Biological Activated Sludge from Wastewater Treatment Plant before and during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Sampling
2.2. Determination of Physicochemical Parameters
2.3. Microscopic Analyses
3. Results
4. Discussion
4.1. Bacteria
4.2. Unicellular Sessile
4.3. Unicellular Free
4.4. Pluricellular
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Onyeaka, H.; Anumudu, C.K.; Al-Sharify, Z.T.; Egele-Godswill, E.; Mbaegbu, P. COVID-19 pandemic: A review of the global lockdown and its far-reaching effects. Sci. Prog. 2021, 104, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Cristaldi, A.; Fiore, M.; Zuccarello, P.; Oliveri Conti, G.; Grasso, A.; Nicolosi, I.; Copat, C.; Ferrante, M. Efficiency of Wastewater Treatment Plants (WWTPs) for Microplastic Removal: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 8014. [Google Scholar] [CrossRef] [PubMed]
- Serra-Compte, A.; González, S.; Arnaldos, M.; Berlendis, S.; Courtois, S.; Loret, J.F.; Schlosser, O.; Yáñez, A.M.; Soria-Soria, E.; Fittipaldi, M.; et al. Elimination of SARS-CoV-2 along wastewater and sludge treatment processes. Water Res. 2021, 202, 117435. [Google Scholar] [CrossRef] [PubMed]
- Yazdian, H.; Jamshidi, S. Performance evaluation of wastewater treatment plants under the sewage variations imposed by COVID-19 spread prevention actions. J. Environ. Health Sci. Eng. 2021, 19, 1613–1621. [Google Scholar] [CrossRef] [PubMed]
- Larsen, D.A.; Wigginton, K.R. Tracking COVID-19 with wastewater. Nat. Biotechnol. 2020, 38, 1151–1153. [Google Scholar] [CrossRef]
- Bogler, A.; Packman, A.; Furman, A.; Gross, A.; Kushmaro, A.; Ronen, A.; Dagot, C.; Hill, C.; Vaizel-Ohayon, D.; Morgenroth, E.; et al. Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic. Nat. Sustain. 2020, 3, 981–990. [Google Scholar] [CrossRef]
- Abu-Ali, H.; Yaniv, K.; Bar-Zeev, E.; Chaudhury, S.; Shagan, M.; Lakkakula, S.; Ronen, Z.; Kushmaro, A.; Nir, O. Tracking SARS-CoV-2 RNA through the Wastewater Treatment Process. ACS ES&T Water 2021, 1, 1161–1167. [Google Scholar]
- Carrillo-Reyes, J.; Barragan-Trinidad, M.; Buitrón, G. Surveillance of SARS-CoV-2 in sewage and wastewater treatment plants in Mexico. J. Water Process Eng. 2021, 40, 101815. [Google Scholar] [CrossRef]
- Pourakbar, M.; Abdolahnejad, A.; Raeghi, S.; Ghayourdoost, F.; Yousefi, R.; Bahnami, A. Comprehensive investigation of SARS-CoV-2 fate in wastewater and finding the virus transfer and destruction route through conventional activated sludge and sequencing batch reactor. Sci. Total Environ. 2022, 806, 151391. [Google Scholar] [CrossRef]
- Dubber, D.; Gray, N.F. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2010, 45, 1595–1600. [Google Scholar] [CrossRef]
- Sava, C.; Pica, E.M. Drying and Energy Recovery of Sludge. Studia UBB Chem. 2021, LXVI, 267–276. [Google Scholar] [CrossRef]
- da Motta, M.; Pons, M.N.; Vivier, H.; Amaral, A.L.; Ferreira, E.C.; Roche, N.; Mota, M. The study of protozoa population in wastewater treatment plants by image analysis. Braz. J. Chem. Eng. 2001, 18, 101–103. [Google Scholar] [CrossRef]
- Adonadaga, M.-G.; Martienssen, M. In situ Identification of Filamentous Bacteria from Activated Sludge Wastewater Treatment Plants in Ghana. Appl. Environ. Microbiol. 2015, 3, 75–81. [Google Scholar]
- Wang, L.K.; Pereira, N.C.; Hung, Y.T.; Shammas, N.K. Biological Treatment Processes. In Handbook of Environmental Engineering- Biological Treatment Processes, 1st ed.; Lawrence, K.W., Norman, C.P., Yung-Tse, H., Eds.; Humana Press: New York, NY, USA, 2009; Volume 8, pp. 208–210. [Google Scholar]
- Marx, C.; Schmidt, M.; Flanagan, J.; Hanson, G.; Nelson, D.; Shaw, J.; Tomaro, D.; Nickels, C.; Fass, H.; Schmidt, A.; et al. Advanced Activated Sludge Study Guide, Wisconsin Department of Natural Resources; Wisconsin Department of Natural Resources Bureau of Science Services, Operator Certification Program: Madison, WI, USA, 2010; pp. 1–4. Available online: https://dnr.wi.gov/regulations/opcert/documents/wwsgactsludgeadv.pdf (accessed on 12 February 2022).
- Wiesmann, U.; Choi, I.S.; Dombrowski, E.M. Fundamentals of Biological Wastewater Treatment; Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2007; pp. 1–7. [Google Scholar]
- Makinia, J.; Wells, S.A. A general model of the activated sludge reactor with dispersive flow-I. Model development and parameter estimation. Water Res. 2000, 34, 3987–3996. [Google Scholar] [CrossRef]
- Gerardi, M.H. Nitrification and Denitrification in the Activated Sludge Proces; John Wiley & Sons Inc.: New York, NY, USA, 2002; pp. 43–46 + 137–147. [Google Scholar]
- Maltos, R.A.; Holloway, R.W.; Cath, T.Y. Enhancement of activated sludge wastewater treatment with hydraulic selection. Sep. Purif. Technol. 2020, 250, 117214. [Google Scholar] [CrossRef]
- Augustin, H.; Foissner, W.; Bauer, R. Die Zählung von Protozoen und kleinen Metazoen im Belebtschlamm. Acta Hydrochim. Hydrobiol. 1989, 17, 375–386. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Audrey, C.S.; Johir, M.A.H.; Bustamante Aurisch, H.R.; Lowrie, R.; Nghiem, L.D. Application of a novel molecular technique to ccessedize the effect of settling on microbial community composition of activated sludge. J. Environ. Manag. 2019, 251, 109594. [Google Scholar] [CrossRef]
- Yu, L.; Li, R.; Delatolla, R.; Zhang, R.; Yang, X.; Peng, D. Natural continuous influent nitrifier immigration effects on nitrification and the microbial community of activated sludge systems. J. Environ. Sci. 2018, 74, 159–167. [Google Scholar] [CrossRef]
- Azizan, A.; Kaschani, F.; Barinas, H.; Blaskowski, S.; Kaiser, M.; Deneckea, M. Using proteomics for an insight into the performance of activated sludge in a lab-scale WWTP. Int. Biodet. Biodegrad. 2020, 149, 104934. [Google Scholar] [CrossRef]
- Eckenfelder, W.W., Jr. Industrial Water Pollution Control-Aeration and Mass Transfer, 3rd ed.; McGraw Hill Companies Inc.: Beijing, China, 2003; pp. 65–75. [Google Scholar]
- Robescu, D.N.; Robescu, L.D.; Lányi, S.; Verestóy, A. Modelarea şi Simularea Proceselor de Epurare; Technical Publishing House: Bucharest, Romania, 2004. [Google Scholar]
- Yoshino, H.; Hori, T.; Hosomi, M.; Terada, A. Identifying prokaryotes and eukaryotes disintegrated by a high-pressure jet device for excess activated sludge reduction. Biochem. Eng. J. 2020, 157, 107495. [Google Scholar] [CrossRef]
- Lemmer, H.; Baumann, M. Scum actinomyacetes in sewage treatment plants-Part 3: Synergisms with other sludge bacteria. Wat. Res. 1988, 22, 765–767. [Google Scholar] [CrossRef]
- Hao, O.J.; Strom, P.F.; Wu, Y.C. A review of the role of Nocardia-like filaments in activated sludge foaming. Water SA 1988, 14, 105–110. [Google Scholar]
- Potts, M. Desiccation tolerance of prokaryotes. Microbiol. Rev. 1994, 58, 755–805. [Google Scholar] [CrossRef]
- Xia, L.; Li, X.; Fan, W.; Wang, J. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge. Bioresour. Technol. 2020, 301, 122749. [Google Scholar] [CrossRef]
- Guyer, J.P.; P.E.; R.A. An Introduction to Activated Sludge Wastewater Treatment Plants. PDH Library Course No 0010084 3 PDH HOURS. 2013. Available online: https://www.pdhlibrary.com/sites/default/files/0010084-Activated_Sludge_Wastewater_Treatment_Plants.pdf (accessed on 28 August 2022).
- DECREE. Decree of the President of Romania no. 195 of 16 March 2020, Regarding the Establishment of the State of Emergency on the Territory of Romania, The Oficial Monitor, 212, Bucharest, Romania. 2020. Available online: https://legislatie.just.ro/Public/DetaliiDocument/223831 (accessed on 12 February 2022).
- SR ISO 10523: 2012; Water Quality—Determination of pH. International Organization for Standardization (ISO): Geneva, Switzerland, 2012.
- SR ISO 6060: 1996; Water Quality—Determination of the Chemical Oxygen Demand. International Organization for Standardization (ISO): Geneva, Switzerland, 1996.
- SR EN 5815-1: 2020; Water Quality—Determination of Biochemical Oxygen Demand after n days (BODn). Part 1: Dilution and Seeding Method with Allylthiourea Addition. International Organization for Standardization (ISO): Geneva, Switzerland, 2020.
- SR EN ISO 1899-2: 2002; Water Quality—Determination of Biochemical Oxygen Demand after n days (BODn). Part 2: Method for Undiluted Samples. International Organization for Standardization (ISO): Geneva, Switzerland, 2002.
- SR EN 872: 2005; Water Quality—Determination of Suspended Solids—Method by Filtration through Glass Fibre Filters. International Organization for Stand-ardization (ISO): Geneva, Switzerland, 2005.
- SR EN ISO 11905–1: 2003; Water Quality—Determination of Nitrogen—Part 1: Method Using Oxidative Digestion with Peroxodisulfate. International Organization for Standardization (ISO): Geneva, Switzerland, 2003.
- SR EN ISO 6878: 2005 Chapter 7; Water Quality—Spectrometric Determination of Phosphorus Using Ammonium Molybdate. International Organization for Standardization (ISO): Geneva, Switzerland, 2005.
- Waqas, S.; Bilard, M.R.; Man, Z.; Wibisono, Y.; Jaafar, J.; Mahlia, T.M.I.; Khan, A.L.; Aslam, M. Recent progress in integrated fixed-film activated sludge process for wastewater treatment: A review. J. Environ. Manag. 2020, 268, 110718. [Google Scholar] [CrossRef] [PubMed]
- Metcalf & Eddy, Inc. Wastewater Engineering, Treatment, Disposal, and Reuse, 3rd ed.; McGraw-Hill, Inc.: New York, NY, USA, 1991. [Google Scholar]
- Nielsen, P.H.; Kragelund, C.; Seviour, R.J.; Nielsen, J.L. Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiol. Rev. 2009, 33, 969–998. [Google Scholar] [CrossRef]
- Snyder, R.; Wyant, D. Training Manual for Wastewater Treatment Plant, Operators-Activated Sludge Process Control; Water Resources Division: State of Michigan Department of Environmental Quality: Ann Arbor, MI, USA, 2010; pp. 1–3. [Google Scholar]
- Cowan, R.M.; Alagappan, G.; Ellis, T.G.; Higgins, M.J.; Uberoi, V. Activated Sludge and other Aerobic Suspended Culture Processes. Water Environ. Res. 1997, 69, 462–487. [Google Scholar] [CrossRef]
- Pröschold, T.; Rieser, D.; Darienko, T.; Nachbaur, L.; Kammerlander, B.; Qian, K.; Pitsch, G.; Bruni, E.P.; Qu, Z.; Forster, D.; et al. An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea). Sci. Rep. 2021, 11, 5916. [Google Scholar] [CrossRef]
- Martin-Cereceda, M.; Alvarez, A.M.; Serrano, S.; Guinea, A. Confocal and light microscope examination of protozoa and other microorganisms in the biofilms from a rotating biological contactor wastewater treatment plant. Acta Protozool. 2001, 40, 263–272. [Google Scholar]
- Sobczyk, M.; Pajdak-Stós, A.; Fiałkowska, E.; Sobczyk, L.; Fyd, J. Multivariate analysis of activated sludge community in full-scale wastewater treatment plants. ESPR 2021, 28, 3579–3589. [Google Scholar] [CrossRef]
- Xu, S.; Yao, J.; Ainiwaer, M.; Hong, Y.; Zhang, Y. Analysis of bacterial community structure of activated sludge from wastewater treatment plants in winter. Biomed. Res. Int. 2018, 2018, 8278970. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, L.; Xiang, F.; Zhao, L.; Qiao, Z. Activated sludge microbial community and treatment performance of wastewater treatment plants in industrial and municipal zones. Int. J. Environ. Res. Public Health 2020, 17, 436. [Google Scholar] [CrossRef] [PubMed]
- Righetti, M.; Lucarelli, C. Resuspension phenomena of benthic sediments: The role of cohesion and biological adhesion. River Res. Applic. 2010, 26, 404–413. [Google Scholar] [CrossRef]
- Ionescu, I.; Tiron, O.; Bumbac, C.; Badescu, V.; Cosma, C. Impact of heavy metals on the variability of activated sludge. J. Environ. Prot. Ecol. 2015, 16, 1515–1524. [Google Scholar]
- Cao, L.; Liao, Y.; Su, C.; Tang, L.; Qi, Z.; Wei, L.; Wu, J.; Gao, S. Effects of PFOA on the physicochemical properties of anaerobic granular sludge: Performance evaluation, microbial community and metagenomic analysis. J. Environ. Manag. 2022, 313, 114936. [Google Scholar] [CrossRef]
- Joshi, S.; Thatte, K.; Kurve, P. Characterization and identification of microflora in activated sludge process. In Proceedings of the National Conference on Biodiversity: Status and Challenges in Conservation “FAVEO”, Mumbai, India, 29–30 November 2013; pp. 214–218. [Google Scholar]
- Chen, R.; Ren, L.F.; Shao, J.; He, Y.; Zhang, X. Changes in degrading ability, populations and metabolism of microbes in activated sludge in the treatment of phenol wastewater. RSC Adv. 2017, 7, 52841–52851. [Google Scholar] [CrossRef]
- Nouha, K.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. EPS Producing microorganisms from municipal wastewater activated sludge. J. Pet. Environ. Biotechnol. 2015, 7, 1. [Google Scholar]
- Li, L.; You, Y.; Pagilla, K. Density-Based Separation of Microbial Functional Groups in Activated Sludge. Int. J. Environ. Res. Public Health 2020, 17, 376. [Google Scholar] [CrossRef] [Green Version]
Group of Microorganisms | Types of Microorganisms | Group of Microorganisms | Types of Microorganisms |
---|---|---|---|
1.Bacteria | Free bacteria | 3.Unicellular | Coleps spp. |
Spirilla, Spirochetes | Euplotes spp. | ||
Zoogloea spp. | Aspidisca lynceus | ||
Sulphur bacteria | Aspidisca cicada | ||
Sphaerotilus spp. | Chilodonella spp. | ||
Nocardia | Litonotus spp. | ||
Microthrix | Amphileptus | ||
Type 021N | Tecamoeba | ||
Type 1701 | Amoeboids | ||
Type 0041 | Paramecium spp. | ||
Dexiostoma campyla | |||
2.Unicellular | Tokophrya spp. | Glaucoma spp. | |
sessile | Podophrya spp. | Zooflagelate | |
Opercularia spp. | Flagelattes | ||
Carchesium spp. | Wandering cells | ||
Epistylis spp. | Resistance | ||
Vorticella campanula | |||
Vorticella convallaria | 4.Pluricellular | Fungi | |
Vorticella microst. | Rotifers | ||
Nematodes | |||
Insects |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roman, M.-D.; Sava, C.; Iluțiu-Varvara, D.-A.; Mare, R.; Pruteanu, L.-L.; Pică, E.M.; Jäntschi, L. Biological Activated Sludge from Wastewater Treatment Plant before and during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 11323. https://doi.org/10.3390/ijerph191811323
Roman M-D, Sava C, Iluțiu-Varvara D-A, Mare R, Pruteanu L-L, Pică EM, Jäntschi L. Biological Activated Sludge from Wastewater Treatment Plant before and during the COVID-19 Pandemic. International Journal of Environmental Research and Public Health. 2022; 19(18):11323. https://doi.org/10.3390/ijerph191811323
Chicago/Turabian StyleRoman, Marius-Daniel, Cornel Sava, Dana-Adriana Iluțiu-Varvara, Roxana Mare, Lavinia-Lorena Pruteanu, Elena Maria Pică, and Lorentz Jäntschi. 2022. "Biological Activated Sludge from Wastewater Treatment Plant before and during the COVID-19 Pandemic" International Journal of Environmental Research and Public Health 19, no. 18: 11323. https://doi.org/10.3390/ijerph191811323
APA StyleRoman, M. -D., Sava, C., Iluțiu-Varvara, D. -A., Mare, R., Pruteanu, L. -L., Pică, E. M., & Jäntschi, L. (2022). Biological Activated Sludge from Wastewater Treatment Plant before and during the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 19(18), 11323. https://doi.org/10.3390/ijerph191811323