Developing Graph Convolutional Networks and Mutual Information for Arrhythmic Diagnosis Based on Multichannel ECG Signals
Abstract
:1. Introduction
- Representing an individual’s ECG information as a graph.
- Using the MI index to measure the relationship of leads and structure the graph.
- Proposing the GCN-MI, for the first time, to diagnose and classify the type of arrhythmia.
2. Materials and Methods
2.1. Data
2.2. Graph Convolutional Network
2.2.1. Introduction to the GCN
2.2.2. Convolution Graph
2.2.3. The Architecture for the Proposed GCN
2.3. Mutual Information
2.4. Methodology
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Computation of the Convolution Filter in the GCN
References
- Pereira, H.; Niederer, S.; Rinaldi, C.A. Electrocardiographic imaging for cardiac arrhythmias and resynchronization therapy. Europace 2020, 22, 1447–1462. [Google Scholar] [CrossRef] [PubMed]
- Shomanova, Z.; Ohnewein, B.; Schernthaner, C.; Höfer, K.; Pogoda, C.A.; Frommeyer, G.; Wernly, B.; Brandt, M.C.; Dieplinger, A.-M.; Reinecke, H.; et al. Classic and Novel Biomarkers as Potential Predictors of Ventricular Arrhythmias and Sudden Cardiac Death. J. Clin. Med. 2020, 9, 578. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Li, Z.; Zhou, Y.; He, Y.; Zhu, J. Computational Diagnostic Techniques for Electrocardiogram Signal Analysis. Sensors 2020, 20, 6318. [Google Scholar] [CrossRef]
- Murat, F.; Yildirim, O.; Talo, M.; Baloglu, U.B.; Demir, Y.; Acharya, U.R. Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review. Comput. Biol. Med. 2020, 120, 103726. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, J.; Danioko, S.; Yao, H.; Guo, H.; Rakovski, C. A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients. Sci. Data 2020, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.C.; Lin, Y.J.; de Oliveira Figueiredo, M.J.; Sepehri Shamloo, A.; Alfie, A.; Boveda, S.; Dagres, N.; Di Toro, D.; Eckhardt, L.L.; Ellenbogen, K.; et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: Use the right tool for the right outcome, in the right population. Europace 2020, 22, 1147–1148. [Google Scholar] [PubMed]
- Baty, F. Special Issue: ECG Monitoring System. Sensors 2021, 21, 651. [Google Scholar] [CrossRef] [PubMed]
- Viljoen, C.A.; Millar, R.S.; Manning, K.; Burch, V.C. Effectiveness of blended learning versus lectures alone on ECG analysis and interpretation by medical students. BMC Med. Educ. 2020, 20, 488. [Google Scholar] [CrossRef]
- Baloglu, U.B.; Talo, M.; Yildirim, O.; San Tan, R.; Acharya, U.R. Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recognit. Lett. 2019, 122, 23–30. [Google Scholar] [CrossRef]
- Gliner, V.; Keidar, N.; Makarov, V.; Avetisyan, A.I.; Schuster, A.; Yaniv, Y. Automatic classification of healthy and disease conditions from images or digital standard 12-lead electrocardiograms. Sci. Rep. 2020, 10, 16331. [Google Scholar] [CrossRef]
- Kwon, J.-m.; Kim, K.-H.; Jeon, K.-H.; Lee, S.Y.; Park, J.; Oh, B.-H. Artificial intelligence algorithm for predicting cardiac arrest using electrocardiography. Scand. J. Trauma Resusc. Emerg. Med. 2020, 28, 98. [Google Scholar] [CrossRef]
- Cho, Y.; Kwon, J.M.; Kim, K.H.; Medina-Inojosa, J.R.; Jeon, K.H.; Cho, S.; Lee, S.Y.; Park, J.; Oh, B.H. Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography. Sci. Rep. 2020, 10, 20495. [Google Scholar] [CrossRef] [PubMed]
- Salari, N.; Shohaimi, S.; Najafi, F.; Nallappan, M.; Karishnarajah, I. Application of pattern recognition tools for classifying acute coronary syndrome: An integrated medical modeling. Theor. Biol. Med. Model. 2013, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Gao, X. Diagnosing abnormal electrocardiogram (ECG) via deep learning. In Electrocardiography; IntechOpen: London, UK, 2019. [Google Scholar]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [PubMed]
- Toğaçar, M.; Ergen, B.; Cömert, Z. Detection of lung cancer on chest CT images using minimum redundancy maximum relevance feature selection method with convolutional neural networks. Biocybern. Biomed. Eng. 2020, 40, 23–39. [Google Scholar] [CrossRef]
- Valueva, M.V.; Nagornov, N.; Lyakhov, P.A.; Valuev, G.V.; Chervyakov, N.I. Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Math. Comput. Simul. 2020, 177, 232–243. [Google Scholar] [CrossRef]
- Rim, B.; Sung, N.-J.; Min, S.; Hong, M. Deep Learning in Physiological Signal Data: A Survey. Sensors 2020, 20, 969. [Google Scholar] [CrossRef]
- Huerta Herraiz, Á.; Martínez-Rodrigo, A.; Bertomeu-González, V.; Quesada, A.; Rieta, J.J.; Alcaraz, R. A Deep Learning Approach for Featureless Robust Quality Assessment of Intermittent Atrial Fibrillation Recordings from Portable and Wearable Devices. Entropy 2020, 22, 733. [Google Scholar] [CrossRef]
- Silva, P.; Luz, E.; Silva, G.; Moreira, G.; Wanner, E.; Vidal, F.; Menotti, D. Towards better heartbeat segmentation with deep learning classification. Sci. Rep. 2020, 10, 20701. [Google Scholar] [CrossRef]
- Belo, D.; Bento, N.; Silva, H.; Fred, A.; Gamboa, H. ECG Biometrics Using Deep Learning and Relative Score Threshold Classification. Sensors 2020, 20, 4078. [Google Scholar] [CrossRef]
- Yao, Q.; Wang, R.; Fan, X.; Liu, J.; Li, Y. Multi-class Arrhythmia detection from 12-lead varied-length ECG using Attention-based Time-Incremental Convolutional Neural Network. Inf. Fusion 2020, 53, 174–182. [Google Scholar] [CrossRef]
- Panda, R.; Jain, S.; Tripathy, R.; Acharya, U.R. Detection of shockable ventricular cardiac arrhythmias from ECG signals using FFREWT filter-bank and deep convolutional neural network. Comput. Biol. Med. 2020, 124, 103939. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Tan, B. Electrocardiogram soft computing using hybrid deep learning CNN-ELM. Appl. Soft Comput. 2020, 86, 105778. [Google Scholar] [CrossRef]
- Zhang, S.; Tong, H.; Xu, J.; Maciejewski, R. Graph convolutional networks: A comprehensive review. Comput. Soc. Netw. 2019, 6, 11. [Google Scholar] [CrossRef]
- Jin, H.; Shi, Z.; Peruri, V.J.S.A.; Zhang, X. Certified Robustness of Graph Convolution Networks for Graph Classification under Topological Attacks. Adv. Neural Inf. Process. 2020, 33, 8463–8474. [Google Scholar]
- Liu, Q.; Xiao, L.; Yang, J.; Wei, Z. CNN-enhanced graph convolutional network with pixel-and superpixel-level feature fusion for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 8657–8671. [Google Scholar] [CrossRef]
- Mohammadi, S.; Azemi, G. Phase synchrony detection in multichannel newborn EEG signals using a mutual information based method. IJBME 2015, 9, 215–227. [Google Scholar]
- Liang, X.; Zhang, Y.; Wang, J.; Ye, Q.; Liu, Y.; Tong, J. Diagnosis of COVID-19 Pneumonia Based on Graph Convolutional Network. Front. Med. 2021, 7, 1071. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Geosci. Remote Sens. 2021, 32, 4–24. [Google Scholar] [CrossRef]
- Batina, L.; Gierlichs, B.; Prouff, E.; Rivain, M.; Standaert, F.-X.; Veyrat-Charvillon, N. Mutual information analysis: A comprehensive study. J. Cryptol. 2011, 24, 269–291. [Google Scholar] [CrossRef]
- Veyrat-Charvillon, N.; Standaert, F.-X. (Eds.) Mutual Information Analysis: How, When and Why? In Proceedings of the 11th International Workshop, Lausanne, Switzerland, 6–9 September 2009; pp. 429–443. [Google Scholar]
- Whitnall, C.; Oswald, E. (Eds.) A comprehensive evaluation of mutual information analysis using a fair evaluation framework. In Proceedings of the 31st Annual Cryptology Conference, Santa Barbara, CA, USA, 14–18 August 2011; pp. 316–334. [Google Scholar]
- Jiang, Z.; Almeida, T.P.; Schlindwein, F.S.; Ng, G.A.; Zhou, H.; Li, X. (Eds.) Diagnostic of multiple cardiac disorders from 12-lead ECGs using Graph Convolutional Network based multi-label classification. In Proceedings of the 2020 Computing in Cardiology, Rimini, Italy, 13–16 September 2020. [Google Scholar]
- Shaker, A.M.; Tantawi, M.; Shedeed, H.A.; Tolba, M.F. Generalization of convolutional neural networks for ECG classification using generative adversarial networks. IEEE Access 2020, 8, 35592–35605. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, H.; Lu, P.; Wang, Z. An effective LSTM recurrent network to detect arrhythmia on imbalanced ECG dataset. J. Healthc. Eng. 2019, 13, 6320651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65–69. [Google Scholar] [CrossRef]
- Oh, S.L.; Ng, E.Y.; San Tan, R.; Acharya, U.R. Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types. Comput. Biol. Med. 2019, 105, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhou, D.; Wan, L.; Li, J.; Mou, W. Heartbeat classification using deep residual convolutional neural network from 2-lead electrocardiogram. J. Electrocardiol. 2020, 58, 105–112. [Google Scholar] [CrossRef]
- Yıldırım, Ö.; Pławiak, P.; Tan, R.-S.; Acharya, U.R. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput. Biol. Med. 2018, 102, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.S.; Mak, M.-W.; Cheung, C.-C. Towards end-to-end ECG classification with raw signal extraction and deep neural networks. IEEE J. Biomed. Health Inform. 2018, 23, 1574–1584. [Google Scholar] [CrossRef]
- Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adam, M.; Gertych, A.; San Tan, R. A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 2017, 89, 389–396. [Google Scholar] [CrossRef]
- Yildirim, O.; Talo, M.; Ciaccio, E.J.; Tan, R.S.; Acharya, U.R. Accurate deep neural network model to detect cardiac arrhythmia on more than 10,000 individual subject ECG records. Comput. Methods Programs Biomed. 2020, 197, 105740. [Google Scholar] [CrossRef]
- Meqdad, M.N.; Abdali-Mohammadi, F.; Kadry, S. A New 12-Lead ECG Signals Fusion Method Using Evolutionary CNN Trees for Arrhythmia Detection. Mathematics 2022, 10, 1911. [Google Scholar] [CrossRef]
- Meqdad, M.N.; Abdali-Mohammadi, F.; Kadry, S. Meta Structural Learning Algorithm with Interpretable Convolutional Neural Networks for Arrhythmia Detection of Multi-Session ECG. IEEE Access 2022, 10, 61410–61425. [Google Scholar] [CrossRef]
- Mehari, T.; Strodthoff, N. Self-supervised representation learning from 12-lead ECG data. Comput. Biol. Med. 2022, 141, 105114. [Google Scholar] [CrossRef]
- Rahul, J.; Sharma, L.D. Automatic cardiac arrhythmia classification based on hybrid 1-D CNN and Bi-LSTM model. Biocybern. Biomed. Eng. 2022, 42, 312–324. [Google Scholar] [CrossRef]
- Kang, J.; Wen, H. A study on several critical problems on arrhythmia detection using varying-dimensional electrocardiography. Physiol. Meas. 2022, 43, 064007. [Google Scholar] [CrossRef] [PubMed]
- Domazetoski, V.; Gligoric, G.; Marinkovic, M.; Shvilkin, A.; Krsic, J.; Kocarev, L.; Ivanovic, M.D. The influence of atrial flutter in automated detection of atrial arrhythmias-are we ready to go into clinical practice? Comput. Methods Programs Biomed. 2022, 221, 106901. [Google Scholar] [CrossRef]
- Sepahvand, M.; Abdali-Mohammadi, F. A novel method for reducing arrhythmia classification from 12-lead ECG signals to single-lead ECG with minimal loss of accuracy through teacher-student knowledge distillation. Inf. Sci. 2022, 593, 64–77. [Google Scholar] [CrossRef]
Acronym Name | Full Name | Frequency, (%) | Age, Mean ± SD | Male, (%) |
---|---|---|---|---|
SB | Sinus Bradycardia | 3889 (36.53) | 58.34 ± 13.95 | 2481 (58.48%) |
SR | Sinus Rhythm | 1826 (17.15) | 54.35 ± 16.33 | 1024 (56.08%) |
AFIB | Atrial Fibrillation | 1780 (16.72) | 73.36 ± 11.14 | 1041 (58.48%) |
ST | Sinus Tachycardia | 1568 (14.73) | 54.57 ± 21.06 | 799 (50.96%) |
AF | Atrial Flutter | 445 (4.18) | 71.07 ± 13.5 | 257 (57.75%) |
SI | Sinus Irregularity | 399 (3.75) | 34.75 ± 23.03 | 223 (55.89%) |
SVT | Supraventricular Tachycardia | 587 (5.51) | 55.62 ± 18.53 | 308 (52.47%) |
AT | Atrial Tachycardia | 121 (1.14) | 65.72 ± 19.3 | 64 (52.89%) |
AVNRT | Atrioventricular Node Reentrant Tachycardia | 16 (0.15) | 57.88 ± 17.34 | 12 (75%) |
AVRT | Atrioventricular Reentrant Tachycardia | 8 (0.07) | 57.5 ± 16.84 | 5 (62.5%) |
SAA | Sinus Atrium to Atrial Wandering Rhythm | 7 (0.07) | 51.14 ± 31.83 | 6 (85.71%) |
All | 10,646 (100) | 51.19 ± 18.03 | 5956 (55.95%) |
Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GCN-MI | GCN-MI | GCN-MI | GCN-MI | |||||||||
5 Layer | 10 Layer | 15 Layer | 5 Layer | 10 Layer | 15 Layer | 5 Layer | 10 Layer | 15 Layer | 5 Layer | 10 Layer | 15 Layer | |
Leave-one-out | 96.57 | 96.82 | 99.39 | 95.76 | 95.32 | 99.22 | 98.78 | 99.66 | 100 | 95.08 | 97.68 | 99.94 |
k = 2 | 98.53 | 97.40 | 99.63 | 99.81 | 96.03 | 100 | 98.92 | 99.82 | 100 | 97.69 | 98.85 | 100 |
k = 3 | 96.93 | 98.56 | 99.83 | 95.40 | 96.06 | 99.15 | 97.70 | 100 | 100 | 97.09 | 98.50 | 99.98 |
k = 4 | 96.83 | 96.39 | 99.83 | 96.12 | 96.30 | 99.76 | 99.94 | 99.79 | 100 | 97.53 | 94.75 | 99.11 |
k = 5 | 96.96 | 96.63 | 99.24 | 95.34 | 97.87 | 98.52 | 99.46 | 99.39 | 100 | 95.55 | 97.97 | 98.87 |
Parameter | Value |
---|---|
Learning Rate | 0.02 |
Epochs | 600 |
Hidden layers | 15 |
Dropout | 0.2 |
Weight Decay | 10,000 |
Early Stopping | 10 |
Sensitivity | Precision | Specificity | Accuracy | ||
---|---|---|---|---|---|
SB | GCN-MI | 99.35 | 100 | 100 | 99.76 |
GCN-Id | 90.21 | 84.36 | 89.02 | 89.49 | |
SR | GCN-MI | 98.79 | 99.61 | 99.92 | 99.72 |
GCN-Id | 81.43 | 79.73 | 94.80 | 92.12 | |
AFIB | GCN-MI | 98.88 | 98.10 | 99.61 | 99.48 |
GCN-Id | 78.14 | 72.92 | 93.48 | 90.67 | |
ST | GCN-MI | 99.43 | 99.55 | 99.92 | 99.85 |
GCN-Id | 83.88 | 79.65 | 95.62 | 93.62 | |
AF | GCN-MI | 94.83 | 95.47 | 99.80 | 99.59 |
GCN-Id | 42.88 | 64.27 | 98.03 | 93.83 | |
SI | GCN-MI | 98.75 | 92.49 | 99.68 | 99.65 |
GCN-Id) | 42.80 | 60.40 | 98.05 | 94.47 | |
SVT | GCN-MI | 99.15 | 100 | 100 | 99.95 |
GCN-Id | 58.34 | 68.48 | 97.68 | 94.56 | |
Overall | GCN-MI | 98.45 | 97.89 | 99.85 | 99.71 |
GCN-Id | 68.24 | 72.83 | 95.24 | 92.68 |
Refs. | Study | Dataset | Num. of Subjects | Year | Method | Classes | Performance |
---|---|---|---|---|---|---|---|
[34] | Jiang et al. | PhysioNet/CinC Challenge 2020 | 512 | 2022 | CNN+GCN | 9 | F-Score = 0.603 |
[35] | Shaker et al. | MIT-BIH | 47 | 2020 | GAN | 15 | Acc = 98.30% |
[22] | Yao et al. | - | - | 2020 | ATI-CNN | 8 | Acc = 81.2% |
[24] | Zhao & Tan | MIT-BIH | 47 | 2020 | CNN+ELM | 4 | Acc = 97.5% |
[36] | Gao et al. | MIT-BIH | 47 | 2019 | LSTM, FL | 8 | Acc = 99.26% |
[37] | Hannun et al. | - | 53549 | 2019 | DNN | 12 | AUC = 97% |
[38] | Oh et al. | MIT-BIH | 47 | 2019 | Modified U-net | 5 | Acc = 97.32% |
[39] | Li et al. | MIT-BIH | 47 | 2019 | ResNet | 5 | Acc = 99.38% |
[40] | Yildirim et al. | MIT-BIH | 47 | 2018 | CNN | 17 | Acc = 91.33% |
[41] | Xu et al. | MIT-BIH | 47 | 2018 | DNN | 5 | Acc = 93.1% |
[42] | Acharya et al. | MIT-BIH | 47 | 2017 | CNN | 5 | Acc = 94.03% |
[43] | Yildirim et al. | Chapman | 10,588 | 2020 | DNN | 4 | Acc = 96.13% |
10,436 | 7 | Acc = 92.24% | |||||
[44] | Meqdad et al. | Chapman | 10,646 | 2022 | CNN Trees | 7 | Acc = 97.60% |
[45] | Meqdad et al. | Chapman | 10,646 | 2022 | Meta CNN Trees | 7 | Acc = 98.29% |
[46] | Mehari et al. | Chapman | 10,646 | 2022 | Single Classifier | 7 | Acc = 92.89% |
[47] | Rahul et al. | Chapman | 10,646 | 2022 | 1-D CNN | 7 | Acc = 94.01% |
[48] | Kang et al. | Chapman | 10,646 | 2022 | RNN | 7 | Acc = 96.21% |
[49] | Domazetoski et al. | Chapman | 10,646 | 2022 | XGBoost | - | Acc = 89.40% |
[50] | Sepahvand et al. | Chapman | 10,646 | 2022 | Teacher model | 7 | Acc = 98.96% |
Student model | 7 | Acc = 98.13% | |||||
Proposed | Chapman | 10,494 | 2022 | GCN-MI | 7 | Acc = 99.71% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andayeshgar, B.; Abdali-Mohammadi, F.; Sepahvand, M.; Daneshkhah, A.; Almasi, A.; Salari, N. Developing Graph Convolutional Networks and Mutual Information for Arrhythmic Diagnosis Based on Multichannel ECG Signals. Int. J. Environ. Res. Public Health 2022, 19, 10707. https://doi.org/10.3390/ijerph191710707
Andayeshgar B, Abdali-Mohammadi F, Sepahvand M, Daneshkhah A, Almasi A, Salari N. Developing Graph Convolutional Networks and Mutual Information for Arrhythmic Diagnosis Based on Multichannel ECG Signals. International Journal of Environmental Research and Public Health. 2022; 19(17):10707. https://doi.org/10.3390/ijerph191710707
Chicago/Turabian StyleAndayeshgar, Bahare, Fardin Abdali-Mohammadi, Majid Sepahvand, Alireza Daneshkhah, Afshin Almasi, and Nader Salari. 2022. "Developing Graph Convolutional Networks and Mutual Information for Arrhythmic Diagnosis Based on Multichannel ECG Signals" International Journal of Environmental Research and Public Health 19, no. 17: 10707. https://doi.org/10.3390/ijerph191710707