Association of Sleep Duration and Self-Reported Insomnia Symptoms with Metabolic Syndrome Components among Middle-Aged and Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Volunteers
2.2. Definitions of MetS
2.3. Data Collection
2.4. Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernandez-Montero, A. Risk of Developing Metabolic Syndrome Is Affected by Length of Daily Siesta: Results from a Prospective Cohort Study. Nutrients 2021, 13, 4182. [Google Scholar]
- Syauqy, A.; Hsu, C.Y.; Rau, H.H.; Kurniawan, A.L.; Chao, C.J. Association of Sleep Duration and Insomnia Symptoms with Components of Metabolic Syndrome and Inflammation in Middle-Aged and Older Adults with Metabolic Syndrome in Taiwan. Nutrients 2019, 11, 1848. [Google Scholar] [CrossRef] [PubMed]
- Witkiewicz, I.; Woniak, A.; Taub, P.R. Time-Restricted Eating and Metabolic Syndrome: Current Status and Future Perspectives. Nutrients 2021, 13, 221. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Je, Y. Dairy Consumption and Risk of Metabolic Syndrome: Results from Korean Population and Meta-Analysis. Nutrients 2021, 13, 1574. [Google Scholar] [CrossRef]
- Ahmed, A.; Akhter, J.; Iqbal, R.; Jabbar, A.; Tuomilehto, J. Prevalence and Associations of Metabolic Syndrome in an Urban High Diabetes Risk Population in a Low/Middle-Income Country. Metab. Syndr. Relat. Disord. 2020, 18, 234–242. [Google Scholar] [CrossRef]
- Park, S.I.; Suh, J.; Lee, H.S.; Song, K.; Chae, H.W. Ten-Year Trends of Metabolic Syndrome Prevalence and Nutrient Intake among Korean Children and Adolescents: A Population-Based Study. Yonsei Med. J. 2021, 62, 344–351. [Google Scholar] [CrossRef]
- Vidigal, F.D.C.; Ribeiro, A.Q.; Babio, N.; Salas-Salvado, J.; Bressan, J. Prevalence of metabolic syndrome and pre-metabolic syndrome in health professionals: LATINMETS Brazil study. Diabetol. Metab. Syndr. 2015, 7, 6. [Google Scholar] [CrossRef]
- Alves, R.; Santos, A.J.; Kislaya, I.; Nunes, B.; Freire, A.C. Metabolic Syndrome in Portugal: Prevalence and Associated Factors. Acta Medica Port. 2021, 35. [Google Scholar] [CrossRef]
- Gu, D.; Reynolds, K.; Wu, X.; Jing, C.; Jiang, H. Prevalence of the metabolic syndrome and overweight among adults in China. Lancet 2005, 365, 1398–1405. [Google Scholar] [CrossRef]
- Wu, L.T.; Shen, Y.F.; Hu, L.; Zhang, M.Y.; Lai, X.Y. Prevalence and associated factors of metabolic syndrome in adults: A population-based epidemiological survey in Jiangxi province, China. BMC Public Health 2020, 20, 133. [Google Scholar] [CrossRef]
- Starzak, M.; Stanek, A.; Jakubiak, G.; Cholewka, A.; Cieślar, G. Arterial Stiffness Assessment by Pulse Wave Velocity in Patients with Metabolic Syndrome and Its Components: Is It a Useful Tool in Clinical Practice? Int. J. Environ. Res. Public Health 2022, 19, 10368. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Huang, G.; Zhou, W.; Che, Z.; Zhou, P.; Zhou, Z. Prevalence of metabolic syndrome (MetS) in Chinese subjects gradually increased with impaired glucose homeostasis: A multicenter, clinical based, cross-sectional study. BMC Public Health 2012, 12, 675. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xu, G.; Shen, L.; Zhang, Y.; Song, L.; Yang, S.; Yang, H.; Liang, Y.; Wu, T.; Wang, Y. Daily sleep duration and risk of metabolic syndrome among middle-aged and older Chinese adults: Cross-sectional evidence from the Dongfeng–Tongji cohort study. BMC Public Health 2015, 15, 178. [Google Scholar] [CrossRef] [PubMed]
- Hughan, K.S.; Levine, A.; Helbling, N.; Anthony, S.; Delany, J.P.; Stefanovic-Racic, M.; Goodpaster, B.H.; Gladwin, M.T. Effects of Oral Sodium Nitrite on Blood Pressure, Insulin Sensitivity, and Intima-Media Arterial Thickening in Adults With Hypertension and Metabolic Syndrome. Hypertension 2020, 76, 866–874. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, X. Compliance with care and poor sleep quality among hypertensive adults in a mountainous area of Hubei Province, People’s Republic of China. Patient Prefer. Adherence 2019, 13, 1221–1227. [Google Scholar] [CrossRef]
- Ren, G.; Kim, T.; Kim, H.S.; Young, M.E.; Kim, J.A. A Small Molecule, UAB126, Reverses Diet-Induced Obesity and its Associated Metabolic Disorders. Diabetes 2020, 69, 2003–2016. [Google Scholar] [CrossRef]
- Tremblay, A.; Clinchamps, M.; Pereira, B.; Courteix, D.; Dutheil, F. Dietary Fibres and the Management of Obesity and Metabolic Syndrome: The RESOLVE Study. Nutrients 2020, 12, 2911. [Google Scholar] [CrossRef]
- Lao, X.; Ma, W.; Sobko, T.; Zhang, Y.; Xu, Y.; Xu, X.; Yu, D.; Nie, S.; Cai, Q.; Wei, X. Dramatic escalation in metabolic syndrome and cardiovascular risk in a Chinese population experiencing rapid economic development. BMC Public Health 2014, 14, 983. [Google Scholar] [CrossRef]
- Lin, S.C.; Sun, C.A.; You, S.L.; Lee-Ching, H.; Liang, C.Y.; Yang, T.; Bai, C.H.; Chen, C.H.; Wei, C.Y.; Yu-Ching, C. The Link of Self-Reported Insomnia Symptoms and Sleep Duration with Metabolic Syndrome: A Chinese Population-Based Study. Sleep 2016, 6, 1261–1266. [Google Scholar] [CrossRef]
- Amiri-Ardekani, E.; Kazemi, A.; Sasani, N.; Fanfulla, F.; Clark, C.C. The association of meal glycemic index/load with quantitative and qualitative indicators of sleep: A systematic review. Minerva Med. 2021, 5. [Google Scholar] [CrossRef]
- Chattu, V.K.; Chattu, S.K.; Burman, D.; Spence, D.W.; Pandi-Perumal, S.R. The Interlinked Rising Epidemic of Insufficient Sleep and Diabetes Mellitus. Healthcare 2019, 7, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Sun, Q.; Chen, B.; Basta, M.; Xu, C.; Li, Y. Insomnia symptoms are associated with metabolic syndrome in patients with severe psychiatric disorders. Sleep Med. 2021, 83, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Chedraui, P.; Miguel, G.S.; Villacreses, D.; Dominguez, A.; Jaramillo, W.; Escobar, G.S.; Pérez-López, F.R.; Genazzani, A.R.; Simoncini, T. Assessment of insomnia and related risk factors in postmenopausal women screened for the metabolic syndrome. Maturitas 2013, 74, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiang, X.; Liu, J.; Lang, Y.; Liu, Y. The association between insomnia and the risk of metabolic syndrome: A systematic review and meta-analysis. J. Clin. Neurosci. 2021, 89, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Brewer, H.B.; Cleeman, J.I.; Smith, S.C.; Lenfant, C. Definition of Metabolic Syndrome Report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on Scientific Issues Related to Definition. Obes. Rev. 2005, 24, 283–296. [Google Scholar]
- Ju, S.Y.; Choi, W.S. Sleep duration and metabolic syndrome in adult populations: A meta-analysis of observational studies. Nutr. Diabetes. 2013, 3, e65. [Google Scholar] [CrossRef]
- Xi, B.; He, D.; Zhang, M.; Xue, J.; Zhou, D. Short sleep duration predicts risk of metabolic syndrome: A systematic review and meta-analysis. Sleep Med. Rev. 2014, 18, 293–297. [Google Scholar] [CrossRef]
- Garbarino, S.; Magnavita, N. Sleep problems are a strong predictor of stress-related metabolic changes in police officers. A prospective study. PLoS ONE 2019, 14, e224259. [Google Scholar] [CrossRef]
- van der Pal, K.C.; Koopman, A.D.M.; Jeroen, L.; Van, D.; Elders, P.J.; Beulens, J.W.; Femke, R. The association between multiple sleep-related characteristics and the metabolic syndrome in the general population: The New Hoorn study. Sleep Med. 2018, 52, 51–57. [Google Scholar] [CrossRef]
- Li, W.; Kondracki, A.J.; Sun, N.; Gautam, P.; Kalan, M.E.; Jebai, R.; Gbadamosi, S.O.; Sun, W. Nighttime sleep duration, daytime napping, and metabolic syndrome: Findings from the China Health and Retirement Longitudinal Study. Sleep Breath. 2021, 26, 1427–1435. [Google Scholar] [CrossRef]
- Cheng, G.H.L.; Malhotra, R.; Ostbye, T.; Chan, A.; Ma, S.; Lo, J.C. Changes in nocturnal sleep and daytime nap durations predict all-cause mortality among older adults: The Panel on Health and Ageing of Singaporean Elderly. Sleep 2018, 41, zsy087. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Sun, K.; Li, F.; Qi, Y.; Ren, M.; Huang, C.; Tang, J.; Xue, S.; Li, Y.; Yan, L. Association between habitual daytime napping and metabolic syndrome: A population-based study. Metabolism 2014, 63, 1520–1527. [Google Scholar] [CrossRef] [PubMed]
- Papandreou, C.; Diaz-Lopez, A.; Babio, N.; Martinez-Gonzalez, M.A.; Bullo, M.; Corella, D.; Fito, M.; Romaguera, D.; Vioque, J.; Alonso-Gomez, A.M.; et al. Long Daytime Napping Is Associated with Increased Adiposity and Type 2 Diabetes in an Elderly Population with Metabolic Syndrome. J. Clin. Med. 2019, 8, 1053. [Google Scholar] [CrossRef]
- Chen, G.; Liu, M.; Chen, L.; Xu, J.; Hidayat, K.; Li, F.; Qin, L. Daytime napping and risk of type 2 diabetes: A meta-analysis of prospective studies. Sleep Breath. 2018, 22, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Tse, L.A.; Wang, C.; Rangarajan, S.; Liu, Z.; Teo, K.; Yusufali, A.; Avezum, A.; Wielgosz, A.; Rosengren, A.; Kruger, I.M.; et al. Timing and Length of Nocturnal Sleep and Daytime Napping and Associations With Obesity Types in High-, Middle-, and Low-Income Countries. JAMA Netw. Open 2021, 4, e2113775. [Google Scholar] [CrossRef]
- Lin, M.; Su, Q.; Wen, J.; Wei, S.; Yao, J.; Huang, H.; Liang, J.; Li, L.; Lin, W.; Lin, L.; et al. Self-reported sleep duration and daytime napping are associated with renal hyperfiltration in general population. Sleep Breath. 2018, 22, 223–232. [Google Scholar] [CrossRef]
- Lin, L.; Lu, C.; Chen, W.; Guo, V.Y. Daytime Napping and Nighttime Sleep Duration with Incident Diabetes Mellitus: A Cohort Study in Chinese Older Adults. Int. J. Env. Res. Pub. He. 2021, 18, 5012. [Google Scholar] [CrossRef]
- Wang, H.; Chen, L.; Shen, D.; Cao, Y.; Zhang, X.; Xie, K.; Wang, C.; Zhu, S.; Guo, Y.; Fiona, B.; et al. Association of daytime napping in relation to risk of diabetes: Evidence from a prospective study in Zhejiang, China. Nutr. Metab. 2021, 18, 18. [Google Scholar] [CrossRef]
- Wang, C.; Bangdiwala, S.I.; Rangarajan, S.; Lear, S.A.; AlHabib, K.F.; Mohan, V.; Teo, K.; Poirier, P.; Tse, L.A.; Liu, Z.; et al. Association of estimated sleep duration and naps with mortality and cardiovascular events: A study of 116 632 people from 21 countries. Eur. Heart J. 2019, 40, 1620–1629. [Google Scholar] [CrossRef]
- Ciren, W.; Nima, Q.; Li, Y.; He, R.; Suolang, D.; Ciren, Z.; Wangqing, P.; Fan, C.; Yang, D.; Wu, K.; et al. Association of Daytime Napping with chronic diseases among Tibetan people in China: A cross-sectional study. BMC Public Health 2021, 21, 1810. [Google Scholar] [CrossRef]
- Costemale-Lacoste, J.; El Asmar, K.; Rigal, A.; Martin, S.; Tayeb, A.E.K.A.; Colle, R.; Becquemont, L.; Feve, B.; Corruble, E. Severe insomnia is associated with metabolic syndrome in women over 50 years with major depression treated in psychiatry settings: A metadap report. J. Affect. Disorders. 2020, 264, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Wang, G.; Lian, Y. Association between anxiety and metabolic syndrome: A systematic review and meta-analysis of epidemiological studies. Psychoneuroendocrino 2017, 77, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Gaston, S.A.; Park, Y.; McWhorter, K.L.; Sandler, D.P.; Jackson, C.L. Multiple poor sleep characteristics and metabolic abnormalities consistent with metabolic syndrome among white, black, and Hispanic/Latina women: Modification by menopausal status. Diabetol. Metab. Syndr. 2019, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Lamers, F.; Milaneschi, Y.; de Jonge, P.; Giltay, E.J.; Penninx, B.W.J.H. Metabolic and inflammatory markers: Associations with individual depressive symptoms. Psychol. Med. 2018, 48, 1102–1110. [Google Scholar] [CrossRef]
- Vgontzas, A.N.; Bixler, E.O.; Chrousos, G.P. Obesity-Related Sleepiness and Fatigue—The Role of the Stress System and Cytokines; Chapter Stress, Obesity, and Metabolic Syndrome; Chrousos, G.P., Tsigos, C., Eds.; Annals of the New York Academy of Sciences Blackwell Science Publ: Oxford, UK, 2006; Volume 1083, pp. 329–344. [Google Scholar]
- Sondrup, N.; Termannsen, A.; Eriksen, J.N.; Hjorth, M.F.; Faerch, K.; Klingenberg, L.; Quist, J.S. Effects of sleep manipulation on markers of insulin sensitivity: A systematic review and meta-analysis of randomized controlled trials. Sleep Med. Rev. 2022, 62, 101594. [Google Scholar] [CrossRef]
- Lu, R.; Aziz, N.A.; Diers, K.; Stoecker, T.; Reuter, M.; Breteler, M.M.B. Insulin resistance accounts for metabolic syndrome-related alterations in brain structure. Hum. Brain Mapp. 2021, 42, 2434–2444. [Google Scholar] [CrossRef]
- Magnusdottir, S.; Thomas, R.J.; Hilmisson, H. Can improvements in sleep quality positively affect serum adiponectin-levels in patients with obstructive sleep apnea? Sleep Med. 2021, 84, 324–333. [Google Scholar] [CrossRef]
- Dashti, H.S.; Zuurbier, L.A.; de Jonge, E.; Voortman, T.; Jacques, P.F.; Lamon-Fava, S.; Scheer, F.A.J.L.; Kiefte-De Jong, J.C.; Hofman, A.; Ordovas, J.M.; et al. Actigraphic sleep fragmentation, efficiency and duration associate with dietary intake in the Rotterdam Study. J. Sleep Res. 2016, 25, 404–411. [Google Scholar] [CrossRef] [Green Version]
Variables | Sleep Duration (Hours/Day) | |||
---|---|---|---|---|
<6 (n = 212) | 6–8 (n = 684) | >8 (n = 356) | p-Value | |
Gender (%) | 0.505 | |||
Male | 44.81 | 47.08 | 49.72 | |
Female | 55.19 | 52.92 | 50.28 | |
Age (years) | 61.58 ± 15.12 | 59.73 ± 16.59 | 62.03 ± 13.03 | 0.048 |
Marital status (%) | 0.033 | |||
Not married | 28.77 | 35.09 | 25.84 | |
Married | 63.21 | 58.63 | 67.13 | |
Divorced | 8.02 | 6.29 | 7.02 | |
Level of education (%) | 0.408 | |||
High school and below | 15.57 | 16.52 | 20.51 | |
College and universities | 56.60 | 56.87 | 54.21 | |
Master | 24.53 | 24.27 | 24.16 | |
PhD | 3.30 | 2.34 | 1.12 | |
Current drinking status | <0.001 | |||
Yes | 61.79% | 39.91% | 53.93% | |
No | 38.21% | 60.09% | 46.07% | |
Current smoking status | <0.001 | |||
Yes | 54.25% | 41.08% | 55.90% | |
No | 45.75% | 58.92% | 44.10% | |
Breakfast habits (per week) | <0.001 | |||
No | 4.72% | 3.51% | 4.21% | |
1–3 times | 41.04% | 27.92% | 32.87% | |
4–5 times | 31.13% | 30.56% | 39.89% | |
Everyday | 23.11% | 38.01% | 23.03% | |
Physical activity (per day) | 0.000 | |||
<0.5 h | 50.00% | 40.06% | 24.72% | |
0.5–1 h | 25.94% | 38.01% | 24.72% | |
1–2 h | 13.68% | 15.06% | 29.21% | |
>2 h | 10.38% | 6.87% | 21.35% | |
Sitting time (per day) | <0.001 | |||
<6 h | 26.42% | 24.85% | 24.72% | |
6–8 h | 35.85% | 41.81% | 28.65% | |
8–10 h | 17.45% | 21.05% | 34.27% | |
>10 h | 20.28% | 12.28% | 12.36% | |
Insomnia symptoms | 0.000 | |||
Yes | 79.25% | 57.31% | 85.67% | |
No | 20.75% | 42.69% | 14.33% | |
Body mass index (kg/m2) | 26.42 ± 3.29 | 22.56 ± 3.23 | 23.11 ± 3.38 | <0.001 |
Systolic BP (mmHg) | 139.50 ± 17.34 | 132.61 ± 17.78 | 134.30 ± 18.80 | <0.001 |
Diastolic BP (mmHg) | 89.77 ± 12.73 | 85.59 ± 14.12 | 87.97 ± 14.24 | <0.001 |
Triglycerides (mmol/L) | 1.83 ± 0.48 | 1.45 ± 0.36 | 1.63 ± 0.50 | <0.001 |
HDL-C (mmol/L) | 1.12 ± 0.24 | 1.30 ± 0.27 | 1.25 ± 0.23 | <0.001 |
FBG (mmol/L) | 5.77 ± 0.44 | 5.69 ± 0.62 | 5.77 ± 0.39 | 0.020 |
2hPG (mmol/L) | 9.05 ± 0.70 | 9.09 ± 0.64 | 9.07 ± 0.69 | 0.789 |
Variables | Sleep Duration (Hours/Day) | |||
---|---|---|---|---|
<6 (n = 212) | 6–8 (n = 684) | >8 (n = 356) | p-Trend | |
Abnormal BMI | ||||
Model 1 1 | 5.355 (3.725–7.696) | 1 | 1.138 (0.879–1.475) | 0.023 |
Model 2 2 | 4.969 (3.439–7.179) | 1 | 1.176 (0.893–1.547) | 0.015 |
Model 3 3 | 4.743 (3.274–6.873) | 1 | 1.117 (0.845–1.476) | 0.061 |
High systolic BP | ||||
Model 1 1 | 2.487 (1.760–3.513) | 1 | 1.476 (1.134–1.922) | 0.000 |
Model 2 2 | 2.255 (1.572–3.237) | 1 | 1.170 (0.880–1.557) | 0.083 |
Model 3 3 | 2.108 (1.463–3.038) | 1 | 1.091 (0.815–1.459) | 0.261 |
High diastolic BP | ||||
Model 1 1 | 3.409 (2.386–4.872) | 1 | 1.552 (1.196–2.015) | 0.000 |
Model 2 2 | 3.166 (2.191–4.577) | 1 | 1.315 (0.994–1.739) | 0.005 |
Model 3 3 | 2.861 (1.969–4.157) | 1 | 1.171 (0.879–1.559) | 0.068 |
High triglycerides | ||||
Model 1 1 | 12.060 (8.339–17.441) | 1 | 2.600 (1.971–3.430) | 0.000 |
Model 2 2 | 11.853 (8.135–17.270) | 1 | 2.334 (1.744–3.123) | 0.000 |
Model 3 3 | 11.779 (8.051–17.234) | 1 | 2.319 (1.723–3.121) | 0.000 |
Low HDL-C (men) | ||||
Model 1 1 | 9.649 (5.743–16.213) | 1 | 1.797 (1.120–2.883) | 0.001 |
Model 2 2 | 10.263 (5.950–17.702) | 1 | 2.087 (1.260–3.457) | 0.000 |
Model 3 3 | 9.525 (5.488–16.530) | 1 | 1.942 (1.165–3.237) | 0.001 |
Low HDL-C (women) | ||||
Model 1 1 | 2.524 (1.639–3.887) | 1 | 1.789 (1.246–2.568) | 0.000 |
Model 2 2 | 2.443 (1.566–3.811) | 1 | 1.639 (1.114–2.411) | 0.003 |
Model 3 3 | 2.427 (1.550–3.801) | 1 | 1.625 (1.096–2.409) | 0.004 |
Variables | Volunteers with Insomnia Symptoms OR (95% CI) | p-Trend |
---|---|---|
Abnormal BMI | ||
Model 1 1 | 1.451 (1.139–1.849) | 0.003 |
Model 2 2 | 1.511 (1.156–1.975) | 0.003 |
Model 3 3 | 1.580 (1.203–2.074) | 0.001 |
High systolic BP | ||
Model 1 1 | 2.077 (1.627–2.651) | 0.000 |
Model 2 2 | 1.565 (1.190–2.058) | 0.001 |
Model 3 3 | 1.593 (1.209–2.097) | 0.001 |
High diastolic BP | ||
Model 1 1 | 2.430 (1.902–3.104) | 0.000 |
Model 2 2 | 2.072 (1.579–2.719) | 0.000 |
Model 3 3 | 2.130 (1.620–2.802) | 0.000 |
High triglycerides | ||
Model 1 1 | 1.701 (1.314–2.202) | 0.000 |
Model 2 2 | 1.448 (1.092–1.920) | 0.010 |
Model 3 3 | 1.507 (1.132–2.007) | 0.005 |
Low HDL-C (men) | ||
Model 1 1 | 1.662 (1.080–2.559) | 0.021 |
Model 2 2 | 2.056 (1.285–3.290) | 0.003 |
Model 3 3 | 2.054 (1.276–3.307) | 0.003 |
Low HDL-C (women) | ||
Model 1 1 | 1.470 (1.051–2.055) | 0.024 |
Model 2 2 | 1.204 (0.828–1.750) | 0.331 |
Model 3 3 | 1.222 (0.840–1.779) | 0.295 |
Variables | Participants without Insomnia Symptoms | Participants with Insomnia Symptoms | ||||||
---|---|---|---|---|---|---|---|---|
Sleep Duration (Hours/Day) | Sleep Duration (Hours/Day) | |||||||
<6 | 6–8 | >8 | p-Trend | <6 | 6–8 | >8 | p-Trend | |
Abnormal BMI | ||||||||
Model 1 1 | 6.250 (2.895–13.493) | 1 | 0.670 (0.351–1.279) | 0.571 | 4.889 (3.214–7.436) | 1 | 1.162 (0.860–1.570) | 0.160 |
Model 2 2 | 5.961 (2.675–13.283) | 1 | 0.614 (0.311–1.212) | 0.882 | 4.667 (3.054–7.131) | 1 | 1.241 (0.906–1.700) | 0.054 |
High SBP | ||||||||
Model 1 1 | 2.181 (1.131–4.203) | 1 | 1.780(0.974–3.255) | 0.015 | 2.148 (1.414–3.262) | 1 | 1.122 (0.822–1.533) | 0.349 |
Model 2 2 | 2.516 (1.156–5.476) | 1 | 1.605 (0.813–3.170) | 0.057 | 2.113 (1.376–3.246) | 1 | 1.020 (0.734–1.418) | 0.660 |
High DBP | ||||||||
Model 1 1 | 2.276 (1.188–4.361) | 1 | 1.003 (0.548–1.836) | 0.415 | 3.344 (2.147–5.206) | 1 | 1.345 (0.987–1.832) | 0.027 |
Model 2 2 | 2.554 (1.184–5.506) | 1 | 0.810 (0.413–1.588) | 0.906 | 3.371 (2.147–5.291) | 1 | 1.303 (0.941–1.805) | 0.038 |
High TG | ||||||||
Model 1 1 | 8.115 (4.053–16.248) | 1 | 2.651 (1.419–4.952) | 0.000 | 13.225 (8.484–20.615) | 1 | 2.493 (1.798–3.457) | 0.000 |
Model 2 2 | 9.760 (4.562–20.878) | 1 | 2.664 (1.359–5.221) | 0.000 | 13.408 (8.545–21.038) | 1 | 2.373 (1.693–3.325) | 0.000 |
Low HDL-C (men) | ||||||||
Model 1 1 | 5.950 (2.197–16.114) | 1 | 0.952 (0.299–3.027) | 0.323 | 11.236 (5.968–21.153) | 1 | 2.031 (1.155–3.573) | 0.012 |
Model 2 2 | 6.436 (2.182–18.988) | 1 | 1.106 (0.325–3.768) | 0.267 | 11.889 (6.102–23.164) | 1 | 2.333 (1.295–4.203) | 0.002 |
Low HDL-C (women) | ||||||||
Model 1 1 | 3.869 (1.514–9.890) | 1 | 1.103 (0.444–2.741) | 0.204 | 2.149 (1.302–3.545) | 1 | 1.788 (1.176–2.717) | 0.004 |
Model 2 2 | 4.216 (1.445–12.301) | 1 | 1.014 (0.380–2.707) | 0.361 | 2.131 (1.281–3.545) | 1 | 1.744 (1.123–2.709) | 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Xie, Y.; Huang, L.; Zhang, Y.; Li, X.; Fang, Q.; Wang, Q. Association of Sleep Duration and Self-Reported Insomnia Symptoms with Metabolic Syndrome Components among Middle-Aged and Older Adults. Int. J. Environ. Res. Public Health 2022, 19, 11637. https://doi.org/10.3390/ijerph191811637
Zhang Y, Xie Y, Huang L, Zhang Y, Li X, Fang Q, Wang Q. Association of Sleep Duration and Self-Reported Insomnia Symptoms with Metabolic Syndrome Components among Middle-Aged and Older Adults. International Journal of Environmental Research and Public Health. 2022; 19(18):11637. https://doi.org/10.3390/ijerph191811637
Chicago/Turabian StyleZhang, Yuting, Yingcai Xie, Lingling Huang, Yan Zhang, Xilin Li, Qiyu Fang, and Qun Wang. 2022. "Association of Sleep Duration and Self-Reported Insomnia Symptoms with Metabolic Syndrome Components among Middle-Aged and Older Adults" International Journal of Environmental Research and Public Health 19, no. 18: 11637. https://doi.org/10.3390/ijerph191811637
APA StyleZhang, Y., Xie, Y., Huang, L., Zhang, Y., Li, X., Fang, Q., & Wang, Q. (2022). Association of Sleep Duration and Self-Reported Insomnia Symptoms with Metabolic Syndrome Components among Middle-Aged and Older Adults. International Journal of Environmental Research and Public Health, 19(18), 11637. https://doi.org/10.3390/ijerph191811637