Rehabilitation Outcomes for Patients with Motor Deficits after Initial and Repeat Brain Tumor Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Patient Assessment
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, K.D.; Ostrom, Q.T.; Kruchko, C.; Patil, N.; Tihan, T.; Cioffi, G.; Fuchs, H.E.; Waite, K.A.; Jemal, A.; Siegel, R.L.; et al. Brain and other central nervous system tumor statistics, 2021. CA Cancer J. Clin. 2021, 71, 381–406. [Google Scholar] [CrossRef] [PubMed]
- Barnholtz-Sloan, J.S.; Ostrom, Q.T.; Cote, D. Epidemiology of Brain Tumors. Neurol. Clin. 2018, 36, 395–419. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Raspall, R.; Solans, M.; Roca-Barceló, A.; Vilardell, L.; Puigdemont, M.; Del Barco, S.; Comas, R.; García-Velasco, A.; Astudillo, A.; Carmona-Garcia, M.C.; et al. Descriptive epidemiology of primary malignant and non-malignant central nervous tumors in Spain: Results from the Girona Cancer Registry (1994–2013). Cancer Epidemiol. 2017, 50, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gould, J.; McDonald, A. Breaking down brain cancer. Nature 2018, 561, 40–41. [Google Scholar] [CrossRef] [PubMed]
- Marosi, C.; Hassler, M.; Roessler, K.; Reni, M.; Sant, M.; Mazza, E.; Vecht, C. Meningioma. Crit. Rev. Oncol. Hematol. 2008, 67, 153–171. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Shofty, B.; Haim, O.; Costa, M.; Kashanian, A.; Shtrozberg, S.; Ram, Z.; Grossman, R. Impact of repeated operations for progressive low-grade gliomas. Eur. J. Surg. Oncol. 2020, 46, 2331–2337. [Google Scholar] [CrossRef]
- Delgado-Lopez, P.D.; Corrales-García, E.M.; Martino, J.; Lastra-Aras, E.; Duenas-Polo, M.T. Diffuse low-grade glioma: A review on the new molecular classification, natural history and current management strategies. Clin. Transl. Oncol. 2017, 19, 931–944. [Google Scholar] [CrossRef]
- Bloch, O.; Han, S.J.; Cha, S.; Sun, M.Z.; Aghi, M.K.; McDermott, M.W.; Berger, M.S.; Parsa, A.T. Impact of extent of resection for recurrent glioblastoma on overall survival: Clinical article. J. Neurosurg. 2012, 117, 1032–1038. [Google Scholar] [CrossRef]
- Li, Y.M.; Suki, D.; Hess, K.; Sawaya, R. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection? J. Neurosurg. 2016, 124, 977–988. [Google Scholar] [CrossRef] [Green Version]
- Perrini, P.; Gambacciani, C.; Weiss, A.; Pasqualetti, F.; Delishaj, D.; Paiar, F.; Morganti, R.; Vannozzi, R.; Lutzemberger, L. Survival outcomes following repeat surgery for recurrent glioblastoma: A single-center retrospective analysis. J. Neurooncol. 2017, 131, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Fang, J.; Shen, Y.; Zhang, J.; Liu, W.; Shen, H. Should we reoperate for recurrent high-grade astrocytoma? J. Neurooncol. 2011, 105, 291–299. [Google Scholar] [CrossRef]
- Furtak, J.; Kwiatkowski, A.; Śledzińska deMarek, P.; Krajewski, S.; Szylberg, T.; Birski, M.; Druszcz Krystkiewicz, K.; Gasiński, P.; Harat, M. Survival after reoperation for recurrent glioblastoma multiforme: A prospective study. Surgical. Oncol. 2022, 42, 101771. [Google Scholar] [CrossRef] [PubMed]
- Nahed, B.V.; Redjal, N.; Brat, D.J.; Chi, A.S.; Oh, K.; Batchelor, T.T.; Ryken, T.C.; Kalkanis, S.N.; Olson, J.J. Management of patients with recurrence of diffuse low grade glioma: A systematic review and evidence-based clinical practice guideline. J. Neuro Oncol. 2015, 125, 609–630. [Google Scholar] [CrossRef]
- Zhao, Y.-H.; Wang, Z.-F.; Pan, Z.-Y.; Péus, D.; Delgado-Fernandez, J.; Pallud, J.; Li, Z.Q. A Meta-Analysis of Survival Outcomes Following Reoperation in Recurrent Glioblastoma: Time to Consider the Timing of Reoperation. Front. Neurol. 2019, 10, 286. [Google Scholar] [CrossRef] [PubMed]
- Brandes, A.A.; Bartolotti, M.; Franceschi, E. Second surgery for recurrent glioblastoma: Advantages and pitfalls. Expert Rev. Anticancer Ther. 2013, 13, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Tosoni, A.; Franceschi, E.; Poggi, R.; Brandes, A.A. Relapsed glioblastoma: Treatment strategies for initial and subsequent recurrences. Curr Treat. Options Oncol. 2016, 17, 49. [Google Scholar] [CrossRef]
- Weller, M.; Cloughesy, T.; Perry, J.R.; Wick, W. Standards of care for treatment of recurrent glioblastoma–are we there yet? Neuro Oncol. 2013, 15, 4–27. [Google Scholar] [CrossRef]
- Woodroffe, R.W.; Zanaty, M.; Soni, N.; Mott, S.L.; Helland, L.C.; Pasha, A.; Maley, J.; Dhungana, N.; Jones, K.A.; Monga, V.; et al. Survival after reoperation for recurrent glioblastoma. J. Clin. Neurosci. 2020, 73, 118–124. [Google Scholar] [CrossRef]
- McBain, C.; Lawrie, T.A.; Rogozińska, E.; Kernohan, A.; Robinson, T.; Jefferies, S. Treatment options for progression or recurrence of glioblastoma: A network meta-analysis. Cochrane Database Syst. Rev. 2021, 45, CD013579. [Google Scholar]
- Krajewski, S.; Furtak, J.; Zawadka-Kunikowska, M.; Kachelski, M.; Birski, M.; Harat, M. Comparison of the Functional State and Motor Skills of Patients after Cerebral Hemisphere, Ventricular System, and Cerebellopontine Angle Tumor Surgery, Affiliations expand. Int. J. Environ. Res. Public Health 2022, 19, 2308. [Google Scholar] [CrossRef] [PubMed]
- Lamperti, E.; Pantaleo, G.; Finocchiaro, C.Y.; Silvani, A.; Botturi, A.; Gaviani, P.; Sarno, L.; Salmaggim, A. Recurrent brain tumour: The impact of illness on patient’s life. Support. Care Cancer 2012, 20, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Chiu, L.; Chiu, N.; Zeng, L.; Zhang, L.; Popovi’c, M.; Chow, R.; Lam, H.; Poon, M.; Chow, E. Quality of life in patients with primary and metastatic brain cancer as reported in the literature using the EORTC QLQ-BN20 and QLQ-C30. Expert Rev. Pharm. Outcomes Res. 2012, 12, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Amatya, B.; Ng, L.; Drummond, K.; Oliver, J. Multidisciplinary rehabilitation after primary brain tumour treatment. Cochrane Database Syst. Rev. 2013, 1, CD009509. [Google Scholar]
- Delgado-Fernandez, J.; Garcia-Pallero, M.Á.; Blasco, G.; Penanes, J.R.; Gil-Simoes, R.; Pulido, P.; Sola, R.G. Usefulness of reintervention in recurrent glioblastoma: An indispensable weapon for increasing survival. World Neurosurg. 2017, 108, 610–617. [Google Scholar] [CrossRef]
- Chaichana, K.L.; Zadnik, P.; Weingart, J.D.; Olivi, A.; Gallia, G.L.; Blakeley, J.; Lim, M.; Brem, H.; Quiñones-Hinojosa, A. Multiple resections for patients with glioblastoma: Prolonging survival. J. Neurosurg. 2013, 118, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Wann, A.; Tully, P.A.; Barnes, E.H.; Lwin, Z.; Jeffree, R.; Drummond, K.J.; Gan, H.; Khasraw, M. Outcomes after second surgery for recurrent glioblastoma: A retrospective case–control study. J. Neuro-Oncol. 2018, 137, 409–415. [Google Scholar] [CrossRef]
- Sanai, N.; Berger, M.S. Surgical oncology for gliomas: The state of the art. Nat. Rev. Clin. Oncol. 2018, 15, 112–125. [Google Scholar] [CrossRef]
- Mandl, E.S.; Dirven, C.M.F.; Buis, D.R.; Postma, T.J.; Vandertop, W.P. Repeated surgery for glioblastoma multiforme: Only in combination with other salvage therapy. Surg. Neurol. 2008, 69, 506–509. [Google Scholar] [CrossRef]
- Ģiga, L.; Pētersone, A.; Čakstiņa, S.; Bērziņa, G. Comparison of content and psychometric properties for assessment tools used for brain tumor patients: A scoping review. Health Qual. Life Outcomes 2021, 19, 234. [Google Scholar] [CrossRef]
- Péus, D.; Newcomb, N.; Hofer, S. Appraisal of the Karnofsky Performance Status and proposal of a simple algorithmic system for its evaluation. BMC Med. Inform. Decis. Mak. 2013, 13, 72. [Google Scholar] [CrossRef] [PubMed]
- Banks, J.L.; Marotta, C.A. Outcomes validity and reliability of the modified Rankin scale: Implications for stroke clinical trials: A literature review and synthesis. Stroke 2007, 38, 1091–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibañez, F.A.L.; Hem, S.; Ajler, P.; Vecchi, E.; Ciraolo, C.; Baccanelli, M.; Tramontano, R.; Knezevich, F.; Carrizo, A. A New Classification of Complications in Neurosurgery. World Neurosurg. 2011, 75, 709–715. [Google Scholar] [CrossRef]
- Bartolo, M.; Zucchella, C.; Pace, A.; Lanzetta, G.; Vecchione, C.; Bartolo, M.; Grillea, G.; Serrao, M.; Tassorelli, C.; Sandrini, G.; et al. Early rehabilitation after surgery improves functional outcome in patients with brain tumours. J. Neurooncol. 2012, 107, 537–544. [Google Scholar] [CrossRef]
- Jones, L.W.; Eves, N.D.; Haykowsky, M.; Freedland, S.J.; Mackey, J.R. Exercise intolerance in cancer and the role of exercise therapy to reverse dysfunction. Lancet Oncol. 2009, 10, 598–605. [Google Scholar] [CrossRef]
- Khan, F.; Amatya, B.; Drummond, K.; Galea, M. Effectiveness of integrated multidisciplinary rehabilitation in primary brain cancer survivors in an Australian community cohort: A controlled clinical trial. J. Rehabil. Med. 2014, 46, 754–760. [Google Scholar] [CrossRef]
- Kushner, D.S.; Amidei, C. Rehabilitation of motor dysfunction in primary brain tumor patients. Neurooncol. Pract. 2015, 2, 185–191. [Google Scholar] [CrossRef]
- Loomis, E.; Wakasa, M. Rehabilitation from meningioma. Handb. Clin. Neurol. 2020, 170, 323–331. [Google Scholar] [CrossRef]
- Greenberg, E.; Treger, I.; Ring, H. Rehabilitation outcomes in patients with brain tumors and acute stroke: Comparative study of inpatient rehabilitation. Am. J. Phys. Med. Rehabil. 2006, 85, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Jung, Y.; Park, J.; Kim, J.M.; Suh, M.; Cho, K.G.; Kim, M. Intensive Rehabilitation Therapy Following Brain Tumor Surgery: A Pilot Study of Effectiveness and Long-Term Satisfaction. Ann. Rehabil. Med. 2019, 43, 129–141. [Google Scholar] [CrossRef]
- Han, E.Y.; Chun, M.H.; Kim, B.R.; Kim, H.J. Functional improvement after 4-week rehabilitation therapy and effects of attention deficit in brain tumor patients: Comparison with subacute stroke patients. Ann. Rehabil. Med. 2015, 39, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, P.; Greenwald, B.D.; Patel, P. Rehabilitation of Adult Patients with Primary Brain Tumors: A Narrative Review. Brain Sci. 2020, 10, 492. [Google Scholar] [CrossRef]
- Geler-Kulcu, D.; Gulsen, G.; Buyukbaba, E.; Ozkan, D. Functional recovery of patients with brain tumour or acute stroke after rehabilitation: A comparative study. J. Clin. Neurosci. 2009, 16, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, D.Y.; Chun, M.H.; Lee, S.J. Functional outcomes and characteristics of patients with brain tumors after inpatient rehabilitation: Comparison with ischemic stroke. J. Korean Acad. Rehabil. Med. 2010, 34, 290–296. [Google Scholar]
- Huang, M.E.; Cifu, D.X.; Keyser-Marcus, L. Functional outcome after brain tumor and acute stroke: A comparative analysis. Arch. Phys. Med. Rehabil. 1998, 79, 1386–1390. [Google Scholar] [CrossRef]
- Bilgin, S.; Kose, N.; Karakaya, J.; Mut, M. Traumatic brain injury shows better functional recovery than brain tumor: A rehabilitative perspective. Eur. J. Phys. Rehabil. Med. 2014, 50, 17–23. [Google Scholar] [PubMed]
- Huang, M.E.; Cifu, D.X.; Keyser-Marcus, L. Functional outcomes in patients with brain tumor after inpatient rehabilitation: Comparison with traumatic brain injury. Am. J. Phys. Med. Rehabil. 2000, 79, 327–335. [Google Scholar] [CrossRef]
- Lamborn, K.R.; Yung, W.K.; Chang, S.M.; Wen, P.Y.; Cloughesy, T.F.; DeAngelis, L.M.; Robins, H.I.; Lieberman, F.S.; Fine, H.A.; Fink, K.L.; et al. Progression-free survival: An important end point in evaluating therapy for re-current high-grade gliomas. Neuro Oncol. 2008, 10, 162–170. [Google Scholar] [CrossRef]
- Kwiatkowski, A. Evaluation of Survival in Patients Undergoing Repeated Surgery for Recurrent Brain Glioblastoma. Ph.D. Thesis, LudwikRydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, Toruń, Poland, 2018. [Google Scholar]
- Czigléczki, G.; Sinkó, D.; Benkő, Z.; Bagó, A.; Fedorcsák, I.; Sipos, L. The effect of bevacizumab monotherapy on progression free survival in recurrent glioblastoma. Ideggyogy. Szle. 2019, 72, 153–158. [Google Scholar] [CrossRef]
- Zetterling, M.; Elf, K.; Semnic, R.; Latini, F.; Engström, E.R. Time course of neurological deficits after surgery for primary brain tumours. Acta Neurochir. 2020, 162, 3005–3018. [Google Scholar] [CrossRef]
- McGirt, M.J.; Mukherjee, D.; Chaichana, K.L.; Than, K.D.; Weingart, J.D.; Quinones-Hinojosa, A. Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery 2009, 65, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Lonjaret, L.; Guyonnet, M.; Berard, E.; Vironneau, M.; Peres, F.; Sacrista, S.; Ferrier, A.; Ramonda, V.; Vuillaume, C.; Roux, F.E.; et al. Postoperative complications after craniotomy for brain tumor surgery. Anaesth. Crit. Care Pain Med. 2017, 36, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Benz, L.S.; Wrensch, M.R.; Schildkraut, J.M.; Bondy, M.L.; Warren, J.L.; Wiemels, J.L.; Claus, E.B. Quality of Life After Surgery for Intracranial Meningioma. Cancer 2018, 1, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Natsume, K.; Sakakima, H.; Kawamura, K.; Yoshida, A.; Akihiro, S.; Yonezawa, H.; Yoshimoto, K.; Shimodozono, M. Factors Influencing the Improvement of Activities of Daily Living during Inpatient Rehabilitation in Newly Diagnosed Patients with Glioblastoma Multiforme. J. Clin. Med. 2022, 11, 417. [Google Scholar] [CrossRef] [PubMed]
- Brazil, L.; Thomas, R.; Laing, R.; Hines, F.; Guerrero, D.; Ashley, S.; Brada, M. Verbally administered Barthel Index as functional assessment in brain tumour patients. J. Neurooncol. 1997, 34, 187–192. [Google Scholar] [CrossRef]
- Richardson, A.M.; McCarthy, D.J.; Sandhu, J.; Mayrand, R.; Guerrero, C.; Rosenberg, C.; Gernsback, J.E.; Komotar, R.; Ivan, M. Predictors of Successful Discharge of Patients on Postoperative Day 1 After Craniotomy for Brain Tumor. World Neurosurg. 2019, 126, 869–877. [Google Scholar] [CrossRef]
- Reponen, E.; Tuominen, H.; Korja, M. Evidence for the use of preoperative risk assessment scores in elective cranial neuro-surgery: A systematic review of the literature. Anesth. Analg. 2014, 119, 420–432. [Google Scholar] [CrossRef]
- Reponen, E.; Tuominen, H.; Hernesniemi, J.; Korja, M. Modified Rankin scale and short-term outcome in cranial neurosurgery: A prospective and unselected cohort study. World Neurosurg. 2016, 91, 567–573. [Google Scholar] [CrossRef]
- Jackson, C.; Westphal, M.; Quiñones-Hinojosa, A. Complications of glioma surgery. Handb. Clin. Neurol. 2016, 134, 201–218. [Google Scholar] [PubMed]
- Groshev, A.; Padalia, D.; Patel, S.; Garcia-Getting, R.; Sahebjam, S.; Forsyth, P.A.; Vrionis, F.D.; Eame, A.B. Clinical outcomes from maximum-safe resection of primary and metast.tatic brain tumors using awake craniotomy. Clin. Neurol. Neurosurg. 2017, 15, 25–30. [Google Scholar] [CrossRef]
- Ferroli, P.; Brock, S.; Leonardi, M.; Schiavolin, S.; Acerbi, F.; Broggi, M. Complications in neurosurgery: Application of Landriel Ibañez classification and preliminary considerations on 1000 cases. World Neurosurg. 2014, 82, e576–e577. [Google Scholar] [CrossRef] [PubMed]
- Schiavolin, S.; Broggi, M.; Acerbi, F.; Brock, S.; Schiariti, M.; Cusin, A.; Visintini, S.; Leonardi, M.; Ferroli, P. The Impact of Neurosurgical Complications on Patients’ Health Status: A Comparison Between Different Grades of Complications. World Neurosurg. 2015, 84, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Sarnthein, J.; Stieglitz, L.; Clavien, P.A.; Regli, L. A Patient Registry to Improve Patient Safety: Recording General Neurosurgery Complications. PLoS ONE 2016, 11, e0163154. [Google Scholar]
- Grossman, R.; Nossek, E.; Sitt, R.; Hayat, D.; Shahar, T.; Barzilai, O.; Gonen, T.; Korn, A.; Sela, G.; Ram, Z. Outcome of elderly patients undergoing awake-craniotomy for tumor resection. Ann. Surg. Oncol. 2013, 20, 1722–1728. [Google Scholar] [CrossRef]
- Trinh, V.T.; Fahim, D.K.; Shah, K.; Tummala, S.; McCutcheon, I.E.; Sawaya, R.; Suki, D.; Prabhu, S.S. Subcortical injury i san inde-pendent predictor of worsening neurological deficits following awake craniotomy procedures. Neurosurgery 2013, 72, 160–169. [Google Scholar] [CrossRef]
- Vargo, M. Brain tumor rehabilitation. Am. J. Phys. Med. Rehabil. 2011, 90, 50–62. [Google Scholar] [CrossRef]
- Fugate, J.E. Complications of Neurosurgery. Review Article. Am. Acad. Neurol. 2015, 10, 1425–1444. [Google Scholar]
- Mukand, J.A.; Blackinton, D.D.; Cirncoli, M.G.; Lee, J.J.; Santos, B.B. Incidence of neurologic deficits and rehabilitation of patients with brain tumors. Am. J. Phys. Med. Rehabil. 2001, 80, 346–350.44. [Google Scholar] [CrossRef]
- Cinotti, R.; Bruder, N.; Srairi, M.; Paugam-Burtz, C.; Beloeil, H.; Pottecher, J.; Geeraerts, T.; Atthar, V.; Guéguen, A.; Triglia, T.; et al. Prediction Score for Postoperative Neurologic Complications after Brain Tumor Craniotomy: A Multicenter Observational Study. Anesthesiology 2018, 129, 1111–1120. [Google Scholar] [CrossRef]
- Sandin, K.J.; Smith, B.S. The measure of balance in sitting in stroke rehabilitation prognosis. Stroke 1990, 21, 82–86. [Google Scholar] [CrossRef]
- Dulaney, C.R.; McDonald, A.M.; Wallace, A.S.; Fiveash, J. Gait Speed and Survival in Patients with Brain Metastases. J. Pain Symptom. Manag. 2017, 54, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Giordana, M.T.; Clara, E. Functional rehabilitation in brain tumors patients. A review of outcome. Neurol. Sci. 2006, 27, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Kos, N.; Kos, B.; Benedicic, M. Early medical rehabilitation after neurosurgical treatment of malignant brain tumours in Slovenia. Radiol. Oncol. 2016, 50, 139–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type of Neoplasm | WHO Grade | First Surgery n = 103 | Repeat Surgery n = 30 | Total Operated Tumors n = 133 | p-Value | |||
---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | |||
Benign tumors | ||||||||
Adenoma hypophysis | 1 | 3.3 | 1 | 0.8 | ||||
Hemangioblastoma | 5 | 4.9 | 1 | 3.3 | 6 | 4.5 | ||
Hemangioma cavernosum | 2 | 1.9 | 2 | 1.5 | ||||
Meningioma | I | 21 | 20.4 | 2 | 6.7 | 23 | 17.3 | |
Schwannoma | I | 15 | 14.6 | 1 | 3.3 | 16 | 12.0 | |
Other benign tumors | 5 | 4.9 | 5 | 3.8 | ||||
Low grade (WHO grade II) | ||||||||
Astrocytoma | II | 3 | 2.9 | 3 | 2.3 | |||
Diffuse astrocytoma | II | 7 | 6.8 | 2 | 6.7 | 9 | 6.8 | |
Oligodendroglioma | II | 1 | 1.0 | 2 | 6.7 | 3 | 2.3 | |
Ependymoma | II | 3 | 2.9 | 3 | 2.3 | |||
Meningioma atypicum | II | 3 | 2.9 | 3 | 10.0 | 6 | 4.5 | |
Central neurocystoma | II | 1 | 1.0 | 1 | 0.8 | |||
Total primary non-malignant tumors | 66 | 64.1 | 12 | 40.0 | 78 | 58.6 | 0.018 | |
Malignant tumors (WHO grade III, IV) | ||||||||
Anaplastic astrocytoma | III | 5 | 4.9 | 3 | 10.0 | 8 | 6.0 | |
Anaplastic oligodendroglioma | III | 1 | 1.0 | 3 | 10.0 | 4 | 3.0 | |
Anaplastic ependymoma | III | 2 | 1.9 | 1 | 3.3 | 3 | 2.3 | |
Glioblastoma | IV | 16 | 15.5 | 6 | 20.0 | 22 | 16.5 | |
Hemangiopericytoma | III | 1 | 3.3 | 1 | 0.8 | |||
Meningioma anaplasticum | III | 1 | 1.0 | 1 | 3.3 | 2 | 1.5 | |
Supratentorial primitive neuroectodermal tumor | IV | 1 | 1.0 | 1 | 0.8 | |||
Total primary malignant tumors | 26 | 25.2 | 15 | 50.0 | 41 | 30.8 | 0.009 | |
Metastases * | 11 | 10.7 | 3 | 10.0 | 14 | 10.5 | 0.915 | |
Total malignant tumors (primary + metastases) | 37 | 35.9 | 18 | 60.0 | 55 | 41.4 | 0.018 | |
Total operated tumors | 103 | 100 | 30 | 100 | 133 | 100 |
First Surgery | Repeat Surgery | p-Value | |
---|---|---|---|
Male n (%) | 49 (47.6) | 18 (60.0) | 0.231 |
Female n (%) | 54 (52.4) | 12 (40.0) | |
Age mean ± SD, [range] | 50.0 ± 17.3 [19–83] | 49.9 ± 12.3 [26–64] | 0.763 |
Overall LOS (days) | 20.1 ± 13.2 [4–92] | 21.9 ± 16.6 [8–84] | 0.925 |
LOS after surgery (days) | 16.5 ± 12.7 [2–90] | 18.0 ± 16.2 [5–79] | 0.810 |
Days in ICU after surgery | 0.7 ± 3.3 [0–31] | 2.2 ± 7.7 [0–40] | 0.494 |
Days of rehabilitation | 12.5 ± 9.3 [1–53] | 13.64 ± 12.2 [3–58] | 0.777 |
First Surgery | Repeat Surgery | All Operated Patients | p-Value First vs. Repeat | ||||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
Patients with complications | 26 | 25.2 | 10 | 33.3 | 36 | 27.1 | 0.387 |
Grade I | 6 | 5.8 | 2 | 6.7 | 8 | 6.0 | |
Grade II | 15 | 14.6 | 2 | 6.7 | 17 | 12.8 | 0.047 |
Grade III | 5 | 4.9 | 6 | 20.0 | 11 | 8.3 | |
Surgical | 21 | 20.4 | 7 | 23.4 | 28 | 21.1 | 0.732 |
Medical | 5 | 4.9 | 3 | 10.0 | 8 | 6.0 | 0.302 |
Temporary | 18 | 17.5 | 4 | 13.3 | 22 | 16.5 | 0.595 |
Permanent | 8 | 7.8 | 6 | 20.0 | 14 | 10.5 | 0.056 |
Plegia/paresis | |||||||
Before surgery | 37 | 35.9 | 21 | 70.0 | 58 | 43.6 | 0.001 |
At discharge | 67 | 65.0 | 27 | 90.0 | 94 | 70.7 | 0.009 |
Variable | Time | First Surgery | Repeat Surgery | Source | F | p-Value |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | |||||
BI | Before surgery | 86.5 ± 23.9 | 75.7 ± 33.9 | Group | 3.1 | 0.079 |
After surgery | 39.4 ± 25.8 | 36.2 ± 28.7 | Time | 123.7 | <0.001 | |
At discharge | 73.0 ± 26.1 | 60.0 ± 36.2 | G*T | 1.1 | 0.324 | |
KPS | Before surgery | 81.8 ± 19.8 | 77.0 ± 21.8 | Group | 1.9 | 0.172 |
After surgery | 51.1 ± 18.5 | 48.3 ± 22.3 | Time | 99.8 | <0.001 | |
At discharge | 71.7 ± 17.0 | 66.2 ± 19.4 | G*T | 0.2 | 0.840 | |
MRS | Before surgery | 1.4 ± 1.3 | 1.9 ± 1.6 | Group | 3.2 | 0.074 |
After surgery | 3.5 ± 1.1 | 3.7 ± 1.3 | Time | 90.9 | <0.001 | |
At discharge | 2.3 ± 1.2 | 2.8 ± 1.3 | G*T | 0.5 | 0.631 | |
GI | Before surgery | 8.6 ± 2.5 | 7.0 ± 3.5 | Group | 6.2 | 0.014 |
After surgery | 4.1 ± 2.7 | 3.6 ± 2.8 | Time | 86.9 | <0.001 | |
At discharge | 7.2 ± 2.6 | 5.8 ± 3.3 | G*T | 1.6 | 0.211 |
Motor Skills | First Surgery | Repeat Surgery | p-Value |
---|---|---|---|
n (%) | n (%) | ||
Before surgery | |||
Passive sitting | 103 (100%) | 29 (96.7%) | 0.066 |
Active sitting | 102(99.0%) | 28 (93.3%) | 0.067 |
Standing | 93 (90.3%) | 22 (73.3%) | 0.018 |
Independent gait | 83 (80.6%) | 21 (70.0%) | 0.038 |
Week after surgery | |||
Passive sitting | 93 (90.3%) | 27 (90.0%) | 0.482 |
Active sitting | 82 (79.6%) | 23 (76.7%) | 0.386 |
Standing | 62 (60.2%) | 18 (60.0%) | 0.494 |
Independent gait | 40 (38.8%) | 11 (36.7%) | 0.449 |
At discharge | |||
Passive sitting | 103 (100%) | 29 (96.7%) | 0.066 |
Active sitting | 96 (93.2%) | 26 (86.7%) | 0.284 |
Standing | 89 (86.4%) | 21 (70.0%) | 0.035 |
Independent gait | 62 (60.2%) | 15 (50.0%) | 0.236 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krajewski, S.; Furtak, J.; Zawadka-Kunikowska, M.; Kachelski, M.; Birski, M.; Harat, M. Rehabilitation Outcomes for Patients with Motor Deficits after Initial and Repeat Brain Tumor Surgery. Int. J. Environ. Res. Public Health 2022, 19, 10871. https://doi.org/10.3390/ijerph191710871
Krajewski S, Furtak J, Zawadka-Kunikowska M, Kachelski M, Birski M, Harat M. Rehabilitation Outcomes for Patients with Motor Deficits after Initial and Repeat Brain Tumor Surgery. International Journal of Environmental Research and Public Health. 2022; 19(17):10871. https://doi.org/10.3390/ijerph191710871
Chicago/Turabian StyleKrajewski, Stanisław, Jacek Furtak, Monika Zawadka-Kunikowska, Michał Kachelski, Marcin Birski, and Marek Harat. 2022. "Rehabilitation Outcomes for Patients with Motor Deficits after Initial and Repeat Brain Tumor Surgery" International Journal of Environmental Research and Public Health 19, no. 17: 10871. https://doi.org/10.3390/ijerph191710871
APA StyleKrajewski, S., Furtak, J., Zawadka-Kunikowska, M., Kachelski, M., Birski, M., & Harat, M. (2022). Rehabilitation Outcomes for Patients with Motor Deficits after Initial and Repeat Brain Tumor Surgery. International Journal of Environmental Research and Public Health, 19(17), 10871. https://doi.org/10.3390/ijerph191710871