Possibilities of Using UAVs in Pre-Hospital Security for Medical Emergencies
Abstract
:1. Introduction
2. Purpose
3. Methodology
4. Results
5. Possibility for Determining Optimal Paths to Reach a Threat-Trajectory, Networks
6. Mobility and Mode of Transportation
7. Regulations and Application Restrictions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newcome, L.R. Unmanned Aviation: A Brief History of Unmanned Aerial Vehicles; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2004. [Google Scholar]
- What Do We Call Them: UAV, UAS or RPAS? Australian Certified UAV Operators Inc. (ACUO). 2014. Available online: http://www.acuo.org.au/industry-information/terminology/what-do-we-call-them/ (accessed on 12 November 2017).
- King, L. DoD Unmanned Aircraft Systems Training Programs. International Civil Aviation Organization. 24 March 2015. Available online: https://www.icao.int/Meetings/RPAS/RPASSymposiumPresentation/Day%202%20Workshop%207%20Licensing%20Lance%20King%20%20DoD%20Unmanned%20Aircraft%20Systems%20Training%20Programs.pdf/ (accessed on 12 November 2017).
- Meisels, T. Targeted killing with drones? Old arguments, new technologies. Philos. Soc.-Filoz. I Drus. 2018, 29, 3–16. [Google Scholar] [CrossRef]
- Christnacher, F.; Hengy, S.; Laurenzis, M.; Matwyschuk, A.; Naz, P.; Schertzer, S.; Schmitt, G. Optical and acoustical UAV detection. In Electro-Optical Remote Sensing X; SPIE: Bellingham, WA, USA, 2016; Volume 9988. [Google Scholar] [CrossRef]
- NITAR: UNOSAT Video Drone Tested Successfully in Public Event. UNITAR. 2012. Available online: www.unitar.org (accessed on 31 March 2016).
- Six Ways Drones Are Helping in Emergency Response. Available online: https://www.scaleflyt.com/news/six-ways-drones-are-helping-in-emergency-response (accessed on 20 August 2021).
- Hodapp, P. Search and Rescue Teams Aim to Save Lives with Off-the-Shelf Drones. Make: We Are All Makers, 15 December 2015; 1. [Google Scholar]
- Świat Dronów. PARS—Irański Dron Ratuje Tonących. 20 May 2014. Available online: www.swiatdronow.pl (accessed on 7 April 2016).
- Tylko Nauka. Akcja Ratunkowa na Morzu z Udziałem Drona Zakończona Sukcesem. 27 May 2015. Available online: www.tylkonauka.pl (accessed on 7 April 2016).
- United Nations Office for the Coordination of Humanitarian Affairs (OCHA). INSARAG Guidelines. 12 February 2015. Available online: https://www.insarag.org/wp-content/uploads/2016/04/INSARAG_Guidelines_V1_Policy1.pdf (accessed on 27 July 2022).
- Półka, M.; Ptak, S.; Kuziora, Ł. The use of UAV’s for search and rescue operations. Procedia Eng. 2017, 192, 748–752. [Google Scholar] [CrossRef]
- Rajchel, J. Search and rescue system in Poland. Sci. J. Sil. Univ. Technol. Ser. Transp. 2019, 104, 147–157. [Google Scholar] [CrossRef]
- Liu, H.Q.; Yan, Z.; Lei, J.; Fu, J.F.; Dong, H.; Liu, X. UAV Positioning Search and Rescue System. In Proceedings of the 2018 4th International Conference on Education, Management and Information Technology (ICEMIT 2018), Changchun, China, 6–7 July 2018. [Google Scholar]
- Liu, Z.H.; Wang, X.K.; Li, J.; Cong, Y.R.; Zhao, S.L. IEEE A distributed and modularised coordination framework for mission oriented fixed-wing UAV swarms. In Proceedings of the 2019 31st Chinese Control and Decision Conference (CCDC 2019), Nanchang, China, 3–5 June 2019. [Google Scholar]
- Qian, M.L.; Cao, K.C. An UAV carrying a load based on three-dimensional nested saturation control method. In Proceedings of the IEEE Proceedings of the 38th Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019. [Google Scholar]
- Available online: https://www.gov.pl/documents/905843/1047987/Bia%C5%82a_Ksi%C4%99ga_BSP.pdf/1073cfd6-ff1a-2f1b-e7c4-58dc3a901552 (accessed on 20 August 2022).
- Zheng, Y.J.; Du, Y.C.; Sheng, W.G.; Ling, H.F. Collaborative Human-UAV Search and Rescue for Missing Tourists in Nature Reserves. Inf. J. Appl. Anal. 2019, 49, 307–396. [Google Scholar] [CrossRef]
- Tuśnio, N.; Wróblewski, W. The Efficiency of Drones Usage for Safety and Rescue Operations in an Open Area: A Case from Poland. Sustainability 2022, 14, 327. [Google Scholar] [CrossRef]
- Seguin, C.; Blaquiere, G.; Loundou, A.; Michelet, P.; Markarian, T. Unmanned aerial vehicles (drones) to prevent drowning. Resuscitation 2018, 127, P63–P67. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, K.; Dubey, R.; Singandhupe, A.; Louis, S.; La, H. Multi Objective UAV Network Deployment for Dynamic Fire Coverage. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC 2021), Kraków, Poland, 28 June–1 July 2021. [Google Scholar] [CrossRef]
- Ozkan, O.; Kilic, S. UAV routing by simulation-based optimization approaches for forest fire risk mitigation. Ann. Oper. Res. 2022, 1–37. [Google Scholar] [CrossRef]
- Ge, X.Y.; Wang, J.Z.; Ding, J.L.; Cao, X.Y.; Zhang, Z.P.; Liu, J.; Li, X.H. Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring. PeerJ 2019, 7, e6926. [Google Scholar] [CrossRef]
- Popescu, D.; Vlasceanu, E.; Dima, M.; Stoican, F.; Ichim, L. Hybrid Sensor Network for Monitoring Environmental Parameters. In Proceedings of the IEEE 2020 28th Mediterranean Conference on Control and Automation (MED), Saint-Raphaël, France, 15–18 September 2020. [Google Scholar]
- Wang, H.; Cao, M.Q.; Jiang, H.; Xie, L.H. Feasible Computationally Efficient Path Planning for UAV Collision Avoidance. In Proceedings of the 2018 IEEE 14th International Conference on Control and Automation (ICCA), Anchorage, AK, USA, 12–15 June 2018. [Google Scholar]
- Dasdemir, E.; Batta, R.; Koeksalan, M.; Oeztuerk, D.T. UAV routing for reconnaissance mission: A multi-objective orienteering problem with time-dependent prizes and multiple connections. Comput. Oper. Res. 2022, 145, 105882. [Google Scholar] [CrossRef]
- Farid, G.; Tahir Hamid, H.; Karim, S.; Tahir, S. Waypoint-Based Generation of Guided and Optimal Trajectories for Autonomous Tracking Using a Quadrotor UAV. Stud. Inform. Control. 2018, 27, 225–236. [Google Scholar] [CrossRef]
- Wang, Z.N.; Lin, M.; Tang, X.G.; Guo, K.F.; Huang, S.; Cheng, M. Multi-objective robust secure beamforming for cognitive satellite and UAV networks. J. Syst. Eng. Electron. 2021, 32, 789–798. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Wu, Q.H.; Zhang, B.; Yi, X.D.; Tang, Y.H. UAV flight strategy algorithm based on dynamic programming. J. Syst. Eng. Electron. 2018, 29, 1293–1299. [Google Scholar] [CrossRef]
- Wang, Y.X.; Wang, H.L.; Wu, J.F.; Liu, Y.H.; Lun, Y.B. UAV Standoff Tracking for Narrow-Area Target in Complex Environment. IEEE Syst. J. 2021, 16, 4583–4594. [Google Scholar] [CrossRef]
- Aljehani, M.; Inoue, M.; Watanbe, A.; Yokemura, T.; Ogyu, F.; Iida, H. UAV communication system integrated into network traversal with mobility. SN Appl. Sci. 2020, 2, 1057. [Google Scholar] [CrossRef]
- Viloria, D.R.; Solano-Charris, E.L.; Munoz-Villamizar, A.; Montoya-Torres, J.R. Unmanned aerial vehicles/drones in vehicle routing problems: A literature review. Int. Trans. Oper. Res. 2021, 28, 1626–1657. [Google Scholar] [CrossRef]
- Lucic, M.C.; Ghazzai, H.; Massoud, Y. A Generalized Dynamic Planning Framework for Green UAV-Assisted Intelligent Transportation System Infrastructure. IEEE Syst. J. 2020, 14, 4786–4797. [Google Scholar] [CrossRef]
- Qu, Y.H.; Sun, Y.; Wang, K.; Zhang, F. Multi-UAV Cooperative Search method for a Moving Target on the Ground or Sea. In Proceedings of the IEEE Proceedings of the 38th Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019. [Google Scholar]
- Liu, W.S.; Li, W.; Zhou, Q.; Die, Q.; Yang, Y. The optimization of the “UAV-vehicle” joint delivery route considering mountainous cities. PLoS ONE 2022, 17, e0265518. [Google Scholar] [CrossRef]
- Andaluz, V.H.; Ortiz, J.S.; Sanchez, J.S.; Silva, F.M. Autonomous Cooperation Between Terrestrial and Aerial Robots. Adv. Sci. Lett. 2018, 24, 8812–8816. [Google Scholar] [CrossRef]
- Salama, M.R.; Srinivas, S. Collaborative truck multi-drone routing and scheduling problem: Package delivery with flexible launch and recovery sites. Transp. Res. Part E: Logist. Transp. Rev. 2022, 164, 102788. [Google Scholar] [CrossRef]
- Brezani, S.; Hrasko, R.; Vanco, D.; Vojtas, P. Increasing Business Opportunities for Drone Services. In Proceedings of the 18th International Conference on E-Business (ICE-B), Paris, France, 7–9 July 2021. [Google Scholar] [CrossRef]
- Do-Duy, T.; Nguyen, L.D.; Duong, T.Q.; Khosravirad, S.R.; Claussen, H. Joint Optimisation of Real-Time Deployment and Resource Allocation for UAV-Aided Disaster Emergency Communications. IEEE J. Sel. Areas Commun. 2021, 39, 3411–3424. [Google Scholar] [CrossRef]
- Azmi, I.N.; Yussoff, Y.M.; Kassim, M.; Tahir, N.M. A Mini-Review of Flying Ad Hoc Networks Mobility Model for Disaster Areas. Int. Trans. J. Eng. Manag. Appl. Sci. Technol. 2021, 12, 12A10B. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, W.P.; Wang, T.; Li, X.B.; Jing, T. Continuous patrolling in uncertain environment with the UAV swarm. PLoS ONE 2018, 13, e0202328. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Li, C.; Liu, Z.; Li, L.; Wang, L. A new search scheme using multi-bee-colony elite learning method for unmanned aerial vehicles in unknown environments. Optim. Control Appl. Methods 2022. [Google Scholar] [CrossRef]
- Pang, B.Z.; Hu, X.T.; Dai, W.; Low, K.H. UAV path optimization with an integrated cost assessment model considering third-party risks in metropolitan environments. Reliab. Eng. Syst. Saf. 2022, 222, 108399. [Google Scholar] [CrossRef]
- Gomez, J.B.; Bechina, A.A.A. A systems engineering approach applied to U-Space drones: Concepts and challenges. In Proceedings of the IEEE 2019 14th Annual Conference System of Systems Engineering (SOSE), Anchorage, AK, USA, 19–22 May 2019; pp. 43–48. [Google Scholar]
- Tovakch, I.O.; Zhuk, S.Y. Adaptive Filtration of Parameters of the UAV Movement on Data from its Location Calculated on the Basis the Time Difference of Arrival Method. In Proceedings of the 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), Kyiv, Ukraine, 29 May–2 June 2017; pp. 162–167. [Google Scholar]
- Cheng, S.-W. Rapid development UAV. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008; Volumes 1–9, pp. 3229–3236. [Google Scholar]
- Hadiwardoyo, S.A.; Dricot, J.M.; Calafate, C.T.; Cano, J.C.; Hernandez-Orallo, E.; Manzoni, P. UAV Mobility Model for Dynamic UAV-to-Car Communications. In Proceedings of the 16th ACM International Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks, Miami Beach, FL, USA, 25–29 November 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Greco, G.; Lucianaz, C.; Bertoldo, S.; Allegretti, M. A solution for monitoring operations in harsh environment: A RFID reader for small UAV. In Proceedings of the 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA), Torino, Italy, 7–11 September 2015; pp. 859–862. [Google Scholar]
- Serrat, C.; Banaszek, A.; Cellmer, A.; Gibert, V. Use of UAVs for Technical Inspection of Buildings within the BRAIN Massive Inspection Platform. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 022008. [Google Scholar] [CrossRef]
- Serrat, C.; Cellmer, A.; Banaszek, A.; Gibert, V. Exploring conditions and usefulness of UAVs in the BRAIN Massive Inspections Protocol. Open Eng. 2019, 9, 1–6. [Google Scholar] [CrossRef]
- Wei, X.; Yao, P.; Xie, Z.X. Comprehensive Optimization of Energy Storage and Standoff Tracking for Solar-Powered UAV. IEEE Syst. J. 2020, 14, 5133–5143. [Google Scholar] [CrossRef]
- Li, X.X.; Shi, Y.J.; Li, R.; Cao, S.D. Energy management method for an unpowered landing. J. Ind. Manag. Optim. 2022, 18, 825. [Google Scholar] [CrossRef]
- Atif, M.; Ahmad, R.; Ahmad, W.; Zhao, L.; Rodrigues, J.J. UAV-Assisted Wireless Localization for Search and Rescue. IEEE Syst. J. 2021, 15, 3261–3272. [Google Scholar] [CrossRef]
- Lin, Z.; Hou, J.; Zhao, C.H.; Li, Z.Y.; Wang, J.Y. Similar targets detection and location indoors by UAV. In Proceedings of the IEEE 2020 IEEE 16th International Conference on Control & Automation (ICCA), Singapore, 9–11 October 2020. [Google Scholar]
- Wisniewski, M.; Rana, Z.A.; Petrunin, I. Drone Model Classification Using Convolutional Neural Network Trained on Synthetic Data. J. Imagin. 2022, 8, 218. [Google Scholar] [CrossRef]
- Kim, S.S.; Kim, T.H.; Sim, J.S. Applicability Assessment of UAV Mapping for Disaster Damage Investigation in Korea. In Proceedings of the ISPRS ICWG III/IVA Gi4DM 2019—Geoinformation for Disaster Management, Prague, Czech Republic, 3–6 September 2019; Volume 42–43. [Google Scholar] [CrossRef]
- Zhai, W.X.; Han, B.; Li, D.; Duan, J.X.; Cheng, C.Q. A low-altitude public air route network for UAV management constructed by global subdivision grids. PLoS ONE 2021, 16, e0249680. [Google Scholar] [CrossRef]
- Ko, Y.D.; Song, B.D. Application of UAVs for tourism security and safety. Asia Pac. J. Mark. Logist. 2021, 33, 1829–1843. [Google Scholar] [CrossRef]
- Georgiou, A.; Masters, P.; Johnson, S.; Feetham, L. UAV-assisted real-time evidence detection in outdoor crime scene investigations. J. Forensic Sci. 2022, 67, 1221–1232. [Google Scholar] [CrossRef] [PubMed]
- Zacharie, M.; Fuji, S.; Minori, S. Rapid Human Body Detection in Disaster Sites using Image Processing from Unmanned Aerial Vehicle (UAV) Cameras. In Proceedings of the IEEE 2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Bangkok, Thailand, 21–24 October 2018. [Google Scholar]
- Kloepper, L.N.; Kinniry, M. Recording animal vocalizations from a UAV: Bat echolocation during roost re-entry. Sci. Rep. 2018, 8, 7779. [Google Scholar] [CrossRef] [PubMed]
- Rosser, J.C.; Vignesh, V.; Terwilliger, B.A.; Parker, B.C. Surgical and Medical Applications of Drones: A Comprehensive Review. JSLS-J. Soc. Laparoendosc. Surg. 2018, 22, e2018.00018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozkan, O. Multi-objective optimization of transporting blood products by routing UAVs: The case of Istanbul. Int. Trans. Oper. Res. 2022, 30, 302–327. [Google Scholar] [CrossRef]
- Scott, J.E.; Scott, C.H. Models for Drone Delivery of Medications and Other Healthcare Items. Int. J. Healthc. Inf. Syst. Inform. 2018, 13, 20–34. [Google Scholar] [CrossRef]
- Shavarani, S.M. Multi-level facility location-allocation problem for post-disaster humanitarian relief distribution A case study. J. Humanit. Logist. Supply Chain. Manag. 2019, 9, 70–81. [Google Scholar] [CrossRef]
- Wen, T.; Zhang, Z.; Wong, K.K.L. Multi-Objective Algorithm for Blood Supply via Unmanned Aerial Vehicles to the Wounded in an Emergency Situation. PLoS ONE 2016, 11, e0155176. [Google Scholar] [CrossRef]
- Patchou, M.; Sliwa, B.; Wietfeld, C. Flying Robots for Safe and Efficient Parcel Delivery Within the COVID-19 Pandemic. In Proceedings of the 15th Annual IEEE International Systems Conference (SysCon), Virtual, 15 April–15 May 2021. [Google Scholar] [CrossRef]
- Thiels, C.A.; Aho, J.M.; Zietlow, S.P.; Jenkins, D.H. Use of unmanned aerial vehicles for medical product transport. Air Med. J. 2015, 34, 104–108. [Google Scholar] [CrossRef]
- Banik, D.; Hossain, N.U.I.; Govindan, K.; Nur, F.; Babski-Reeves, K. A decision support model for selecting unmanned aerial vehicle for medical supplies: Context of COVID-19 pandemic. Int. J. Logist. Manag. 2022. [Google Scholar] [CrossRef]
- Lin, M.; Chen, Y.M.; Han, R.; Chen, Y. Discrete Optimization on Truck-Drone Collaborative Transportation System for Delivering Medical Resources. Discret. Namics Nat. Soc. 2022, 2022, 1811288. [Google Scholar] [CrossRef]
- Homier, V.; Brouard, D.; Nolan, M.; Roy, M.A.; Pelletier, P.; McDonald, M.; de Champlain, F.; Khalil, E.; Grou-Boileau, F.; Fleet, R. Drone versus ground delivery of simulated blood products to an urban trauma center: The Montreal Medi-Drone pilot study. J. Trauma Acute Care Surg. 2021, 90, 515. [Google Scholar] [CrossRef] [PubMed]
- Daya, M.R.; Schmicker, R.H.; Zive, D.M.; Rea, T.D.; Nichol, G.; Buick, J.E.; Brooks, S.; Christenson, J.; MacPhee, R.; Craig, A.; et al. Out-of-hospital cardiac arrest survival improving over time: Results from the Resuscitation Outcomes Consortium (ROC). Resuscitation 2015, 91, 108–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hara, M.; Hayashi, K.; Hikoso, S.; Sakata, Y.; Kitamura, T. Different impacts of time from collapse to first cardiopulmonary resuscitation on outcomes after witnessed out-of-hospital cardiac arrest in adults. Circ. Cardiovasc. Qual. Outcomes 2015, 8, 277–284. [Google Scholar] [CrossRef]
- Ringh, M.; Hollenberg, J.; Palsgaard-Moeller, T.; Svensson, L.; Rosenqvist, M.; Lippert, F.K.; Wissenberg, M.; Hansen, C.M.; Claesson, A.; Viereck, S.; et al. The challenges and possibilities of public access defibrillation. J. Intern. Med. 2018, 283, 238–256. [Google Scholar] [CrossRef]
- Ślęzak, D.; Robakowska, M.; Żuratyński, P.; Krzyżanowski, K. Network of Automated External Defibrillators in Poland before the SARS-CoV-2 Pandemic: An In-Depth Analysis. Int. J. Environ. Res. Public Health 2022, 19, 9065. [Google Scholar] [CrossRef]
- Daniel, Ś.; Marlena, R.; Przemysław, Ż.; Joanna, S.; Katarzyna, P.; Kamil, K.; Magdalena, B.; Jarosław, W. Analysis of the Way and Correctness of Using Automated External Defibrillators Placed in Public Space in Polish Cities—Continuation of Research. Int. J. Environ. Res. Public Health 2021, 18, 9892. [Google Scholar] [CrossRef]
- Boutilier, J.J.; Brooks, S.C.; Janmohamed, A.; Byers, A.; Buick, J.E.; Zhan, C.; Schoellig, A.P.; Cheskes, S.; Morrison, L.J.; Chan, T.C.Y. Optimizing a drone network to deliver automated external defibrillators. Circulation 2017, 135, 2454–2465. [Google Scholar] [CrossRef]
- Robakowska, M.; Slezak, D.; Tyranska-Fobke, A.; Nowak, J.; Robakowski, P.; Zuratynski, P.; Nadolny, K. Operational and Financial Considerations of Using Drones for Medical Support of Mass Events in Poland. Disaster Med. Public Health Prep. 2019, 13, 527–532. [Google Scholar] [CrossRef]
- Claesson, A.; Fredman, D.; Svensson, L.; Ringh, M.; Hollenberg, J.; Nordberg, P.; Rosenqvist, M.; Djarv, T.; Österberg, S.; Lennartsson, J.; et al. Unmanned aerial vehicles (drones) in out-of-hospital-cardiac-arrest. Scand. J. Trauma. Resusc. Emerg. Med. 2016, 24, 124. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.S.; Hong, K.J.; Shin, S.D.; Lee, C.G.; Kim, T.H.; Cho, Y.; Song, K.J.; Ro, Y.S.; Park, J.H.; Kim, K.H. Effect of topography and weather on delivery of automatic electrical defibrillator by drone for out-of-hospital cardiac arrest. Sci. Rep. 2021, 11, 24195. [Google Scholar] [CrossRef] [PubMed]
- Zègre-Hemsey, J.K.; Bogle, B.; Cunningham, C.J.; Snyder, K.; Rosamond, W. Delivery of Automated External Defibrillators (AED) by Drones: Implications for Emergency Cardiac Care. Curr. Cardiovasc. Risk Rep. 2018, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Claesson, A.; Bäckman, A.; Ringh, M.; Svensson, L.; Nordberg, P.; Djärv, T.; Hollenberg, J. Time to delivery of an automated external defibrillator using a drone for simulated out-of-hospital cardiac arrests vs. emergency medical services. JAMA 2017, 317, 2332–2334. [Google Scholar] [CrossRef]
- Baumgarten, M.C.; Roper, J.; Hahnenkamp, K.; Thies, K.C. Drones delivering automated external defibrillators-Integrating unmanned aerial systems into the chain of survival: A simulation study in rural Germany. Resuscitation 2022, 172, 139–145. [Google Scholar] [CrossRef]
- Schierbeck, S.; Nord, A.; Svensson, L.; Rawshani, A.; Hollenberg, J.; Ringh, M.; Forsberg, S.; Nordberg, P.; Hilding, F.; Claesson, A. Simulation and education National coverage of out-of-hospital cardiac arrests using automated external defibrillator-equipped drones-A geographical information system analysis. Resuscitation 2021, 163, 136–145. [Google Scholar] [CrossRef]
- van Steenbergen, R.; Mes, M. A simulation framework for uav-aided humanitarian logistics. In Proceedings of the IEEE 2020 Winter Simulation Conference (WSC), Orlando, FL, USA, 14–18 December 2020. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Yu, D.J.; Min, B.C.; Lee, S. The humanitarian flying warehouse. Transp. Res. Part E Logist. Transp. Rev. 2020, 136, 101901. [Google Scholar] [CrossRef]
- Sanfridsson, J.; Sparrevik, J.; Hollenberg, J.; Nordberg, P.; Djarv, T.; Ringh, M.; Forsberg, S.; Nord, A.; Andersson-Hagiwara, M. Drone delivery of an automated external defibrillator—A mixed method simulation study of bystander experience. Scand. J. Trauma Resusc. Emerg. Med. 2019, 27, 40. [Google Scholar] [CrossRef]
- Young, S.; Tabish, T.; Pollock, N.; Young, T. Backcountry Travel Emergencies in Arctic Canada: A Pilot Study in Public Health Surveillance. Int. J. Environ. Res. Public Health 2016, 13, 276. [Google Scholar] [CrossRef]
- Clark, D.G.; Ford, J.D.; Tabish, T. What role can unmanned aerial vehicles play in emergency response in the Arctic: A case study from Canada. PLoS ONE 2018, 13, e0205299. [Google Scholar] [CrossRef]
- Heen, M.S.J.; Lieberman, J.D.; Miethe, T.D. The thin blue line meets the big blue sky: Perceptions of police legitimacy and public attitudes towards aerial drones. Crim. Justice Stud. 2018, 31, 18–37. [Google Scholar] [CrossRef]
- Osakwe, C.N.; Hudik, M.; Riha, D.; Stros, M.; Ramayah, T. Critical factors characterizing consumers’ intentions to use drones for last-mile delivery: Does delivery risk matter? J. Retail. Consum. Serv. 2022, 65, 102865. [Google Scholar] [CrossRef]
- Barten, D.G.; Tin, D.; De Cauwer, H.; Ciottone, R.G.; Ciottone, G.R. A Counter-Terrorism Medicine Analysis of Drone Attacks. Prehospital Disaster Med. 2022, 37, 192–196. [Google Scholar] [CrossRef]
- Daud, S.M.S.M.; Yusof, M.Y.P.M.; Heo, C.C.; Khoo, L.S.; Singh, M.K.C.; Mahmood, M.S.; Nawawi, H. Applications of drone in disaster management: A scoping review. Sci. Justice 2022, 62, 30–42. [Google Scholar] [CrossRef]
- Bravo, R.Z.B.; Leiras, A.; Oliveira, F.L.C. The Use of UAVs in Humanitarian Relief: An Application of POMDP-Based Methodology for Finding Victims. Prod. Oper. Manag. 2019, 28, 421–440. [Google Scholar] [CrossRef]
- Zègre-Hemsey, J.K.; Grewe, M.E.; Johnson, A.M.; Arnold, E.; Cunningham, C.J.; Bogle, B.M.; Rosamond, W.D. Delivery of Automated External Defibrillators via Drones in Simulated Cardiac Arrest: Users’ Experiences and the Human-Drone Interaction. Resuscitation 2020, 157, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Hu, H.T. Development of the Use of Unmanned Aerial Vehicles (UAVs) in Emergency Rescue in China. Risk Manag. Healthc. Policy 2021, 14, 4293–4299. [Google Scholar] [CrossRef]
- Martinez-Alpiste, I.; Golcarenarenji, G.; Wang, Q.; Alcaraz-Calero, J.M. Search and rescue operation using UAVs: A case study. Expert Syst. Appl. 2021, 178, 114937. [Google Scholar] [CrossRef]
- Doraswamy, B.; Krishna, K.L.; Prasad, M.N.G. A Novel Multi-Drone Architecture with Cellular Communication for Disaster Management. Arab. J. Sci. Eng. 2021, 1–15. [Google Scholar] [CrossRef]
- Alsaeedy, A.A.R.; Chong, E.K.P. Survivor-Centric Network Recovery for Search-and-Rescue Operations. In Proceedings of the IEEE 2019 Resilience Week (RWS), San Antonio, TX, USA, 4–7 November 2019; pp. 71–77. [Google Scholar]
- Sibley, A.K.; Jain, T.N.; Butler, M.; Nicholson, B.; Sibley, D.; Smith, D. Remote Scene Size-up Using an Unmanned Aerial Vehicle in a Simulated Mass Casualty Incident. Prehospital Emerg. Care 2019, 23, 332–339. [Google Scholar] [CrossRef]
- Jain, T.; Sibley, A.; Stryhn, H.; Lund, A.; Hubloue, I. Comparison of Unmanned Aerial Vehicle Technology versus Standard Practice of Scene Assessment by Paramedic Students of a Mass-Gathering Event. Prehospital Disaster Med. 2021, 36, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Boccardo, P.; Chiabrando, F.; Dutto, F.; Tonolo, F.G.; Lingua, A. UAV deployment exercise for mapping purposes: Evaluation of emergency response applications. Sensors 2015, 15, 15717–15737. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:02019R0947-20200606&from=PL (accessed on 24 May 2022).
- Available online: https://www.ulc.gov.pl/_download/Drony/3_wdro%C5%BCenie_przepio%C3%B3w_unijnych_PSzymanski.pdf (accessed on 24 May 2022).
- Available online: https://www.ulc.gov.pl/pl/drony/kategoria-otwarta-informacje (accessed on 1 January 2022).
- Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:32019R0947&from=ES (accessed on 1 January 2022).
- Nakamura, H.; Kajikawa, Y. Regulation and innovation: How should small unmanned aerial vehicles be regulated? Technol. Forecast. Soc. Change 2018, 128, 262–274. [Google Scholar] [CrossRef]
- Mu, D.; Yue, C.L.; Chen, A. Are we working on the safety of UAVs? An LDA-based study of UAV safety technology trends. Saf. Sci. 2022, 152, 105767. [Google Scholar] [CrossRef]
- Azaltovic, V.; Skvarekova, I.; Pecho, P.; Kandera, B. Calculation of the Ground Casualty Risk during Aerial Work of Unmanned Aerial Vehicles in the Urban Environment. Transp. Res. Procedia 2020, 44, 271–275. [Google Scholar] [CrossRef]
- Li, K.W.; Lu, Y.; Li, N.L. Subjective and objective assessments of mental workload for UAV operations. Work J. Prev. Assess. Rehabil. 2022, 72, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Holzmann, P.; Wankmuller, C.; Globocnik, D.; Schwarz, E.J. Drones to the rescue? Exploring rescue workers’ behavioral intention to adopt drones in mountain rescue missions. Int. J. Phys. Distrib. Logist. Manag. 2021, 51, 381–402. [Google Scholar] [CrossRef]
- Hans, E. Comtet, Karl-Arne Johannessen The Moderating Role of Pro-Innovative Leadership and Gender as an Enabler for Future Drone Transports in Healthcare Systems. Int. J. Environ. Res. Public Health 2021, 18, 2637. [Google Scholar] [CrossRef]
- Tin, D.; Kallenborn, Z.; Hart, A.; Hertelendy, A.J.; Ciottone, G.R. Rise of the Unmanned Aerial Vehicles: An Imminent Public Health Threat Mandating Counter-Terrorism Medicine Preparedness for Potential Mass-Casualty Attacks. Prehospital Disaster Med. 2021, 36, 636–638. [Google Scholar] [CrossRef]
- Knoblauch, A.M.; de la Rosa, S.; Sherman, J.; Blauvelt, C.; Matemba, C.; Maxim, L.; Defawe, O.D.; Gueye, A.; Robertson, J.; McKinney, J. Bi-directional drones to strengthen healthcare provision: Experiences and lessons from Madagascar, Malawi and Senegal. BMJ Glob. Health 2019, 4, e001541. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Hossain, M.M.; Hoedebecke, K.; Bacorro, M.; Gokdemir, O.; Singh, A. Leveraging Unmanned Aerial Vehicle Technology to Improve Public Health Practice: Prospects and Barriers. Indian J. Community Med. 2020, 45, 396. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.U.; Abul Hassan, M.; Alshehri, M.D.; Ikram, M.A.; Alyamani, H.J.; Alturki, R.; Hoang, V.T. Monitoring System-Based Flying IoT in Public Health and Sports Using Ant-Enabled Energy-Aware Routing. J. Healthc. Eng. 2021, 2021, 1686946. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, K.; Pourmand, A.; Sikka, N. Targeted Applications of Unmanned Aerial Vehicles (Drones) in Telemedicine. Telemed. E-Health 2018, 24, 833–838. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robakowska, M.; Ślęzak, D.; Żuratyński, P.; Tyrańska-Fobke, A.; Robakowski, P.; Prędkiewicz, P.; Zorena, K. Possibilities of Using UAVs in Pre-Hospital Security for Medical Emergencies. Int. J. Environ. Res. Public Health 2022, 19, 10754. https://doi.org/10.3390/ijerph191710754
Robakowska M, Ślęzak D, Żuratyński P, Tyrańska-Fobke A, Robakowski P, Prędkiewicz P, Zorena K. Possibilities of Using UAVs in Pre-Hospital Security for Medical Emergencies. International Journal of Environmental Research and Public Health. 2022; 19(17):10754. https://doi.org/10.3390/ijerph191710754
Chicago/Turabian StyleRobakowska, Marlena, Daniel Ślęzak, Przemysław Żuratyński, Anna Tyrańska-Fobke, Piotr Robakowski, Paweł Prędkiewicz, and Katarzyna Zorena. 2022. "Possibilities of Using UAVs in Pre-Hospital Security for Medical Emergencies" International Journal of Environmental Research and Public Health 19, no. 17: 10754. https://doi.org/10.3390/ijerph191710754
APA StyleRobakowska, M., Ślęzak, D., Żuratyński, P., Tyrańska-Fobke, A., Robakowski, P., Prędkiewicz, P., & Zorena, K. (2022). Possibilities of Using UAVs in Pre-Hospital Security for Medical Emergencies. International Journal of Environmental Research and Public Health, 19(17), 10754. https://doi.org/10.3390/ijerph191710754