]
- Fatima, Y.; Doi, S.A.; Mamun, A.A. Sleep quality and obesity in young subjects: A meta-analysis. Obes. Rev. 2016, 17, 1154–1166. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Liu, L.; Chen, X.; Li, Q.; Li, J. Association between circadian disruption and diseases: A narrative review. Life Sci. 2020, 262, 118512. [Google Scholar] [CrossRef]
- Rivkees, S.A. Mechanisms and clinical significance of circadian rhythms in children. Curr. Opin. Pediatr. 2001, 13, 352–357. [Google Scholar] [CrossRef]
- Touchette, E.; Petit, D.; SÃguin, J.R.; Boivin, M.; Tremblay, R.E.; Montplaisir, J.Y. Associations between sleep duration patterns and behavioral/cognitive functioning at school entry. Sleep 2007, 30, 1213–1219. [Google Scholar] [CrossRef]
- Saxvig, I.W.; Pallesen, S.; Wilhelmsen-Langeland, A.; Molde, H.; Bjorvatn, B. Prevalence and correlates of delayed sleep phase in high school students. Sleep Med. 2012, 13, 193–199. [Google Scholar] [CrossRef]
- Lopez-Bueno, R.; Lopez-Sanchez, G.F.; Casajus, J.A.; Calatayud, J.; Tully, M.A.; Smith, L. Potential health-related behaviors for pre-school and school-aged children during COVID-19 lockdown: A narrative review. Prev. Med. 2021, 143, 106349. [Google Scholar] [CrossRef]
- Wong, C.W.; Tsai, A.; Jonas, J.B.; Ohno-Matsui, K.; Chen, J.; Ang, M.; Ting, D.S.W. Digital Screen Time During the COVID-19 Pandemic: Risk for a Further Myopia Boom? Am. J. Ophthalmol 2021, 223, 333–337. [Google Scholar] [CrossRef]
- Enthoven, C.A.; Tideman, J.W.L.; Polling, J.R.; Yang-Huang, J.; Raat, H.; Klaver, C.C.W. The impact of computer use on myopia development in childhood: The Generation R study. Prev. Med. 2020, 132, 105988. [Google Scholar] [CrossRef]
- Poulain, T.; Ludwig, J.; Hiemisch, A.; Hilbert, A.; Kiess, W. Media Use of Mothers, Media Use of Children, and Parent-Child Interaction Are Related to Behavioral Difficulties and Strengths of Children. Int. J. Environ. Res. Public Health 2019, 16, 4651. [Google Scholar] [CrossRef]
- Vanderloo, L.M.; Keown-Stoneman, C.D.; Sivanesan, H.; Parkin, P.C.; Maguire, J.L.; Anderson, L.N.; Tremblay, M.S.; Birken, C.S. Association of screen time and cardiometabolic risk in school-aged children. Prev. Med. Rep. 2020, 20, 101183. [Google Scholar] [CrossRef]
- Council on Communcations and Media. Media Use in School-Aged Children and Adolescents. Pediatrics 2016, 138, e20162592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
So, H.-K.; Chua, G.T.; Yip, K.-M.; Tung, K.T.S.; Wong, R.S.; Louie, L.H.T.; Tso, W.W.Y.; Wong, I.C.K.; Yam, J.C.; Kwan, M.Y.W.; et al. Impact of COVID-19 Pandemic on School-Aged Children’s Physical Activity, Screen Time, and Sleep in Hong Kong: A Cross-Sectional Repeated Measures Study. Int. J. Environ. Res. Public Health 2022, 19, 10539. https://doi.org/10.3390/ijerph191710539
So H-K, Chua GT, Yip K-M, Tung KTS, Wong RS, Louie LHT, Tso WWY, Wong ICK, Yam JC, Kwan MYW, et al. Impact of COVID-19 Pandemic on School-Aged Children’s Physical Activity, Screen Time, and Sleep in Hong Kong: A Cross-Sectional Repeated Measures Study. International Journal of Environmental Research and Public Health. 2022; 19(17):10539. https://doi.org/10.3390/ijerph191710539
Chicago/Turabian StyleSo, Hung-Kwan, Gilbert T. Chua, Ka-Man Yip, Keith T. S. Tung, Rosa S. Wong, Lobo H. T. Louie, Winnie W. Y. Tso, Ian C. K. Wong, Jason C. Yam, Mike Y. W. Kwan, and et al. 2022. "Impact of COVID-19 Pandemic on School-Aged Children’s Physical Activity, Screen Time, and Sleep in Hong Kong: A Cross-Sectional Repeated Measures Study" International Journal of Environmental Research and Public Health 19, no. 17: 10539. https://doi.org/10.3390/ijerph191710539
APA StyleSo, H.-K., Chua, G. T., Yip, K.-M., Tung, K. T. S., Wong, R. S., Louie, L. H. T., Tso, W. W. Y., Wong, I. C. K., Yam, J. C., Kwan, M. Y. W., Lau, K.-K., Kong, J. K. W., Wong, W. H. S., & Ip, P. (2022). Impact of COVID-19 Pandemic on School-Aged Children’s Physical Activity, Screen Time, and Sleep in Hong Kong: A Cross-Sectional Repeated Measures Study. International Journal of Environmental Research and Public Health, 19(17), 10539. https://doi.org/10.3390/ijerph191710539