Perspectives of Licorice Production in Harsh Environments of the Aral Sea Regions
Abstract
:1. Introduction
2. Ameliorative Functions of Licorice
3. Research and Development Initiatives to Enhance Licorice Production
4. Salt Tolerance Mechanism
5. Breeding and Genomics
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allanov, K.; Shamsiev, A.; Durdiev, N.; Avliyakulov, M.; Karimov, A.; Khaitov, B. Improving nutrition and water use efficiencies of pima cotton (Gossypium barbadense L.) varieties under arid conditions of Uzbekistan. J. Plant Nutr. 2020, 43, 2590–2600. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Li, Z.; Fang, G.; Wang, F.; Liu, H. The impact of climate change and human activities on the Aral Sea Basin over the past 50 years. Atmospheric Res. 2020, 245, 105125. [Google Scholar] [CrossRef]
- Sabbadin, C.; Bordin, L.; Donà, G.; Manso, J.; Avruscio, G.; Armanini, D. Licorice: From Pseudohyperaldosteronism to Therapeutic Uses. Front. Endocrinol. 2019, 10, 484. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Sudo, H. Economic importance of licorice. Plant Biotechnol. 2009, 26, 101–104. [Google Scholar] [CrossRef]
- Bahmani, M.; Rafieian-Kopaei, M.; Jeloudari, M.; Eftekhari, Z.; Delfan, B.; Zargaran, A.; Forouzan, S. A review of the health effects and uses of drugs of plant licorice (Glycyrrhiza glabra L.) in Iran. Asian Pac. J. Trop. Dis. 2014, 4, S847–S849. [Google Scholar] [CrossRef]
- Khaitov, B.; Urmonova, M.; Karimov, A.; Sulaymonov, B.; Allanov, K.; Israilov, I.; Sottorov, O. Licorice (Glycyrrhiza glabra)—Growth and Phytochemical Compound Secretion in Degraded Lands under Drought Stress. Sustainability 2021, 13, 2923. [Google Scholar] [CrossRef]
- Kushiev, K.; Ismailova, K.M.; Rakhmonov, I.; Kenjaev, A. The rol of licorice for remediation of saline soils. Open J. Sci. Technol. 2021, 4, 10–20. [Google Scholar] [CrossRef]
- Tajetdinov, N. Development of Agrotechnology for Growing Naked Licorice (Glycyrrhiza glabra L.) from Seeds on Meadow-alluvial Soils of the Aral Sea Region. Ph.D. Thesis, Agrarian University, Nukus, Karakalpakstan, 2021. [Google Scholar]
- Menlimuratova, G. Economic, Social and Environmental Impacts of the Liquorice Production in the Republic of Karakalpakstan (Uzbekistan). Ph.D. Thesis, Seoul National University, Seoul, Korea, 2017. [Google Scholar]
- Alagawany, M.; ElNesr, S.S.; Farag, M.R.; El-Hack, M.E.A.; Khafaga, A.F.; Taha, A.E.; Tiwari, R.; Yatoo, M.I.; Bhatt, P.; Marappan, G.; et al. Use of Licorice (Glycyrrhiza glabra) Herb as a Feed Additive in Poultry: Current Knowledge and Prospects. Animals 2019, 9, 536. [Google Scholar] [CrossRef] [PubMed]
- Dhama, K.; Karthik, K.; Khandia, R.; Munjal, A.; Tiwari, R.; Rana, R.; Khurana, S.K.; Ullah, S.; Khan, R.U.; Alagawany, M.; et al. Medicinal and therapeutic potential of herbs and plant metabolites/extracts countering viral pathogens-current knowledge and future prospects. Curr. Drug Metab. 2018, 19, 236–263. [Google Scholar] [CrossRef]
- Hosseini, M.S.; Samsampour, D.; Ebrahimi, M.; Abadia, J.; Najafabadi, A.S.; Igartua, E.; Khanahmadi, M. Evaluation of glycyrrhizin contents in licorice (Glycyrrhiza glabra L.) under drought and soil salinity conditions using nutrient concentrations and biochemical traits as biomarkers. Acta Physiol. Plant. 2020, 42, 103. [Google Scholar] [CrossRef]
- Boboev, H.; Djanibekov, U.; Bekchanov, M.; Lamers, J.P.; Toderich, K. Feasibility of conservation agriculture in the Amu Darya River Lowlands, Central Asia. Int. J. Agric. Sustain. 2018, 17, 60–77. [Google Scholar] [CrossRef]
- Gafurova, L.; Juliev, M. Soil Degradation Problems and Foreseen Solutions in Uzbekistan. In Regenerative Agriculture; Springer: Berlin/Heidelberg, Germany, 2021; pp. 59–67. [Google Scholar] [CrossRef]
- Belolipov, I.V.; Zaurov, D.E.; Eisenman, S.W. The geography, climate and vegetation of Uzbekistan. In Medicinal Plants of Central Asia: Uzbekistan and Kyrgyzstan; Eisenman, S.W., Zaurov, D.E., Struwe, L., Eds.; Springer: New York, NY, USA, 2013; pp. 5–7. [Google Scholar]
- Kappas, M.; Kushiev, K.H.; Kenjaev, A.; Uzaydullaev, S.; Ibrakhimov, H.; Renchin, T. Strategy to Restore Abandoned Irrigated Land Using Glycyrrhiza Glabra: Case study from Central Asia. Int. J. Agric. Innov. Res. 2016, 5, 310–323. [Google Scholar]
- Dagar, J.C.; Yadav, R.K.; Dar, S.R.; Ahamad, S. Liquorice (Glycyrrhiza glabra): A potential salt-tolerant, highly remunerative medicinal crop for remediation of alkali soils. Curr. Sci. 2015, 16, 1683–1688. [Google Scholar]
- Marui, A.; Nagafuchi, T.; Shinogi, Y.; Yasufuku, N.; Omine, K.; Kobayashi, T.; Shinkai, A. Cultivation Research for High–glycyrrhizin Licorice by Applying Low Temperature and Ca2+ Ion as Environmental Stress Based on Field Investigation. J. Fac. Agric. Kyushu Univ. 2011, 56, 367–371. [Google Scholar] [CrossRef]
- Rao, K.V.S. A review on Licorice. Anc. Sci. Life 1993, 13, 57. [Google Scholar] [PubMed]
- Yan, J.; Liu, P. Does Complex Soil Enhance Grain Yield under Cropping System? Agronomy 2021, 11, 1502. [Google Scholar] [CrossRef]
- Çetin, Ö.; Duran, A.; Martin, E.; Küçüködük, M. Karyological studies in some Glycyrrhiza (Fabaceae) taxa from Turkey. Caryologia 2015, 68, 254–264. [Google Scholar] [CrossRef]
- Kushiev, H.; Noble, A.D.; Abdullaev, I.; Toshbekov, U. Remediation of Abandoned Saline Soils Using Glycyrrhiza glabra: A Study from the Hungry Steppes of Central Asia. Int. J. Agric. Sustain. 2005, 3, 102–113. [Google Scholar] [CrossRef]
- Karkanis, A.; Martins, N.; Petropoulos, S.A.; Ferreira, I.C. Phytochemical composition, health effects, and crop management of liquorice (Glycyrrhiza glabra L.): A medicinal plant. Food Rev. Int. 2018, 34, 182–203. [Google Scholar] [CrossRef]
- Yaneva, I.; Balabanski, V.; Karanesheva, T.; Ignatov, I. Some endangered healings plants in Bulgaria-legislative regulation, protection, characteristic description, application, agricultural cultivation. Bull. J. Agric. Sci. 2020, 26, 847–852. [Google Scholar]
- Douglas, J.A.; Douglas, M.H.; Lauren, D.R.; Martin, R.J.; Deo, B.; Follett, J.M.; Jensen, D.J. Effect of plant density and depth of harvest on the production and quality of licorice (Glycyrrhiza glabra) root harvested over 3 years. N. Z. J. Crop Hortic. Sci. 2004, 32, 363–373. [Google Scholar] [CrossRef]
- Thengane, S.R.; Kulkarni, D.K.; Krishnamurthy, K.V. Micropropagation of licorice (Glycyrrhiza glabra L.) through shoot tip and nodal cultures. Vitro Cell. Dev. Biol.-Plant 1998, 34, 331–334. [Google Scholar] [CrossRef]
- Mousa, N.; Siaguru, P.; Wiryowidagdo, S.; Wagih, M.E. Rapid clonal propagation of licorice (Glycyrrhiza glabra) byin vitro shoot culture. Sugar Tech 2006, 8, 292–298. [Google Scholar] [CrossRef]
- Marzi, V.; Ventrelli, A.; De Mastro, G. Influence of intercropping and irrigation on productivity of licorice (Glycyrrhiza glabra L.). Acta Hortic. 1993, 71–78. [Google Scholar] [CrossRef]
- Zimnitskaya, S.A. State of the reproductive system of populations of species of the genus Glycyrrhiza L. (Fabaceae). Contemp. Probl. Ecol. 2009, 2, 392–395. [Google Scholar] [CrossRef]
- Lu, J.H.; Lv, X.; Wu, L.; Li, X.Y. Germination responses of three medicinal licorices to saline environments and their suitable ecological regions. Acta Pratacult. Sin. 2013, 2, 192–202. [Google Scholar]
- Chagiri, H.; Torshiz, B. Effects of scarification and temperature on germination of licorice (Glycyrrhiza glabra L.) seeds. J. Agric. Sci. Technol. 2000, 2, 257–262. [Google Scholar]
- Chun-lei, W.U. Study on the Effect of pH on seed germination and seedling growth of Glycyrrhiza uralensis. J. Anhui Agr. Sci. 2011, 14, 8270–8272. [Google Scholar]
- Akhzari, D. Response of Glycyrrhiza glabra L. to Arbuscular Mycorrhizal Fungi and Water Stress. J. Essent. Oil Bear. Plants 2015, 18, 992–1002. [Google Scholar] [CrossRef]
- Xie, W.; Hao, Z.; Yu, M.; Wu, Z.; Zhao, A.; Li, J.; Zhang, X.; Chen, B. Improved phosphorus nutrition by arbuscular mycorrhizal symbiosis as a key factor facilitating glycyrrhizin and liquiritin accumulation in Glycyrrhiza uralensis. Plant Soil 2018, 439, 243–257. [Google Scholar] [CrossRef]
- Chen, M.; Yang, G.; Sheng, Y.; Li, P.; Qiu, H.; Zhou, X.; Huang, L.; Chao, Z. Glomus mosseae Inoculation Improves the Root System Architecture, Photosynthetic Efficiency and Flavonoids Accumulation of Liquorice under Nutrient Stress. Front. Plant Sci. 2017, 8, 931. [Google Scholar] [CrossRef] [PubMed]
- Orujei, Y.; Shabani, L.; Sharifi-Tehrani, M. Induction of glycyrrhizin and total phenolic compound production in licorice by using arbuscular mycorrhizal fungi. Russ. J. Plant Physiol. 2013, 60, 855–860. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Ma, H.; Alaylar, B.; Zoghi, Z.; Kistaubayeva, A.; Wirth, S.; Bellingrath-Kimura, S.D. Biochar Amendments Improve Licorice (Glycyrrhiza uralensis Fisch.) Growth and Nutrient Uptake under Salt Stress. Plants 2021, 10, 2135. [Google Scholar] [CrossRef] [PubMed]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef]
- Hayashi, H. Molecular Biology of Secondary Metabolism: Case Study for Glycyrrhiza Plants. In Recent Advances in Plant Biotechnology; Springer: Boston, MA, USA, 2009; pp. 89–103. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Shao, H.; Tang, X. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology. Front. Plant Sci. 2016, 7, 67. [Google Scholar] [CrossRef]
- Li, L.; Sinkko, H.; Montonen, L.; Wei, G.; Lindström, K.; Räsänen, L.A. Biogeography of symbiotic and other endophytic bacteria isolated from medicinal G lycyrrhiza species in China. FEMS Microbiol. Ecol. 2012, 79, 46–68. [Google Scholar] [CrossRef]
- He, C.; Wang, W.; Hou, J. Plant Growth and Soil Microbial Impacts of Enhancing Licorice with Inoculating Dark Septate Endophytes Under Drought Stress. Front. Microbiol. 2019, 10, 2277. [Google Scholar] [CrossRef]
- Oloumi, H.; Hassibi, N. Study the correlation between some climate parameters and the content of phenolic compounds in roots of Glycyrrhiza glabra. J. Med. Plants Res. 2011, 5, 6011–6016. [Google Scholar]
- Liu, T.; Lin, H.M. Preliminary assessment of genetic diversity in cultivated Glycyrrhiza uralensis, G. inflate and G. glabra by chemical fingerprint and inter-simple sequence repeat markers. Adv. Mater. Res. 2012, 347, 1318–1325. [Google Scholar] [CrossRef]
- Mochida, K.; Sakurai, T.; Seki, H.; Yoshida, T.; Takahagi, K.; Sawai, S.; Uchiyama, H.; Muranaka, T.; Saito, K. Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume. Plant J. 2017, 89, 181–194. [Google Scholar] [CrossRef]
- Chung, S.Y.; Seki, H.; Fujisawa, Y.; Shimoda, Y.; Hiraga, S.; Nomura, Y.; Saito, K.; Ishimoto, M.; Muranaka, T. A cellulose synthase-derived enzyme catalyses 3-O-glucuronosylation in saponin biosynthesis. Nat. Commun. 2020, 11, 5664. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-H.; Lee, J.-H.; Lee, H.O.; Ahn, B.O.; Won, S.Y.; Sohn, S.-H.; Kim, J.S. Complete chloroplast genome and 45S nrDNA sequences of the medicinal plant species Glycyrrhiza glabra and Glycyrrhiza uralensis. Genes Genet. Syst. 2018, 93, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Raveendar, S.; So, Y.-S.; Lee, K.J.; Lee, D.-J.; Sung, J.; Chung, J.-W. The complete chloroplast genome sequence of Glycyrrhiza lepidota (Nutt.) Pursh—An American wild licorice. J. Crop Sci. Biotechnol. 2017, 20, 295–303. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, S.; Zheng, X.; Shen, X.; Zhang, T.; Liao, B.; He, W.; Hu, H.; Cheng, R.; Xu, J. Licorice Germplasm Resources Identification Using DNA Barcodes Inner-Variants. Plants 2021, 10, 2036. [Google Scholar] [CrossRef]
- Bang, J.H.; Jo, I.H.; Chung, J.W. Molecular Chracterization of New gDNA SSR Markers for Glycyrrhiza lepidota and Cross-Amplification of other Glycyrrhiza Species. J. Korean Breed. Assoc. 2019, 14, 232–242. [Google Scholar]
Soil Salination Types | Percentage/Hectare | Description |
---|---|---|
Very high saline soils | 15%/69,066 hectare | EC 8–15; pH 8–9; Very high level of Na+, K, Ca2+, Mg2+ and Cl− ions. Poor physical structure, No living habitats. |
High saline soils | 21%/96,692 hectare | EC 5–8; pH 8–8.5; High level of soluble salts and ions. Poor physical structure, some salt tolerant living habitats, including licorice. |
Moderate saline soils | 30%/138,132 hectare | EC 2–4; pH 8–8.5; High level of soluble salts and ions. Poor physical structure, some salt tolerant living habitats, including. |
Low saline soils | 26%/119,714 hectare | EC 1–2; pH 7.5–8.0; Levels of soluble salts and ions exceeds the normal level. Poor physical structure, salt tolerant crops (licorice) and other living habitats. |
Normal soils | 8%/36,835 hectare | EC 0.75; pH 7–7.5; normal soils for growing any crops. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaitov, B.; Karimov, A.; Khaitbaeva, J.; Sindarov, O.; Karimov, A.; Li, Y. Perspectives of Licorice Production in Harsh Environments of the Aral Sea Regions. Int. J. Environ. Res. Public Health 2022, 19, 11770. https://doi.org/10.3390/ijerph191811770
Khaitov B, Karimov A, Khaitbaeva J, Sindarov O, Karimov A, Li Y. Perspectives of Licorice Production in Harsh Environments of the Aral Sea Regions. International Journal of Environmental Research and Public Health. 2022; 19(18):11770. https://doi.org/10.3390/ijerph191811770
Chicago/Turabian StyleKhaitov, Botir, Aziz Karimov, Jamila Khaitbaeva, Obidjon Sindarov, Akmal Karimov, and Yongqing Li. 2022. "Perspectives of Licorice Production in Harsh Environments of the Aral Sea Regions" International Journal of Environmental Research and Public Health 19, no. 18: 11770. https://doi.org/10.3390/ijerph191811770