Impact of Low-Head Dam Removal on River Morphology and Habitat Suitability in Mountainous Rivers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data Collection and Target Fish
2.3. Habitat Simulation Model
2.3.1. Hydrodynamic Model
2.3.2. Habitat Suitability Index
3. Results
3.1. Morphological Changes
3.2. Fish Habitat Quality Assessment
3.2.1. Model Calibration and Validation
3.2.2. Flow Characteristics
3.2.3. Physical Habitat
- (1)
- Changes in habitat during the spawning period
- (2)
- Changes in habitat during the juvenile period
3.2.4. Habitat Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reynalte-Tataje, D.A.; Agostinho, A.A.; Bialetzki, A. Temporal and spatial distributions of the fish larval assemblages of the Ivinheima River sub-basin (Brazil). Environ. Biol. Fishes 2013, 96, 811–822. [Google Scholar] [CrossRef]
- Nunes, D.M.F.; Magalhães, A.L.B.; Weber, A.A.; Gomes, R.Z.; Normando, F.T.; Santiago, K.B.; Rizzo, E.; Bazzoli, N. Influence of a large dam and importance of an undammed tributary on the reproductive ecology of the threatened fish matrinxã Brycon orthotaenia Günther, 1864 (Characiformes: Bryconidae) in southeastern Brazil. Neotrop. Ichthyol. 2015, 13, 317–324. [Google Scholar] [CrossRef]
- Foley, M.M.; Bellmore, J.R.; O’Connor, J.E.; Duda, J.J.; East, A.E.; Grant, G.E.; Anderson, C.W.; Bountry, J.A.; Collins, M.J.; Connolly, P.J. Dam removal: Listening in. Water Resour. Res. 2017, 53, 5229–5246. [Google Scholar] [CrossRef]
- Jiang, S.; Wu, S.; Fan, Z. Discussion on the negative effects and countermeasures of small reservoirs. Water Resour. Dev. Res. 2004, 4, 33–36. (In Chinese) [Google Scholar] [CrossRef]
- Doyle, M.W.; Stanley, E.H.; Orr, C.H.; Selle, A.R.; Sethi, S.A.; Harbor, J.M. Stream ecosystem response to small dam removal: Lessons from the Heartland. Geomorphology 2005, 71, 227–244. [Google Scholar] [CrossRef]
- Tang, L.; Mo, K.; Zhang, J.; Wang, J.; Chen, Q.; He, S.; Zhu, C.; Lin, Y. Removing tributary low-head dams can compensate for fish habitat losses in dammed rivers. J. Hydrol. 2021, 598, 126204. [Google Scholar] [CrossRef]
- Bednarek, A.T. Undamming rivers: A review of the ecological impacts of dam removal. Environ. Manag. 2001, 27, 803–814. [Google Scholar] [CrossRef]
- Brew, A.K. Analysis of Variations in Channel Width and Sediment Supply on Riffle-Pool Dynamics, Before and After Dam Removal; Colorado State University: Fort Collins, CO, USA, 2014. [Google Scholar]
- Gardner, C.; Coghlan, S., Jr.; Zydlewski, J.; Saunders, R. Distribution and abundance of stream fishes in relation to barriers: Implications for monitoring stream recovery after barrier removal. River Res. Appl. 2013, 29, 65–78. [Google Scholar] [CrossRef]
- Pess, G.; Quinn, T.; Gephard, S.R.; Saunders, R. Re-colonization of Atlantic and Pacific rivers by anadromous fishes: Linkages between life history and the benefits of barrier removal. Rev. Fish Biol. Fish. 2014, 24, 881–900. [Google Scholar] [CrossRef]
- Kornis, M.S.; Weidel, B.C.; Powers, S.M.; Diebel, M.W.; Cline, T.J.; Fox, J.M.; Kitchell, J.F. Fish community dynamics following dam removal in a fragmented agricultural stream. Aquat. Sci. 2015, 77, 465–480. [Google Scholar] [CrossRef]
- Magilligan, F.J.; Graber, B.E.; Nislow, K.H.; Chipman, J.W.; Sneddon, C.S.; Fox, C.A. River restoration by dam removal: Enhancing connectivity at watershed scalesRiver restoration by dam removal. Elem. Sci. Anthr. 2016, 4, 000108. [Google Scholar] [CrossRef]
- O’Donnell, M.; Gray, N.; Wippelhauser, G.; Christman, P. Kennebec River Diadromous Fish Restoration; Annual Progress Report; Maine Department of Marine Resources: Augusta, GA, USA, 2000. [Google Scholar]
- Catalano, M.J.; Bozek, M.A.; Pellett, T.D. Effects of dam removal on fish assemblage structure and spatial distributions in the Baraboo River, Wisconsin. North Am. J. Fish. Manag. 2007, 27, 519–530. [Google Scholar] [CrossRef]
- Kanehl, P.D.; Lyons, J.; Nelson, J.E. Changes in the habitat and fish community of the Milwaukee River, Wisconsin, following removal of the Woolen Mills Dam. North Am. J. Fish. Manag. 1997, 17, 387–400. [Google Scholar] [CrossRef]
- Gillenwater, D.; Granata, T.; Zika, U. GIS-based modeling of spawning habitat suitability for walleye in the Sandusky River, Ohio, and implications for dam removal and river restoration. Ecol. Eng. 2006, 28, 311–323. [Google Scholar] [CrossRef]
- Hill, N.L.; Trueman, J.R.; Prévost, A.D.; Fraser, D.J.; Ardren, W.R.; Grant, J.W. Effect of dam removal on habitat use by spawning Atlantic salmon. J. Great Lakes Res. 2019, 45, 394–399. [Google Scholar] [CrossRef]
- Wippelhauser, G.S.; Zydlewski, G.B.; Kieffer, M.; Sulikowski, J.; Kinnison, M.T. Shortnose Sturgeon in the Gulf of Maine: Use of spawning habitat in the Kennebec system and response to dam removal. Trans. Am. Fish. Soc. 2015, 144, 742–752. [Google Scholar] [CrossRef]
- Melcher, A.H.; Schmutz, S. The importance of structural features for spawning habitat of nase Chondrostoma nasus (L.) and barbel Barbus barbus (L.) in a pre-Alpine river. River Syst. 2010, 19, 33–42. [Google Scholar] [CrossRef]
- McCormick, M.; Moore, J.; Munday, P. Influence of habitat degradation on fish replenishment. Coral Reefs 2010, 29, 537–546. [Google Scholar] [CrossRef]
- Shima, J.S.; Osenberg, C.W. Cryptic density dependence: Effects of covariation between density and site quality in reef fish. Ecology 2003, 84, 46–52. [Google Scholar] [CrossRef]
- Watson, J.R.; Siegel, D.A.; Kendall, B.E.; Mitarai, S.; Rassweiller, A.; Gaines, S.D. Identifying critical regions in small-world marine metapopulations. Proc. Natl. Acad. Sci. USA 2011, 108, E907–E913. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Zhang, P.; Cheng, B.; Li, Y.; Li, J.; Zhou, H.; Sun, G.; Qing, J.; Zhu, Z.; Lu, Y. Incorporating the life stages of fish into habitat assessment frameworks: A case study in the Baihetan Reservoir. J. Environ. Manag. 2021, 299, 113663. [Google Scholar] [CrossRef] [PubMed]
- McBride, R.S.; Somarakis, S.; Fitzhugh, G.R.; Albert, A.; Yaragina, N.A.; Wuenschel, M.J.; Alonso-Fernández, A.; Basilone, G. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish Fish. 2015, 16, 23–57. [Google Scholar] [CrossRef]
- VanOverzee, H.M.J.; Rijnsdorp, A.D. Effects of fishing during the spawning period: Implications for sustainable management. Rev. Fish Biol. Fish. 2015, 25, 65–83. [Google Scholar] [CrossRef]
- Hutchings, J.A.; Myers, R.A. Effect of age on the seasonality of maturation and spawning of Atlantic cod, Gadus morhua, in the Northwest Atlantic. Can. J. Fish. Aquat. Sci. 1993, 50, 2468–2474. [Google Scholar] [CrossRef]
- Wieland, K.; Teichmann, J.A.; Horbowa, K. Changes in the timing of spawning of Baltic cod: Possible causes and implications for recruitment. ICES J. Mar. Sci. 2000, 57, 452–464. [Google Scholar] [CrossRef]
- Malcolm, I.A.; Gibbins, C.N.; Soulsby, C.; Tetzlaff, D.; Moir, H.J. The influence of hydrology and hydraulics on salmonids between spawning and emergence: Implications for the management of flows in regulated rivers. Fish. Manag. Ecol. 2012, 19, 464–474. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, P.; Wang, C.; Yu, Y.; Kong, N. Potential causes of habitat degradation and spawning time delay of the Chinese sturgeon (Acipenser sinensis). Ecol. Inform. 2018, 43, 96–105. [Google Scholar] [CrossRef]
- Warren, M.; Dunbar, M.; Smith, C. River flow as a determinant of salmonid distribution and abundance: A review. Environ. Biol. Fishes 2015, 98, 1695–1717. [Google Scholar] [CrossRef]
- Cerqueira, V.; Tsuzuki, M. A review of spawning induction, larviculture, and juvenile rearing of the fat snook, Centropomus parallelus. Fish Physiol. Biochem. 2009, 35, 17–28. [Google Scholar] [CrossRef]
- Kihslinger, R.L.; Nevitt, G.A. Early rearing environment impacts cerebellar growth in juvenile salmon. J. Exp. Biol. 2006, 209, 504–509. [Google Scholar] [CrossRef] [Green Version]
- OuYang, L.; ZhuGe, Y.; Wen, S.; Du, Q. Research and Application of Instream Ecological Water Requirement Based on Fish Biomass Method. South-North Water Transf. Water Sci. Technol. 2014, 12, 62–67. (In Chinese) [Google Scholar] [CrossRef]
- Donelson, J.M.; Munday, P.L.; McCormick, M.I. Parental effects on offspring life histories: When are they important? Biol. Lett. 2009, 5, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Lavin, C.P.; Jones, G.P.; Williamson, D.H.; Harrison, H.B. Minimum size limits and the reproductive value of numerous, young, mature female fish. Proc. R. Soc. B 2021, 288, 20202714. [Google Scholar] [CrossRef]
- Yuqing, L.; Junxiu, M.; Qiuwen, C. Research on effects of dam removal on river ecosystem and review of its assessment methods. Adv. Sci. Technol. Water Resour. 2017, 37, 9–15+21. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, W.; Li, Y.; Cheng, T.; Cui, X. Progress of habitat suitability index model in fish habitat assessment. Fish. Inf. Strategy 2020, 35, 48–54. (In Chinese) [Google Scholar] [CrossRef]
- Burroughs, B.A.; Hayes, D.B.; Klomp, K.D.; Hansen, J.F.; Mistak, J. The effects of the Stronach Dam removal on fish in the Pine River, Manistee County, Michigan. Trans. Am. Fish. Soc. 2010, 139, 1595–1613. [Google Scholar] [CrossRef]
- Tomsic, C.A.; Granata, T.C.; Murphy, R.P.; Livchak, C.J. Using a coupled eco-hydrodynamic model to predict habitat for target species following dam removal. Ecol. Eng. 2007, 30, 215–230. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, Y.; Li, K.; Cheng, B.; Yang, S.; Liu, Q.; Qing, J.; Zhang, B.; Yan, X.; Liang, R. Study of quality maintenance of fish habitats in small-and medium-sized mountain rivers with low flow rate. Ecol. Eng. 2020, 147, 105780. [Google Scholar] [CrossRef]
- Yang, Z.; Gong, Y.; Dong, C.; Tang, H.Y.; Ye, Q. Fish resource status of the lower reaches of the Heishui River and the measures for their conservation. Resour. Environ. Yangtze Basin 2017, 26, 847–855. [Google Scholar] [CrossRef]
- Teng, H.; Tian, H.W.; Liu, H.W.; Cheng, B.X.; Yang, S.R. Fish resources status in Heishui River, a tributary of the lower reach of Jinsha River. Chin. J. Ecol. 2021, 40, 1499–1511. (In Chinese) [Google Scholar] [CrossRef]
- Song, J.; Song, Z.; Yue, B.; Zheng, W. Assessing genetic diversity of wild populations of Prenantȁ9s schizothoracin, Schizothorax prenanti, using AFLP markers. Environ. Biol. Fishes 2006, 77, 79–86. [Google Scholar] [CrossRef]
- Song, Y.Q.; Cheng, B.X.; Hu, W. Quantitative analysis of conservation priority for fis h species in Heishui River. J. Hydroecol. 2018, 39, 65–72. [Google Scholar] [CrossRef]
- DHI. MIKE 21 & MIKE 3 Flow Model FM. Hydrodynamic and Transport Module. In Scientific Documentation; Danish Hydraulic Institute: Hørsholm, Denmark, 2014. [Google Scholar]
- Ahmad, S.; Simonovic, S.P. Comparison of one-dimensional and two-dimensional hydrodynamic modeling approaches for Red river basin. In Civil & Environmental Engineering and Construction Faculty Publications; University of Nevada: Reno, NV, USA, 1999. [Google Scholar]
- Leclerc, M.; Boudreault, A.; Bechara, T.A.; Corfa, G. Two-dimensional hydrodynamic modeling: A neglected tool in the instream flow incremental methodology. Trans. Am. Fish. Soc. 1995, 124, 645–662. [Google Scholar] [CrossRef]
- Yi, Y.; Wang, Z.; Yang, Z. Two-dimensional habitat modeling of Chinese sturgeon spawning sites. Ecol. Model. 2010, 221, 864–875. [Google Scholar] [CrossRef]
- Moir, H.; Gibbins, C.N.; Soulsby, C.; Youngson, A. PHABSIM modelling of Atlantic salmon spawning habitat in an upland stream: Testing the influence of habitat suitability indices on model output. River Res. Appl. 2005, 21, 1021–1034. [Google Scholar] [CrossRef]
- Yao, W.; Bui, M.D.; Rutschmann, P. Application of habitat and population modeling in river management. In Proceedings of the Internationales Symposium Wasserund Flussbau im Alpenraum, Zürich, Germany, 25–27 June 2014; pp. 207–216. [Google Scholar]
- Yu, Z.; Zhang, J.; Zhao, J.; Peng, W.; Fu, Y.; Wang, Q.; Zhang, Y. A new method for calculating the downstream ecological flow of diversion-type small hydropower stations. Ecol. Indic. 2021, 125, 107530. [Google Scholar] [CrossRef]
- Shao, T.; Wang, Y.; Xu, S. Response relationship between flow changing and habitat indicators of schizothorax prenanti. Resour. Environ. Yangtze Basin 2015, 24, 85–91. (In Chinese) [Google Scholar]
- Sun, Y.; Niu, T.X.; Wang, Y.R. Design of simulative restoration of fish habitat based on terrain remolding. Environ. Impact Assess. 2015, 37, 29–32. [Google Scholar] [CrossRef]
- Han, J.C. Effects and Evaluation of Yalong River Hydropower Development on Physiological Adaptability of Fishes. Master’s Thesis, China Three Gorges University, Yichang, China, 2010. (In Chinese). [Google Scholar] [CrossRef]
- Han, J.C.; Huang, Y.P.; Yuan, X.; Liu, G.Y.; Ma, Z.K. Analysis on habitat suitability index of schizothorax based on fuzzy logic. Yangtze River 2011, 42, 65–68. [Google Scholar] [CrossRef]
- Wu, H.; Li, M.; Zeng, R.; Liu, X.; Yang, K.; Song, Z. Substrate type and brightness preference of Schizothorax wangchiachii and Percocypris pingi juveniles. Aquac. Res. 2020, 51, 2790–2798. [Google Scholar] [CrossRef]
- Zhao, Z.; He, J. Hydraulics; Tsinghua University Press: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Vozinaki, A.-E.K.; Morianou, G.G.; Alexakis, D.D.; Tsanis, I.K. Comparing 1D and combined 1D/2D hydraulic simulations using high-resolution topographic data: A case study of the Koiliaris basin, Greece. Hydrol. Sci. J. 2017, 62, 642–656. [Google Scholar] [CrossRef]
- Palmer, M.; Ruhi, A. Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science 2019, 365, eaaw2087. [Google Scholar] [CrossRef]
- Moss, S.; McFarland, W. The influence of dissolved oxygen and carbon dioxide on fish schooling behavior. Mar. Biol. 1970, 5, 100–107. [Google Scholar] [CrossRef]
- Facey, D.E.; Grossman, G.D. The metabolic cost of maintaining position for four North American stream fishes: Effects of season and velocity. Physiol. Zool. 1990, 63, 757–776. [Google Scholar] [CrossRef]
- Lapointe, N.W.; Corkum, L.D.; Mandrak, N.E. Seasonal and ontogenic shifts in microhabitat selection by fishes in the shallow waters of the Detroit River, a large connecting channel. Trans. Am. Fish. Soc. 2007, 136, 155–166. [Google Scholar] [CrossRef]
- Zhang, P.; Li, K.; Liu, Q.; Liu, R.; Qin, L.; Wang, H.; Zhang, Z.; Wang, K.; Wang, Y.; Liang, R. Linking bait and feeding opportunities to fish foraging habitat for the assessment of environmental flows and river restoration. Sci. Total Environ. 2021, 768, 144580. [Google Scholar] [CrossRef] [PubMed]
- Branigan, P.R.; Quist, M.C.; Shepard, B.B.; Ireland, S.C. Microhabitat use of native fishes in the K ootenai R iver: A fine-scale evaluation of large-scale habitat rehabilitation efforts. River Res. Appl. 2018, 34, 1267–1277. [Google Scholar] [CrossRef]
- Amado, L.L.; Monserrat, J.M. Oxidative stress generation by microcystins in aquatic animals: Why and how. Environ. Int. 2010, 36, 226–235. [Google Scholar] [CrossRef]
- Johnston, I.; Vieira, V.; Temple, G. Functional consequences and population differences in the developmental plasticity of muscle to temperature in Atlantic herring Clupea harengus. Mar. Ecol. Prog. Ser. 2001, 213, 285–300. [Google Scholar] [CrossRef]
- Burroughs, B.A.; Hayes, D.B.; Klomp, K.D.; Hansen, J.F.; Mistak, J. Effects of Stronach dam removal on fluvial geomorphology in the Pine River, Michigan, United States. Geomorphology 2009, 110, 96–107. [Google Scholar] [CrossRef]
- Ma, J. Erosion, Deposition of Sediment and Morphologic Response to the Removal of the Small Dams; Chongqing Jiaotong University: Chongqing, China, 2017. (In Chinese) [Google Scholar]
- Warrick, J.A.; Duda, J.J.; Magirl, C.S.; Curran, C.A. River turbidity and sediment loads during dam removal. Eos Trans. Am. Geophys. Union 2012, 93, 425–426. [Google Scholar] [CrossRef]
- Hogg, R.S.; Coghlan, S.M., Jr.; Zydlewski, J.; Gardner, C. Fish community response to a small-stream dam removal in a maine coastal river tributary. Trans. Am. Fish. Soc. 2015, 144, 467–479. [Google Scholar] [CrossRef]
- Spence, R.; Hickley, P. The use of PHABSIM in the management of water resources and fisheries in England and Wales. Ecol. Eng. 2000, 16, 153–158. [Google Scholar] [CrossRef]
- Bornette, G.; Henry, C.; Barrat, M.-H.; Amoros, C. Theoretical habitat templets, species traits, and species richness: Aquatic Coleoptera in the Upper Rhône River and its floodplain. Freshw. Biol. 1994, 31, 487–505. [Google Scholar] [CrossRef]
- Stahlberg-Meinhardt, S.; Kertadikara, D.S. Verteilung, Habitatansprüche und Bewegungen von Mühlkoppe (Cottus gobio Linnaeus, 1758) und Bachforelle (Salmo trutta Linnaeus, 1758) in Zwei Unterschiedlich Anthropogen Beeinflußten Fließgewässern im Vorharz: Einfluß der Landnutzungsänderungen auf das Abflußverhalten des Ciliwung in West-Java (Indonesien); Inst. f. Wasserwirtschaft, Hydrologie u. Landwirtschaftl. Wasserbau d. Univ. Hannover: Hannover, Germany, 1994. [Google Scholar]
- Null, S.E.; Mouzon, N.R.; Elmore, L.R. Dissolved oxygen, stream temperature, and fish habitat response to environmental water purchases. J. Environ. Manag. 2017, 197, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Yuan, J.; Zhang, X.; Wang, Z.; Chen, J.; Lu, J.; Yang, W.; Li, Z.; Zhao, N.; Xu, M. A review of ecological restoration techniques in fluvial rivers. Int. J. Sediment Res. 2016, 31, 110–119. [Google Scholar] [CrossRef]
- Kinney, M.J.; Simpfendorfer, C.A. Reassessing the value of nursery areas to shark conservation and management. Conserv. Lett. 2009, 2, 53–60. [Google Scholar] [CrossRef]
Median Grain Size (mm) | Before Dam Removal [6] | After Dam Removal |
---|---|---|
Upstream of the Laomuhe Dam | 37.05 | 87.14 |
Downstream of the Laomuhe Dam | 75.83 | 73.33 |
Season | RMSE | R2 | MAE | ||||
---|---|---|---|---|---|---|---|
V (m/s) | D (m) | V (m/s) | D (m) | V (m/s) | D (m) | ||
Pre-removal | Autumn of 2018 | 0.07 | 0.07 | 0.98 | 0.99 | 0.060 | 0.067 |
After removal | Spring of 2019 | 0.08 | 0.03 | 0.92 | 0.99 | 0.065 | 0.028 |
Flow Rate (m3/s) | Life Stage | Condition | Weighted Usable Area (WUA/m2) | ||
---|---|---|---|---|---|
Upstream Reach | Downstream Reach | Total Reach | |||
23.55 | Spawning | Before | 47,146.39 | 6206.90 | 53,353.29 |
After | 44,542.88 | 11,166.83 | 55,709.71 | ||
Change Rate | ▼5.52% | ▲79.91% | ▲4.42% | ||
Juvenile | Before | 14,329.24 | 3599.93 | 17,929.17 | |
After | 11,984.44 | 1155.49 | 13,139.92 | ||
Change Rate | ▼16.36% | ▼67.90% | ▼26.71% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Zhu, W.-Y.; Liu, Q.-Y.; Li, Y.; Tian, H.-W.; Cheng, B.-X.; Zhang, Z.-Y.; Wu, Z.-H.; Qing, J.; Sun, G.; et al. Impact of Low-Head Dam Removal on River Morphology and Habitat Suitability in Mountainous Rivers. Int. J. Environ. Res. Public Health 2022, 19, 11743. https://doi.org/10.3390/ijerph191811743
Lu Y, Zhu W-Y, Liu Q-Y, Li Y, Tian H-W, Cheng B-X, Zhang Z-Y, Wu Z-H, Qing J, Sun G, et al. Impact of Low-Head Dam Removal on River Morphology and Habitat Suitability in Mountainous Rivers. International Journal of Environmental Research and Public Health. 2022; 19(18):11743. https://doi.org/10.3390/ijerph191811743
Chicago/Turabian StyleLu, Yun, Wan-Yi Zhu, Qing-Yuan Liu, Yong Li, Hui-Wu Tian, Bi-Xin Cheng, Ze-Yu Zhang, Zi-Han Wu, Jie Qing, Gan Sun, and et al. 2022. "Impact of Low-Head Dam Removal on River Morphology and Habitat Suitability in Mountainous Rivers" International Journal of Environmental Research and Public Health 19, no. 18: 11743. https://doi.org/10.3390/ijerph191811743
APA StyleLu, Y., Zhu, W.-Y., Liu, Q.-Y., Li, Y., Tian, H.-W., Cheng, B.-X., Zhang, Z.-Y., Wu, Z.-H., Qing, J., Sun, G., & Yan, X. (2022). Impact of Low-Head Dam Removal on River Morphology and Habitat Suitability in Mountainous Rivers. International Journal of Environmental Research and Public Health, 19(18), 11743. https://doi.org/10.3390/ijerph191811743