Development and Validation of Waist Girth-Based Equations to Evaluate Body Composition in Colombian Adults: Rationale and STROBE–Nut-Based Protocol of the F20 Project
Abstract
:1. Introduction
1.1. Background Rationale
1.2. Objectives
2. Methods
2.1. Study Design
2.2. Setting
2.3. Participants
2.4. Variables
2.5. Data Sources/Measurement
2.5.1. Body Composition
2.5.2. Anthropometry
2.5.3. Anthropometry-Based Analysis of Body Composition
2.6. Bias
2.7. Study Size
2.8. Statistical Methods
3. Expected Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, I. Abcde of Community Nutritional Assessment. Gomal J. Med. Sci. 2019, 17, 27–28. [Google Scholar] [CrossRef]
- Larson-Meyer, D.E. Nutrition Assessment of the Athlete. Curr. Sports Med. Rep. 2019, 18, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Fitch, A.K.; Bays, H.E. Obesity definition, diagnosis, bias, standard operating procedures (SOPs), and telehealth: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2022. Obes. Pillars 2022, 1, 100004. [Google Scholar] [CrossRef]
- Frankenfield, D.C.; Rowe, W.A.; Cooney, R.N.; Smith, J.S.; Becker, D. Limits of body mass index to detect obesity and predict body composition. Nutrition 2001, 17, 26–30. [Google Scholar] [CrossRef]
- Rothman, K.J. BMI-related errors in the measurement of obesity. Int. J. Obes. 2008, 32, S56–S59. [Google Scholar] [CrossRef] [PubMed]
- Holway, F. Composición Corporal en Nutrición Deportiva. 2010. Available online: https://www.researchgate.net/publication/257141125_Composicion_corporal_en_nutricion_deportiva (accessed on 29 July 2022).
- Moreira, O.C.; Alonso-Aubin, D.A.; de Oliveira, C.E.P.; Candia-Luján, R.; de Paz, J.A. Métodos de evaluación de la composición corporal: Una revisión actualizada de descripción, aplicación, ventajas y desventajas. Arch. Med. Deporte 2015, 32, 387–394. [Google Scholar]
- Lee, S.Y.; Gallagher, D. Assessment methods in human body composition. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 566–572. [Google Scholar] [CrossRef]
- Ortega, J.V.F.; Vélez, M.; Cortés, C.; Barrios, C.; Cueto, K.; Anaya, E.; Bilbao, T. Comparación de los métodos de antropometría clásica e impedancia bioeléctrica a través de la determinación de la composición corporal en jóvenes universitarias Nutr. Clín. Diet. Hosp 2018, 38, 164–171. [Google Scholar]
- Norton, K.; Eston, R. Kinanthropometry and Exercise Physiology; Routledge: London, UK, 2018. [Google Scholar]
- Hsieh, S.D.; Yoshinaga, H.; Muto, T. Waist-to-height ratio, a simple and practical index for assessing central fat distribution and metabolic risk in Japanese men and women. Int. J. Obes. 2003, 27, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Esparza-Ros, F.; Vaquero-Cristóbal, R.; Marfell-Jones, M. International Standards for Anthropometric Assessment; The International Society for the Advancement of Kinanthropometry: Murcia, Spain, 2019. [Google Scholar]
- Staynor, J.M.D.; Smith, M.K.; Donnelly, C.J.; Sallam, A.E.; Ackland, T.R. DXA reference values and anthropometric screening for visceral obesity in Western Australian adults. Sci. Rep. 2020, 10, 18731. [Google Scholar] [CrossRef]
- Shen, W.; Punyanitya, M.; Chen, J.; Gallagher, D.; Albu, J.; Pi-Sunyer, X.; Lewis, C.E.; Grunfeld, C.; Heshka, S.; Heymsfield, S.B. Waist circumference correlates with metabolic syndrome indicators better than percentage fat. Obesity 2006, 14, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Benito, P.; Andivia, E.; Archambeaou, J.; Astigarraga, J.; Barrientos, R.; Cruz-Alonso, V.; Florencio, M.; Gómez, D.; Martínez-Baroja, L.; Quiles, P.; et al. Ventajas de la estadística bayesiana frente a la frecuentista: ¿Por qué nos resistimos a usarla? Ecosistemas 2018, 27, 136–139. [Google Scholar] [CrossRef] [Green Version]
- Demmer, D.L.; Beilin, L.J.; Hands, B.; Burrows, S.; Pennell, C.E.; Lye, S.J.; Mountain, J.A.; Mori, T.A. Dual Energy X-ray Absorptiometry Compared with Anthropometry in Relation to Cardio-Metabolic Risk Factors in a Young Adult Population: Is the ‘Gold Standard’ Tarnished? PLoS ONE 2016, 11, e0162164. [Google Scholar] [CrossRef]
- Vatanparast, H.; Chilibeck, P.D.; Cornish, S.M.; Little, J.P.; Paus-Jenssen, L.S.; Case, A.M.; Biem, H.J. DXA-derived abdominal fat mass, waist circumference, and blood lipids in postmenopausal women. Obesity 2009, 17, 1635–1640. [Google Scholar] [CrossRef]
- Leslie, W.D. Estimating Waist and Hip Circumference from Routine Clinical DXA. J. Clin. Densitom. 2020, 23, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Choi, S.; Park, S.M. Association of waist circumference with muscle and fat mass in adults with a normal body mass index. Nutr. Res. Pract. 2021, 15, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Willems, A.; Paulson, T.A.; Keil, M.; Brooke-Wavell, K.; Goosey-Tolfrey, V.L. Dual-Energy X-ray Absorptiometry, Skinfold Thickness, and Waist Circumference for Assessing Body Composition in Ambulant and Non-Ambulant Wheelchair Games Players. Front. Physiol. 2015, 6, 356. [Google Scholar] [CrossRef]
- Ashtary-Larky, D.; Daneghian, S.; Alipour, M.; Rafiei, H.; Ghanavati, M.; Mohammadpour, R.; Kooti, W.; Ashtary-Larky, P.; Afrisham, R. Waist Circumference to Height Ratio: Better Correlation with Fat Mass Than Other Anthropometric Indices During Dietary Weight Loss in Different Rates. Int. J. Endocrinol. Metab. 2018, 16, e55023. [Google Scholar] [CrossRef]
- Aschner, P.; Buendia, R.; Brajkovich, I.; Gonzalez, A.; Figueredo, R.; Juarez, X.E.; Uriza, F.; Gomez, A.M.; Ponte, C.I. Determination of the cutoff point for waist circumference that establishes the presence of abdominal obesity in Latin American men and women. Diabetes Res. Clin. Pract. 2011, 93, 243–247. [Google Scholar] [CrossRef]
- Sutton, L.; Wallace, J.; Goosey-Tolfrey, V.; Scott, M.; Reilly, T. Body composition of female wheelchair athletes. Int. J. Sports Med. 2009, 30, 259–265. [Google Scholar] [CrossRef]
- Swainson, M.G.; Batterham, A.M.; Tsakirides, C.; Rutherford, Z.H.; Hind, K. Prediction of whole-body fat percentage and visceral adipose tissue mass from five anthropometric variables. PLoS ONE 2017, 12, e0177175. [Google Scholar] [CrossRef] [PubMed]
- da Cunha de Sa-Caputo, D.; Sonza, A.; Coelho-Oliveira, A.C.; Pessanha-Freitas, J.; Reis, A.S.; Francisca-Santos, A.; Dos Anjos, E.M.; Paineiras-Domingos, L.L.; de Rezende Bessa Guerra, T.; da Silva Franco, A.; et al. Evaluation of the Relationships between Simple Anthropometric Measures and Bioelectrical Impedance Assessment Variables with Multivariate Linear Regression Models to Estimate Body Composition and Fat Distribution in Adults: Preliminary Results. Biology 2021, 10, 1209. [Google Scholar] [CrossRef] [PubMed]
- Woolcott, O.O.; Bergman, R.N. Relative fat mass (RFM) as a new estimator of whole-body fat percentage horizontal line A cross-sectional study in American adult individuals. Sci. Rep. 2018, 8, 10980. [Google Scholar] [CrossRef] [PubMed]
- Guzman-Leon, A.E.; Velarde, A.G.; Vidal-Salas, M.; Urquijo-Ruiz, L.G.; Caraveo-Gutierrez, L.A.; Valencia, M.E. External validation of the relative fat mass (RFM) index in adults from north-west Mexico using different reference methods. PLoS ONE 2019, 14, e0226767. [Google Scholar] [CrossRef] [PubMed]
- Woolcott, O.O.; Bergman, R.N. Relative Fat Mass as an estimator of whole-body fat percentage among children and adolescents: A cross-sectional study using NHANES. Sci. Rep. 2019, 9, 15279. [Google Scholar] [CrossRef] [PubMed]
- Ferrinho, C.; Bello, C.; Santos, F.S.; Capitao, R.; Ferreira, R.; Limbert, C.; Duarte, J.S.; Oliveira, M. Relative fat mass correlates better than BMI with total body fat-experience of an obesity clinic. In Endocrine Abstracts; Bioscientifica: Bristol, UK, 2019. [Google Scholar] [CrossRef]
- Senkus, K.E.; Crowe-White, K.M.; Locher, J.L.; Ard, J.D. Relative fat mass assessment estimates changes in adiposity among female older adults with obesity after a 12-month exercise and diet intervention. Ann. Med. 2022, 54, 1160–1166. [Google Scholar] [CrossRef]
- Fedewa, M.V.; Russell, A.R.; Nickerson, B.S.; Fedewa, M.P.; Myrick, J.W.; Esco, M.R. Relative accuracy of body adiposity index and relative fat mass in participants with and without down syndrome. Eur. J. Clin. Nutr. 2018, 73, 1117–1121. [Google Scholar] [CrossRef]
- Kobo, O.; Leiba, R.; Avizohar, O.; Karban, A. Relative fat mass is a better predictor of dyslipidemia and metabolic syndrome than body mass index. Cardiovasc. Endocrinol. Metab. 2019, 8, 77–81. [Google Scholar] [CrossRef]
- Machado, M.V.; Policarpo, S.; Coutinho, J.; Carvalhana, S.; Leitão, J.; Carvalho, A.; Silva, A.P.; Velasco, F.; Medeiros, I.; Alves, A.C.; et al. What Is the Role of the New Index Relative Fat Mass (RFM) in the Assessment of Nonalcoholic Fatty Liver Disease (NAFLD)? Obes. Surg. 2019, 30, 560–568. [Google Scholar] [CrossRef]
- Woolcott, O.O.; Bergman, R.N. Defining cutoffs to diagnose obesity using the relative fat mass (RFM): Association with mortality in NHANES 1999–2014. Int. J. Obes. 2020, 44, 1301–1310. [Google Scholar] [CrossRef]
- Takai, Y.; Nakatani, M.; Aoki, T.; Komori, D.; Oyamada, K.; Murata, K.; Fujita, E.; Akamine, T.; Urita, Y.; Yamamoto, M.; et al. Body shape indices are predictors for estimating fat-free mass in male athletes. PLoS ONE 2018, 13, e0189836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, A.L.; Velez, J.D.; Garcia, A.M.; Arango, E.F. Concurrent validity of five prediction equations to evaluate fat percentage in a sports group expected to yield high performance from Medellin, Colombia. Biomedica 2021, 41, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Aristizabal, J.C.; Estrada-Restrepo, A.; Giraldo Garcia, A. Development and validation of anthropometric equations to estimate body composition in adult women. Colomb. Med. 2018, 49, 154–159. [Google Scholar] [CrossRef]
- Norton, K.I. Standards for Anthropometry Assessment. In Kinanthropometry and Exercise Physiology; Routledge: London, UK, 2018; pp. 68–137. [Google Scholar]
- Larson-Meyer, D.E.; Woolf, K.; Burke, L. Assessment of Nutrient Status in Athletes and the Need for Supplementation. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 139–158. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, D.A.; De Leon, L.G.; Alexander-Cortez, P.; Odriozola-Martinez, A.; Herrera-Amante, C.A.; Vargas-Molina, S.; Petro, J.L. Simple anthropometry-based calculations to monitor body composition in athletes: Scoping review and reference values. Nutr. Health 2021, 28, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Lachat, C.; Hawwash, D.; Ocke, M.C.; Berg, C.; Forsum, E.; Hornell, A.; Larsson, C.; Sonestedt, E.; Wirfalt, E.; Akesson, A.; et al. Strengthening the Reporting of Observational Studies in Epidemiology-Nutritional Epidemiology (STROBE-nut): An Extension of the STROBE Statement. PLoS Med. 2016, 13, e1002036. [Google Scholar] [CrossRef]
- Herrera-Amante, C.A.; Ramos-Garcia, C.O.; Alacid, F.; Quiroga-Morales, L.A.; Martinez-Rubio, A.J.; Bonilla, D.A. Development of alternatives to estimate resting metabolic rate from anthropometric variables in paralympic swimmers. J. Sports Sci. 2021, 39, 2133–2143. [Google Scholar] [CrossRef]
- Bonilla, D.A.; Castrillón-Ruíz, L.; Soto-Arenas, L.F.; Márquez-Rodríguez, M.A.; Kreider, R.B.; Petro, J.L. Estimation of Stature in Adults: Development and Validation of a New Predictive Formula using the Tibiale Mediale-Sphyrion Tibiale Length. Rev. Española Nutr. Hum. Dietética 2022, 26, 61–71. [Google Scholar] [CrossRef]
- Kurth, J.D.; Klenosky, D.B. Validity Evidence for a Daily, Online-delivered, Adapted Version of the International Physical Activity Questionnaire Short Form (IPAQ-SF). Meas. Phys. Educ. Exerc. Sci. 2020, 25, 127–136. [Google Scholar] [CrossRef]
- World Medical, A. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. J. Postgrad. Med. 2002, 48, 206–208. [Google Scholar]
- Bonilla, D.A.; Kreider, R.B.; Petro, J.L.; Romance, R.; Garcia-Sillero, M.; Benitez-Porres, J.; Vargas-Molina, S. Creatine Enhances the Effects of Cluster-Set Resistance Training on Lower-Limb Body Composition and Strength in Resistance-Trained Men: A Pilot Study. Nutrients 2021, 13, 2303. [Google Scholar] [CrossRef] [PubMed]
- Vargas, S.; Romance, R.; Petro, J.L.; Bonilla, D.A.; Galancho, I.; Espinar, S.; Kreider, R.B.; Benítez-Porres, J. Efficacy of ketogenic diet on body composition during resistance training in trained men: A randomized controlled trial. J. Int. Soc. Sports Nutr. 2018, 15, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas-Molina, S.; Petro, J.L.; Romance, R.; Kreider, R.B.; Schoenfeld, B.J.; Bonilla, D.A.; Benitez-Porres, J. Effects of a ketogenic diet on body composition and strength in trained women. J. Int. Soc. Sports Nutr. 2020, 17, 19. [Google Scholar] [CrossRef] [PubMed]
- Ballard, R.J.; Dewanti, R.A.; Sayuti, S.; Umar, N. Correlation between Sum of 8 Skinfolds to Predicted % Body Fat Range as a Reliable Measure of Body Composition Assessment for Well-Trained Athletes. Asian Soc. Sci. 2014, 10, 12–21. [Google Scholar] [CrossRef]
- Martin, A.D.; Spenst, L.F.; Drinkwater, D.T.; Clarys, J.P. Anthropometric estimation of muscle mass in men. Med. Sci. Sports Exerc. 1990, 22, 729–733. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Gallagher, D.; Kotler, D.P.; Wang, Z.; Allison, D.B.; Heshka, S. Body-size dependence of resting energy expenditure can be attributed to nonenergetic homogeneity of fat-free mass. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E132–E138. [Google Scholar] [CrossRef]
- Abe, T.; Dankel, S.J.; Loenneke, J.P. Body Fat Loss Automatically Reduces Lean Mass by Changing the Fat-Free Component of Adipose Tissue. Obesity 2019, 27, 357–358. [Google Scholar] [CrossRef] [PubMed]
- Knofczynski, G.T.; Mundfrom, D. Sample Sizes When Using Multiple Linear Regression for Prediction. Educ. Psychol. Meas. 2007, 68, 431–442. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing [Computer Software]. Available online: https://www.R-project.org/ (accessed on 29 July 2022).
- Martín Moreno, V.; Gómez Gandoy, J.B.; Antoranz González, M.J. Medición de la grasa corporal mediante impedancia bioeléctrica, pliegues cutáneos y ecuaciones a partir de medidas antropométricas. Análisis Comp. Rev. Española Salud Pública 2001, 75, 221–236. [Google Scholar] [CrossRef]
- Abe, T.; Loenneke, J.P.; Fukunaga, T. Interrelationships between body mass to waist circumference ratio, body mass index, and total body muscularity in older women. J. Clin. Gerontol. Geriatr. 2014, 5, 58–60. [Google Scholar] [CrossRef]
- Ohta, M.; Midorikawa, T.; Hikihara, Y.; Sakamoto, S.; Kawakami, Y.; Fukunaga, T.; Kanehisa, H. Body mass-to-waist ratio strongly correlates with skeletal muscle volume in children. PLoS ONE 2017, 12, e0177155. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.Y.; Xu, S.Y.; Chen, L.L.; Zhang, H.F. Waist to height ratio as a predictor of abdominal fat distribution in men. Chin. J. Physiol. 2009, 52, 441–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochoa Sangrador, C.; Ochoa-Brezmes, J. Waist-to-height ratio as a risk marker for metabolic syndrome in childhood. A meta-analysis. Pediatr. Obes. 2018, 13, 421–432. [Google Scholar] [CrossRef]
- Martin-Calvo, N.; Moreno-Galarraga, L.; Martinez-Gonzalez, M.A. Association between Body Mass Index, Waist-to-Height Ratio and Adiposity in Children: A Systematic Review and Meta-Analysis. Nutrients 2016, 8, 512. [Google Scholar] [CrossRef]
- Bajpai, A. Waist-to-Height Ratio-Time for a New Obesity Metric? Indian J. Pediatr. 2022, 89, 534–535. [Google Scholar] [CrossRef] [PubMed]
- Correa, M.M.; Thume, E.; De Oliveira, E.R.; Tomasi, E. Performance of the waist-to-height ratio in identifying obesity and predicting non-communicable diseases in the elderly population: A systematic literature review. Arch. Gerontol. Geriatr. 2016, 65, 174–182. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonilla, D.A.; Duque-Zuluaga, L.T.; Muñoz-Urrego, L.P.; Moreno, Y.; Vélez-Gutiérrez, J.M.; Franco-Hoyos, K.; Agudelo-Martínez, A.; Humeres, G.; Kreider, R.B.; Petro, J.L. Development and Validation of Waist Girth-Based Equations to Evaluate Body Composition in Colombian Adults: Rationale and STROBE–Nut-Based Protocol of the F20 Project. Int. J. Environ. Res. Public Health 2022, 19, 10690. https://doi.org/10.3390/ijerph191710690
Bonilla DA, Duque-Zuluaga LT, Muñoz-Urrego LP, Moreno Y, Vélez-Gutiérrez JM, Franco-Hoyos K, Agudelo-Martínez A, Humeres G, Kreider RB, Petro JL. Development and Validation of Waist Girth-Based Equations to Evaluate Body Composition in Colombian Adults: Rationale and STROBE–Nut-Based Protocol of the F20 Project. International Journal of Environmental Research and Public Health. 2022; 19(17):10690. https://doi.org/10.3390/ijerph191710690
Chicago/Turabian StyleBonilla, Diego A., Leidy T. Duque-Zuluaga, Laura P. Muñoz-Urrego, Yurany Moreno, Jorge M. Vélez-Gutiérrez, Katherine Franco-Hoyos, Alejandra Agudelo-Martínez, Gustavo Humeres, Richard B. Kreider, and Jorge L. Petro. 2022. "Development and Validation of Waist Girth-Based Equations to Evaluate Body Composition in Colombian Adults: Rationale and STROBE–Nut-Based Protocol of the F20 Project" International Journal of Environmental Research and Public Health 19, no. 17: 10690. https://doi.org/10.3390/ijerph191710690
APA StyleBonilla, D. A., Duque-Zuluaga, L. T., Muñoz-Urrego, L. P., Moreno, Y., Vélez-Gutiérrez, J. M., Franco-Hoyos, K., Agudelo-Martínez, A., Humeres, G., Kreider, R. B., & Petro, J. L. (2022). Development and Validation of Waist Girth-Based Equations to Evaluate Body Composition in Colombian Adults: Rationale and STROBE–Nut-Based Protocol of the F20 Project. International Journal of Environmental Research and Public Health, 19(17), 10690. https://doi.org/10.3390/ijerph191710690