Efficacy of HEPA Air Cleaner on Improving Indoor Particulate Matter 2.5 Concentration
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Health Effects Institute. State of Global Air 2020: A Special Report on Global Exposure to Air Pollution and Its Health Impacts; Health Effects Institute: Boston, MA, USA, 2020. [Google Scholar]
- State of Global Air/2020 Website. Available online: https://www.stateofglobalair.org/ (accessed on 7 August 2022).
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air Pollution and Organ Systems. Chest 2019, 155, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 1: The Damaging Effects of Air Pollution. Chest 2019, 155, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Raaschou-Nielsen, O.; Andersen, Z.J.; Beelen, R.; Samoli, E.; Stafoggia, M.; Weinmayr, G.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M.J.; Brunekreef, B.; et al. Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013, 14, 813–822. [Google Scholar] [CrossRef]
- Wang, C.; Xu, J.; Yang, L.; Xu, Y.; Zhang, X.; Bai, C.; Kang, J.; Ran, P.; Shen, H.; Wen, F.; et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): A national cross-sectional study. Lancet 2018, 391, 1706–1717. [Google Scholar] [CrossRef]
- Chang, J.-H.; Hsu, S.-C.; Bai, K.-J.; Huang, S.-K.; Hsu, C.-W. Association of time-serial changes in ambient particulate matters (PMs) with respiratory emergency cases in Taipei’s Wenshan District. PLoS ONE 2017, 12, e0181106. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, Z.; Lau, A.K.H.; Lin, C.Q.; Chuang, Y.C.; Chan, J.; Jiang, W.K.; Tam, T.; Yeoh, E.-K.; Chan, T.-C.; et al. Effect of long-term exposure to fine particulate matter on lung function decline and risk of chronic obstructive pulmonary disease in Taiwan: A longitudinal, cohort study. Lancet Planet Health 2018, 2, e114–e125. [Google Scholar] [CrossRef]
- Jung, C.-R.; Chen, W.-T.; Tang, Y.-H.; Hwang, B.-F. Fine particulate matter exposure during pregnancy and infancy and incident asthma. J. Allergy Clin. Immunol. 2019, 143, 2254–2262.e5. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef]
- Ho, C.-C.; Chen, L.-J.; Hwang, J.-S. Estimating ground-level PM2.5 levels in Taiwan using data from air quality monitoring stations and high coverage of microsensors. Environ. Pollut. 2020, 264, 114810. [Google Scholar] [CrossRef]
- Jung, C.-R.; Hwang, B.-F.; Chen, W.-T. Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015. Environ. Pollut. 2018, 237, 1000–1010. [Google Scholar] [CrossRef]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Energy. Specification for HEPA Filters Used by DOE Contractors-DOE Technical Standard. Available online: https://www.standards.doe.gov/standards-documents/3000/3020-astd-2015 (accessed on 26 September 2021).
- Barn, P.; Gombojav, E.; Ochir, C.; Laagan, B.; Beejin, B.; Naidan, G.; Boldbaatar, B.; Galsuren, J.; Byambaa, T.; Janes, C.; et al. The effect of portable HEPA filter air cleaners on indoor PM2.5 concentrations and second hand tobacco smoke exposure among pregnant women in Ulaanbaatar, Mongolia: The UGAAR randomized controlled trial. Sci. Total Environ. 2018, 615, 1379–1389. [Google Scholar] [CrossRef] [PubMed]
- Butz, A.M.; Matsui, E.C.; Breysse, P.; Curtin-Brosnan, J.; Eggleston, P.; Diette, G.; Williams, D.A.; Yuan, J.; Bernert, J.T.; Rand, C. A randomized trial of air cleaners and a health coach to improve indoor air quality for inner-city children with asthma and secondhand smoke exposure. Arch. Pediatr. Adolesc. Med. 2011, 165, 741–748. [Google Scholar] [CrossRef] [PubMed]
- McNamara, M.L.; Thornburg, J.; Semmens, E.O.; Ward, T.J.; Noonan, C.W. Reducing indoor air pollutants with air filtration units in wood stove homes. Sci. Total Environ. 2017, 592, 488–494. [Google Scholar] [CrossRef]
- Riederer, A.M.; Krenz, J.E.; Tchong-French, M.I.; Torres, E.; Perez, A.; Younglove, L.R.; Jansen, K.L.; Hardie, D.C.; Farquhar, S.A.; Sampson, P.D.; et al. Effectiveness of portable HEPA air cleaners on reducing indoor PM2.5 and NH3 in an agricultural cohort of children with asthma: A randomized intervention trial. Indoor Air 2021, 31, 454–466. [Google Scholar] [CrossRef]
- Zhan, Y.; Johnson, K.; Norris, C.; Shafer, M.M.; Bergin, M.H.; Zhang, Y.; Zhang, J.; Schauer, J.J. The influence of air cleaners on indoor particulate matter components and oxidative potential in residential households in Beijing. Sci. Total Environ. 2018, 626, 507–518. [Google Scholar] [CrossRef]
- Bennett, D.H.; Moran, R.E.; Krakowiak, P.; Tancredi, D.J.; Kenyon, N.J.; Williams, J.; Fisk, W.J. Reductions in particulate matter concentrations resulting from air filtration: A randomized sham-controlled crossover study. Indoor Air 2022, 32, e12982. [Google Scholar] [CrossRef]
- Chen, L.-J.; Ho, Y.-H.; Lee, H.-C.; Wu, H.-C.; Liu, H.-M.; Hsieh, H.-H.; Huang, Y.-T.; Lung, S.-C.C. An Open Framework for Participatory PM2.5 Monitoring in Smart Cities. IEEE Access 2017, 5, 14441–14454. [Google Scholar] [CrossRef]
- Bulot, F.M.J.; Johnston, S.J.; Basford, P.J.; Easton, N.H.C.; Apetroaie-Cristea, M.; Foster, G.L.; Morris, A.K.R.; Cox, S.J.; Loxham, M. Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment. Sci. Rep. 2019, 9, 7497. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Chao, C.-Y.; Chien, C.-H.; Wu, C.-Y.; Luo, C.H.; Chen, L.-J.; Biswas, P. Integrating low-cost air quality sensor networks with fixed and satellite monitoring systems to study ground-level PM2.5. Atmos. Environ. 2020, 223, 117293. [Google Scholar] [CrossRef]
- Water and Air Quality Bureau Health Canada. Residential Indoor Air Quality Guidelines for Carbon Dioxide–For Public Consultation. 2020. Available online: https://www.canada.ca/en/health-canada/programs/consultation-residential-indoor-air-quality-guidelines-carbon-dioxide/document.html (accessed on 29 September 2021).
- Deng, G.; Li, Z.; Wang, Z.; Gao, J.; Xu, Z.; Li, J.; Wang, Z. Indoor/outdoor relationship of PM2.5 concentration in typical buildings with and without air cleaning in Beijing. Indoor Built Environ. 2017, 26, 60–68. [Google Scholar] [CrossRef]
- Massey, D.; Masih, J.; Kulshrestha, A.; Habil, M.; Taneja, A. Indoor/outdoor relationship of fine particles less than 2.5 mm (PM2.5) in residential homes locations in central Indian region. Build. Environ. 2009, 44, 2037–2045. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Technical Assistance Document for the Reporting of Daily Air Quality—The Air Quality Index (AQI). 2018. Available online: https://www.airnow.gov/publications/air-quality-index/technical-assistance-document-for-reporting-the-daily-aqi/ (accessed on 1 January 2022).
- WHO. Ambient (Outdoor) Air Pollution: Key Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 22 September 2021).
- World Health Organization; WHO Global Air Quality Guidelines. Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Executive Summary. 2021. Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 29 September 2021).
Air Cleaner Setting | n | Airflow Speed (m/s) | Outlet Area (cm2) | Estimated CADR (m3/h) | Noise (dB) |
---|---|---|---|---|---|
Low flow | 9 | 0.53 ± 0.11 | 207 | 39.5 | 31.4 ± 1.5 |
Medium flow | 9 | 1.47 ± 0.1 | 207 | 109.5 | 35.9 ± 0.6 |
High flow | 9 | 4.34 ± 0.11 | 207 | 323.4 | 56.5 ± 1.6 |
Group | Flow (n) | Outdoor PM2.5 µg/m3 | MD | Indoor PM2.5 µg/m3 | MD | p Value | Indoor /Outdoor PM2.5 % | MD | p Value |
---|---|---|---|---|---|---|---|---|---|
1 air cleaner low flow | Off (350) | 44.8 ± 10.2 | 2.6 | 32.6 ± 10.9 | −3.7 | <0.001 | 72.2 ± 19 | −10.4 | <0.001 |
On (349) | 47.4 ± 19.3 | 28.9 ± 11.4 | 61.8 ± 16.7 | ||||||
1 air cleaner medium flow | Off (347) | 56.7 ± 15.9 | −3.4 | 44.7 ± 8.2 | −23.9 | <0.001 | 82.2 ± 17 | −40.5 | <0.001 |
On (344) | 53.3 ± 19.6 | 20.8 ± 7.8 | 41.7 ± 17.6 | ||||||
2 air cleaner low flow | Off (348) | 47.9 ± 15.1 | 0.4 | 35.7 ± 9.1 | −15.4 | <0.001 | 78.1 ± 21.1 | −37.5 | <0.001 |
On (350) | 48.3 ± 24.2 | 20.3 ± 11.9 | 40.6 ± 13.8 | ||||||
2 air cleaner medium flow | Off (349) | 40.5 ± 6.3 | 0 | 25.6 ± 4.6 | −13.9 | <0.001 | 63.6 ± 9.2 | −35.2 | <0.001 |
On (348) | 40.5 ± 4.8 | 11.7 ± 6.9 | 28.4 ± 15.3 | ||||||
3 air cleaner low flow | Off (350) | 31.7 ± 5.1 | 1.1 | 26 ± 3 | −14.2 | <0.001 | 83.3 ± 11.4 | −46.1 | <0.001 |
On (351) | 32.8 ± 5.3 | 11.8 ± 4 | 37.2 ± 16.3 | ||||||
3 air cleaner medium flow | Off (351) | 46.7 ± 12.3 | −1.1 | 36.2 ± 9 | −26.5 | <0.001 | 78.5 ± 11.3 | −56.4 | <0.001 |
On (349) | 45.6 ± 7.7 | 9.7 ± 4.1 | 22.1 ± 12 | ||||||
Overall | Off (2095) | 44.7 ± 13.8 | −0.1 | 33.5 ± 10.3 | −16.3 | <0.001 | 76.3 ± 16.8 | −37.7 | <0.001 |
On (2091) | 44.6 ± 16.8 | 17.2 ± 10.7 | 38.6 ± 19.8 |
Group | Living Room Window | N | Indoor/Outdoor PM2.5 % | MD | p Value |
---|---|---|---|---|---|
1 air cleaner low flow | close | 337 | 60.7 ± 15.9 | 30.9 | <0.001 |
open | 12 | 91.6 ± 10.4 | |||
1 air cleaner medium flow | close | 329 | 40.7 ± 16.9 | 22.7 | <0.001 |
open | 15 | 63.4 ± 17.9 | |||
2 air cleaner low flow | close | 335 | 39.7 ± 12.5 | 22.1 | <0.001 |
open | 15 | 61.8 ± 22.5 | |||
2 air cleaner medium flow | close | 333 | 26.8 ± 13.2 | 37.5 | <0.001 |
open | 15 | 64.3 ± 15 | |||
3 air cleaner low flow | close | 334 | 35.7 ± 14.3 | 32.3 | <0.001 |
open | 17 | 68 ± 22.2 | |||
3 air cleaner medium flow | close | 334 | 21 ± 10.5 | 26.4 | <0.001 |
open | 15 | 47.4 ± 15.7 | |||
Overall | close | 2002 | 37.5 ± 18.9 | 27.8 | <0.001 |
open | 89 | 65.3 ± 21.5 |
Factors | B | Standard Error | Beta | R2 Change | p Value |
---|---|---|---|---|---|
(Constant) | 12.651 | 0.510 | <0.001 | ||
1 machine low flow | −5.811 | 0.383 | −0.121 | 0.014 | <0.001 |
1 machine medium flow | −16.722 | 0.409 | −0.346 | 0.067 | <0.001 |
2 machines low flow | −14.905 | 0.381 | −0.311 | 0.081 | <0.001 |
2 machines medium flow | −19.787 | 0.376 | −0.411 | 0.089 | <0.001 |
3 machines low flow | −16.276 | 0.417 | −0.340 | 0.077 | <0.001 |
3 machines medium flow | −24.212 | 0.389 | −0.504 | 0.132 | <0.001 |
Outdoor PM2.5 | 0.464 | 0.007 | 0.537 | 0.304 | <0.001 |
Window ventilation | 6.361 | 0.471 | 0.100 | 0.010 | <0.001 |
Outdoor wind speed | −0.104 | 0.122 | −0.008 | 0.392 |
Factors | B | Standard Error | Beta | R2 Change | p Value |
---|---|---|---|---|---|
(Constant) | 85.748 | 1.245 | <0.001 | ||
1 machine low flow | −13.941 | 0.934 | −0.147 | 0.022 | <0.001 |
1 machine medium flow | −33.074 | 0.996 | −0.347 | 0.110 | <0.001 |
2 machines low flow | −35.025 | 0.929 | −0.370 | 0.094 | <0.001 |
2 machines medium flow | −48.803 | 0.916 | −0.515 | 0.138 | <0.001 |
3 machines low flow | −41.898 | 1.016 | −0.444 | 0.096 | <0.001 |
3 machines medium flow | −54.154 | 0.948 | −0.572 | 0.165 | <0.001 |
Outdoor PM2.5 | −0.210 | 0.017 | −0.123 | 0.015 | <0.001 |
Window ventilation | 14.087 | 1.149 | 0.113 | 0.013 | <0.001 |
Outdoor wind speed | −0.332 | 0.296 | −0.013 | 0.263 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-F.; Hsu, C.-H.; Chang, Y.-J.; Lee, C.-H.; Lee, D.L. Efficacy of HEPA Air Cleaner on Improving Indoor Particulate Matter 2.5 Concentration. Int. J. Environ. Res. Public Health 2022, 19, 11517. https://doi.org/10.3390/ijerph191811517
Chen C-F, Hsu C-H, Chang Y-J, Lee C-H, Lee DL. Efficacy of HEPA Air Cleaner on Improving Indoor Particulate Matter 2.5 Concentration. International Journal of Environmental Research and Public Health. 2022; 19(18):11517. https://doi.org/10.3390/ijerph191811517
Chicago/Turabian StyleChen, Chiu-Fan, Chun-Hsiang Hsu, Yu-Jung Chang, Chao-Hsien Lee, and David Lin Lee. 2022. "Efficacy of HEPA Air Cleaner on Improving Indoor Particulate Matter 2.5 Concentration" International Journal of Environmental Research and Public Health 19, no. 18: 11517. https://doi.org/10.3390/ijerph191811517
APA StyleChen, C.-F., Hsu, C.-H., Chang, Y.-J., Lee, C.-H., & Lee, D. L. (2022). Efficacy of HEPA Air Cleaner on Improving Indoor Particulate Matter 2.5 Concentration. International Journal of Environmental Research and Public Health, 19(18), 11517. https://doi.org/10.3390/ijerph191811517