Ischemic and Hemorrhagic Cerebrovascular Events Related to COVID-19 Coagulopathy and Hypoxemia
Abstract
:1. Introduction
- In Section 2, we discuss possible molecular mechanisms contributing to both ischemic and hemorrhagic neurological complications of COVID-19, including theories regarding ACE-2 receptors, cytokine storms, and Weibel–Palade bodies;
- Section 3 introduces hypoxic-ischemic encephalopathy, emphasizing its origins among COVID-19 patients (prolonged hypoxemia, acute respiratory distress syndrome, cardiac complications, ventilatory therapy, and sedation), distinguishing vulnerable patients, possible clinical scenarios and outcomes, and presenting the major imaging findings;
- Section 4 provides a comprehensive consideration of ischemic complications caused by SARS-CoV-2 infection, including relevant definitions, and special attention to epidemiology, risk factors, and diagnostic imaging;
- In Section 5, we address similar epidemiological and clinical problems associated with hemorrhagic stroke in COVID-19 patients;
- Regarding possible limitations of the study, Section 6 provides general conclusions concerning COVID-19 major cerebrovascular complications.
2. Potential Mechanisms of Both Hemorrhagic and Ischemic Stroke
3. Hypoxic-Ischemic Encephalopathy
3.1. Prevalence, Clinical Presentation, and Neuropathology
3.2. Imaging Findings
4. Ischemic Stroke
4.1. Epidemiology
4.2. Risk Factors
4.3. Imaging Findings
4.4. Conclusions
5. Hemorrhagic Stroke
5.1. Epidemiology
5.2. Risk Factors
5.3. Imaging Findings
5.4. Indirect Links between COVID-19 and Hemorrhagic Stroke
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO|World Health Organization. Available online: https://www.who.int/ (accessed on 15 August 2021).
- World Health Organization Coronavirus Disease (COVID-19) Pandemic. 2021. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 29 July 2022).
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic Manifestations of Hospitalized Patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, Y.; Liang, X.; Gao, B.; Liu, M.; Li, W.; Chen, Z.; Wang, Z. COVID-19 Associated Ischemic Stroke and Hemorrhagic Stroke: Incidence, Potential Pathological Mechanism, and Management. Front. Neurol. 2020, 11, 571996. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Romero-Sánchez, C.M.; Díaz-Maroto, I.; Fernández-Díaz, E.; Sánchez-Larsen, Á.; Layos-Romero, A.; García-García, J.; González, E.; Redondo-Peñas, I.; Perona-Moratalla, A.B.; Del Valle-Pérez, J.A.; et al. Neurologic manifestations in hospitalized patients with COVID-19: The ALBACOVID registry. Neurology 2020, 95, e1060–e1070. [Google Scholar] [CrossRef]
- Li, Z.; Liu, T.; Yang, N.; Han, D.; Mi, X.; Li, Y.; Liu, K.; Vuylsteke, A.; Xiang, H.; Guo, X. Neurological manifestations of patients with COVID-19: Potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front. Med. 2020, 14, 533–541. [Google Scholar] [CrossRef]
- Wiese, O.; Allwood, B.; Zemlin, A. COVID-19 and the renin-angiotensin system (RAS): A spark that sets the forest alight? Med. Hypotheses 2020, 144, 110231. [Google Scholar] [CrossRef]
- Drelich-Zbroja, A.; Cheda, M.; Kuczyńska, M.; Dąbrowska, I.; Kopyto, E.; Halczuk, I. Parkinson’s Disease in Light of the COVID-19 Pandemic. Brain Sci. 2022, 12, 143. [Google Scholar] [CrossRef]
- Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat. Med. 2005, 11, 875–879. [Google Scholar] [CrossRef]
- Merad, M.; Martin, J.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol. 2020, 20, 355–362. [Google Scholar] [CrossRef]
- Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.A.M.P.J.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020, 191, 145–147. [Google Scholar] [CrossRef]
- De Michele, M.; Kahan, J.; Berto, I.; Schiavo, O.G.; Iacobucci, M.; Toni, D.; Merkler, A.E. Cerebrovascular Complications of COVID-19 and COVID-19 Vaccination. Circ. Res. 2022, 130, 1187–1203. [Google Scholar] [CrossRef]
- South, K.; McCulloch, L.; McColl, B.W.; Elkind, M.S.; Allan, S.M.; Smith, C.J. Preceding infection and risk of stroke: An old concept revived by the COVID-19 pandemic. Int. J. Stroke 2020, 15, 722–732. [Google Scholar] [CrossRef]
- Huisman, A.; Beun, R.; Sikma, M.; Westerink, J.; Kusadasi, N. Involvement of ADAMTS13 and von Willebrand factor in thromboembolic events in patients infected with SARS-CoV-2. Int. J. Lab. Hematol. 2020, 42, e211–e212. [Google Scholar] [CrossRef]
- Schmaier, A.A.; Hurtado, G.M.P.; Manickas-Hill, Z.J.; Sack, K.D.; Chen, S.M.; Bhambhani, V.; Quadir, J.; Nath, A.K.; Collier, A.-R.Y.; Ngo, D.; et al. Tie2 activation protects against prothrombotic endothelial dysfunction in COVID-19. JCI Insight 2021, 6, e151527. [Google Scholar] [CrossRef]
- Escher, R.; Breakey, N.; Lämmle, B. ADAMTS13 activity, von Willebrand factor, factor VIII and D-dimers in COVID-19 inpatients. Thromb. Res. 2020, 192, 174–175. [Google Scholar] [CrossRef]
- Andersson, H.M.; Siegerink, B.; Luken, B.; Crawley, J.; Algra, A.; Lane, D.A.; Rosendaal, F.R. High VWF, low ADAMTS13, and oral contraceptives increase the risk of ischemic stroke and myocardial infarction in young women. Blood 2012, 119, 1555–1560. [Google Scholar] [CrossRef]
- Allie, S.; Stanley, A.; Bryer, A.; Meiring, M.; Combrinck, M.I. High Levels of von Willebrand Factor and Low Levels of its Cleaving Protease, ADAMTS13, are Associated with Stroke in Young HIV-Infected Patients. Int. J. Stroke 2015, 10, 1294–1296. [Google Scholar] [CrossRef]
- Villa, E.; Critelli, R.; Lasagni, S.; Melegari, A.; Curatolo, A.; Celsa, C.; Romagnoli, D.; Melegari, G.; Pivetti, A.; Di Marco, L.; et al. Dynamic angiopoietin-2 assessment predicts survival and chronic course in hospitalized patients with COVID-19. Blood Adv. 2021, 5, 662–673. [Google Scholar] [CrossRef]
- Smadja, D.M.; Guerin, C.L.; Chocron, R.; Yatim, N.; Boussier, J.; Gendron, N.; Khider, L.; Hadjadj, J.; Goudot, G.; Debuc, B.; et al. Angiopoietin-2 as a marker of endothelial activation is a good predictor factor for intensive care unit admission of COVID-19 patients. Angiogenesis 2020, 23, 611–620. [Google Scholar] [CrossRef]
- Benger, M.; Williams, O.; Siddiqui, J.; Sztriha, L. Intracerebral haemorrhage and COVID-19: Clinical characteristics from a case series. Brain Behav. Immun. 2020, 88, 940–944. [Google Scholar] [CrossRef]
- Margos, N.P.; Meintanopoulos, A.S.; Filioglou, D.; Ellul, J. Intracerebral hemorrhage in COVID-19: A narrative review. J. Clin. Neurosci. 2021, 89, 271–278. [Google Scholar] [CrossRef]
- Keep, R.F.; Xiang, J.; Ennis, S.R.; Andjelkovic, A.; Hua, Y.; Xi, G.; Hoff, J.T. Blood-brain barrier function in intracerebral hemorrhage. Acta Neurochir. Suppl. 2008, 105, 73–77. [Google Scholar] [CrossRef]
- Divani, A.A.; Andalib, S.; Di Napoli, M.; Lattanzi, S.; Hussain, M.S.; Biller, J.; McCullough, L.D.; Azarpazhooh, M.R.; Seletska, A.; Mayer, S.A.; et al. Coronavirus Disease 2019 and Stroke: Clinical Manifestations and Pathophysiological Insights. J. Stroke Cerebrovasc. Dis. 2020, 29, 104941. [Google Scholar] [CrossRef]
- Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020, 46, 586–590. [Google Scholar] [CrossRef]
- Wang, H.; Tang, X.; Fan, H.; Luo, Y.; Song, Y.; Xu, Y.; Chen, Y. Potential mechanisms of hemorrhagic stroke in elderly COVID-19 patients. Aging 2020, 12, 10022–10034. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Lee, H.-K.; Park, J.H.; Cho, S.-J.; Kwon, M.; Jo, C.; Koh, Y.H. Altered COVID-19 receptor ACE2 expression in a higher risk group for cerebrovascular disease and ischemic stroke. Biochem. Biophys. Res. Commun. 2020, 528, 413–419. [Google Scholar] [CrossRef]
- Dogra, S.; Jain, R.; Cao, M.; Bilaloglu, S.; Zagzag, D.; Hochman, S.; Lewis, A.; Melmed, K.; Hochman, K.; Horwitz, L.; et al. Hemorrhagic stroke and anticoagulation in COVID-19. J. Stroke Cerebrovasc. Dis. 2020, 29, 104984. [Google Scholar] [CrossRef]
- Nannoni, S.; de Groot, R.; Bell, S.; Markus, H.S. Stroke in COVID-19: A systematic review and meta-analysis. Int. J. Stroke 2020, 16, 137–149. [Google Scholar] [CrossRef]
- Frontera, J.A.; Melmed, K.; Fang, T.; Granger, A.; Lin, J.; Yaghi, S.; Zhou, T.; Lewis, A.; Kurz, S.; Kahn, D.E.; et al. Toxic Metabolic Encephalopathy in Hospitalized Patients with COVID-19. Neurocritical. Care 2021, 35, 693–706. [Google Scholar] [CrossRef]
- Generoso, J.S.; de Quevedo, J.L.B.; Cattani, M.; Lodetti, B.F.; Sousa, L.; Collodel, A.; Diaz, A.P.; Dal-Pizzol, F. Neurobiology of COVID-19: How can the virus affect the brain? Rev. Bras. Psiquiatr. 2021, 43, 650–664. [Google Scholar] [CrossRef]
- Frontera, J.A.; Sabadia, S.; Lalchan, R.; Fang, T.; Flusty, B.; Millar-Vernetti, P.; Snyder, T.; Berger, S.; Yang, D.; Granger, A.; et al. A Prospective Study of Neurologic Disorders in Hospitalized Patients With COVID-19 in New York City. Neurology 2020, 96, e575–e586. [Google Scholar] [CrossRef] [PubMed]
- Kannapadi, N.V.; Jami, M.; Premraj, L.; Etchill, E.W.; Giuliano, K.; Bush, E.L.; Kim, B.S.; Seal, S.; Whitman, G.; Cho, S.-M. Neurological Complications in COVID-19 Patients with ECMO Support: A Systematic Review and Meta-Analysis. Hear. Lung Circ. 2021, 31, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Thakur, K.T.; Miller, E.H.; Glendinning, M.D.; Al-Dalahmah, O.; Banu, M.A.; Boehme, A.K.; Boubour, A.L.; Bruce, S.S.; Chong, A.M.; Claassen, J.; et al. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain 2021, 144, 2696–2708. [Google Scholar] [CrossRef] [PubMed]
- Mukerji, S.S.; Solomon, I.H. What can we learn from brain autopsies in COVID-19? Neurosci. Lett. 2020, 742, 135528. [Google Scholar] [CrossRef]
- Cosentino, G.; Todisco, M.; Hota, N.; Della Porta, G.; Morbini, P.; Tassorelli, C.; Pisani, A. Neuropathological findings from COVID-19 patients with neurological symptoms argue against a direct brain invasion of SARS-CoV-2: A critical systematic review. Eur. J. Neurol. 2021, 28, 3856–3865. [Google Scholar] [CrossRef]
- Patel, U.; Malik, P.; Mehta, D.; Rajput, P.; Shrivastava, M.; Naveed, M.; Urhoghide, E.; Martin, M.; Somi, S.; Jaiswal, R.; et al. Outcomes of COVID-19 complications and their possibilities as potential triggers of stroke. J. Stroke Cerebrovasc. Dis. 2021, 30, 105805. [Google Scholar] [CrossRef]
- Pajo, A.T.; Espiritu, A.I.; Apor, A.D.A.O.; Jamora, R.D.G. Neuropathologic findings of patients with COVID-19: A systematic review. Neurol. Sci. 2021, 42, 1255–1266. [Google Scholar] [CrossRef]
- Bugra, A.; Das, T.; Arslan, M.N.; Ziyade, N.; Buyuk, Y. Postmortem pathological changes in extrapulmonary organs in SARS-CoV-2 rt-PCR–positive cases: A single-center experience. Ir. J. Med Sci. 2021, 191, 81–91. [Google Scholar] [CrossRef]
- Nauen, D.W.; Hooper, J.E.; Stewart, C.M.; Solomon, I.H. Assessing Brain Capillaries in Coronavirus Disease 2019. JAMA Neurol. 2021, 78, 760. [Google Scholar] [CrossRef]
- El Beltagi, A.H.; Vattoth, S.; Abdelhady, M.; Ahmed, I.; Paksoy, Y.; Kamar, M.A.; Alsoub, H.; Almaslamani, M.; Alkhal, A.L.; Own, A.; et al. Spectrum of neuroimaging findings in COVID-19. Br. J. Radiol. 2021, 94, 20200812. [Google Scholar] [CrossRef]
- Garg, R.K.; Paliwal, V.K.; Malhotra, H.S.; Sharma, P.K. Neuroimaging Patterns in Patients with COVID-19-Associated Neurological Complications: A Review. Neurol. India 2021, 69, 260–271. [Google Scholar] [CrossRef]
- Sisniega, D.C.; Reynolds, A.S. Severe Neurologic Complications of SARS-CoV-2. Curr. Treat. Options Neurol. 2021, 23, 14. [Google Scholar] [CrossRef]
- Moonis, G.; Filippi, C.G.; Kirsch, C.F.E.; Mohan, S.; Stein, E.G.; Hirsch, J.A.; Mahajan, A. The Spectrum of Neuroimaging Findings on CT and MRI in Adults With COVID-19. Am. J. Roentgenol. 2021, 217, 959–974. [Google Scholar] [CrossRef]
- Popescu, C. Hypoxic-Ischemic Injury of Basal Ganglia Associated with the COVID-19 Infection: Case Report. Case Rep. Neurol. 2021, 13, 668–671. [Google Scholar] [CrossRef]
- Parry, A.H.; Wani, A.H.; Yaseen, M. Neurological Dysfunction in Coronavirus Disease-19 (COVID-19). Acad. Radiol. 2020, 27, 1329–1330. [Google Scholar] [CrossRef]
- Sawlani, V.; Scotton, S.; Nader, K.; Jen, J.; Patel, M.; Gokani, K.; Denno, P.; Thaller, M.; Englezou, C.; Janjua, U.; et al. COVID-19-related intracranial imaging findings: A large single-centre experience. Clin. Radiol. 2020, 76, 108–116. [Google Scholar] [CrossRef]
- Elizondo, E.F.M.; Ramírez, J.A.V.; Aguirre, G.B.; Medina, P.M.D.; Estens, J.B. Central Nervous System Injury in Patients with Severe Acute Respiratory Syndrome Coronavirus 2: MRI Findings. Cureus 2021, 13, e18052. [Google Scholar] [CrossRef]
- Khandwala, K.; Mubarak, F.; Ahmad, M.N. Imaging Patterns of Encephalopathy in Patients with COVID-19. J. Coll. Physicians Surg. Pak. 2021, 31, S42–S45. [Google Scholar] [CrossRef]
- Radnis, C.; Qiu, S.; Jhaveri, M.; Da Silva, I.; Szewka, A.; Koffman, L. Radiographic and clinical neurologic manifestations of COVID-19 related hypoxemia. J. Neurol. Sci. 2020, 418, 117119. [Google Scholar] [CrossRef]
- Ragheb, J.; McKinney, A.; Zierau, M.; Brooks, J.; Hill-Caruthers, M.; Iskander, M.; Ahmed, Y.; Lobo, R.; Mentz, G.; Vlisides, E.P. Delirium and neuropsychological outcomes in critically Ill patients with COVID-19: A cohort study. BMJ Open 2021, 11, e050045. [Google Scholar] [CrossRef]
- Fan, S.; Xiao, M.; Han, F.; Xia, P.; Bai, X.; Chen, H.; Zhang, H.; Ding, X.; Zhao, H.; Zhao, J.; et al. Neurological Manifestations in Critically Ill Patients With COVID-19: A Retrospective Study. Front. Neurol. 2020, 11, 806. [Google Scholar] [CrossRef]
- Fonseca, A.C.; Merwick, Á.; Dennis, M.; Ferrari, J.; Ferro, J.M.; Kelly, P.; Lal, A.; Ois, A.; Olivot, J.M.; Purroy, F. European Stroke Organisation (ESO) guidelines on management of transient ischaemic attack. Eur. Stroke J. 2021, 6, CLXIII–CLXXXVI. [Google Scholar] [CrossRef]
- Ghannam, M.; Alshaer, Q.; Al-Chalabi, M.; Zakarna, L.; Robertson, J.; Manousakis, G. Neurological involvement of coronavirus disease 2019: A systematic review. J. Neurol. 2020, 267, 3135–3153. [Google Scholar] [CrossRef]
- Yaghi, S.; Ishida, K.; Torres, J.; Mac Grory, B.; Raz, E.; Humbert, K.; Henninger, N.; Trivedi, T.; Lillemoe, K.; Alam, S.; et al. SARS-CoV-2 and Stroke in a New York Healthcare System. Stroke 2020, 51, 2002–2011. [Google Scholar] [CrossRef]
- Lodigiani, C.; Iapichino, G.; Carenzo, L.; Cecconi, M.; Ferrazzi, P.; Sebastian, T.; Kucher, N.; Studt, J.-D.; Sacco, C.; Bertuzzi, A.; et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb. Res. 2020, 191, 9–14. [Google Scholar] [CrossRef]
- Helms, J.; Kremer, S.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Kummerlen, C.; Collange, O.; Boulay, C.; Fafi-Kremer, S.; Ohana, M.; et al. Neurologic Features in Severe SARS-CoV-2 Infection. N. Engl. J. Med. 2020, 382, 2268–2270. [Google Scholar] [CrossRef]
- Belani, P.; Schefflein, J.; Kihira, S.; Rigney, B.; Delman, B.; Mahmoudi, K.; Mocco, J.; Majidi, S.; Yeckley, J.; Aggarwal, A.; et al. COVID-19 Is an Independent Risk Factor for Acute Ischemic Stroke. Am. J. Neuroradiol. 2020, 41, 1361–1364. [Google Scholar] [CrossRef]
- Sweid, A.; Hammoud, B.; Bekelis, K.; Missios, S.; Tjoumakaris, I.S.; Gooch, M.R.; Herial, A.N.; Zarzour, H.; Romo, V.; DePrince, M.; et al. Cerebral ischemic and hemorrhagic complications of coronavirus disease 2019. Int. J. Stroke 2020, 15, 733–742. [Google Scholar] [CrossRef]
- Ameriso, S.F.; Wong, V.L.; Quismorio, F.P.; Fisher, M. Immunohematologic characteristics of infection-associated cerebral infarction. Stroke 1991, 22, 1004–1009. [Google Scholar] [CrossRef]
- Mittleman, M.A.; Mostofsky, E. Physical, Psychological and Chemical Triggers of Acute Cardiovascular Events. Circulation 2011, 124, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Connors, J.M.; Levy, J.H. Thromboinflammation and the hypercoagulability of COVID-19. J. Thromb. Haemost. 2020, 18, 1559–1561. [Google Scholar] [CrossRef] [PubMed]
- Markus, H.S.; Brainin, M. COVID-19 and stroke—A global World Stroke Organization perspective. Int. J. Stroke 2020, 15, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Avula, A.; Nalleballe, K.; Narula, N.; Sapozhnikov, S.; Dandu, V.; Toom, S.; Glaser, A.; Elsayegh, D. COVID-19 presenting as stroke. Brain Behav. Immun. 2020, 87, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C.; Nichols, T.; Pike, M.; Subbe, C.; Elghenzai, S. Cerebral Venous Sinus Thrombosis as a Presentation of COVID-19. Eur. J. Case Rep. Intern. Med. 2020, 7, 001691. [Google Scholar] [CrossRef] [PubMed]
- Maier, C.L.; Truong, A.D.; Auld, S.C.; Polly, D.M.; Tanksley, C.-L.; Duncan, A. COVID-19-associated hyperviscosity: A link between inflammation and thrombophilia? Lancet 2020, 395, 1758–1759. [Google Scholar] [CrossRef]
- Gertz, M.A.; Kyle, R.A. Hyperviscosity Syndrome. J. Intensiv. Care Med. 1995, 10, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, S.; Sinha, A.; Banach, M.; Mittoo, S.; Weissert, R.; Kass, J.S.; Rajagopal, S.; Pai, A.R.; Kutty, S. Cytokine Storm in COVID-19-Immunopathological Mechanisms, Clinical Considerations, and Therapeutic Approaches: The REPROGRAM Consortium Position Paper. Front. Immunol. 2020, 11, 1648. [Google Scholar] [CrossRef] [PubMed]
- Ntaios, G.; Michel, P.; Georgiopoulos, G.; Guo, Y.; Li, W.; Xiong, J.; Calleja, P.; Ostos, F.; González-Ortega, G.; Fuentes, B.; et al. Characteristics and Outcomes in Patients With COVID-19 and Acute Ischemic Stroke. Stroke 2020, 51, e254–e258. [Google Scholar] [CrossRef]
- Hernández-Fernández, F.; Valencia, H.S.; Barbella-Aponte, R.A.; Collado-Jiménez, R.; Ayo-Martín, Ó.; Barrena, C.; Molina-Nuevo, J.D.; García-García, J.; Lozano-Setién, E.; Alcahut-Rodriguez, C.; et al. Cerebrovascular disease in patients with COVID-19: Neuroimaging, histological and clinical description. Brain 2020, 143, 3089–3103. [Google Scholar] [CrossRef]
- Mahammedi, A.; Saba, L.; Vagal, A.; Leali, M.; Rossi, A.; Gaskill, M.; Sengupta, S.; Zhang, B.; Carriero, A.; Bachir, S.; et al. Imaging of Neurologic Disease in Hospitalized Patients with COVID-19: An Italian Multicenter Retrospective Observational Study. Radiology 2020, 297, E270–E273. [Google Scholar] [CrossRef]
- Beyrouti, R.; Adams, E.M.; Benjamin, L.; Cohen, H.; Farmer, S.F.; Goh, Y.Y.; Humphries, F.; Jäger, H.R.; Losseff, A.N.; Perry, R.J.; et al. Characteristics of ischaemic stroke associated with COVID-19. J. Neurol. Neurosurg. Psychiatry 2020, 91, 889–891. [Google Scholar] [CrossRef]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418, Correction in Stroke 2019, 50, e440–e441. [Google Scholar] [CrossRef]
- Alwahdy, A.S.; Margaretha, I.Y.; Pramesti, K.S.; Hamro, N.; Yuzella, V.; Nasution, F.; Mappalilu, A. Case series of intravenous thrombolysis for acute ischemic stroke in confirmed COVID-19 patients: Single-centre experience. Egypt. J. Neurol. Psychiatry Neurosurg. 2022, 58, 5. [Google Scholar] [CrossRef]
- Hess, D.C.; Eldahshan, W.; Rutkowski, E. COVID-19-Related Stroke. Transl. Stroke Res. 2020, 11, 322–325. [Google Scholar] [CrossRef]
- Altschul, D.J.; Unda, S.R.; Ramos, R.D.L.G.; Zampolin, R.; Benton, J.; Holland, R.; Fortunel, A.; Haranhalli, N. Hemorrhagic presentations of COVID-19: Risk factors for mortality. Clin. Neurol. Neurosurg. 2020, 198, 106112. [Google Scholar] [CrossRef]
- Syahrul, S.; Maliga, H.A.; Ilmawan, M.; Fahriani, M.; Mamada, S.S.; Fajar, J.K.; Frediansyah, A.; Syahrul, F.N.; Imran, I.; Haris, S.; et al. Hemorrhagic and ischemic stroke in patients with coronavirus disease 2019: Incidence, risk factors, and pathogenesis—A systematic review and meta-analysis. F1000Research 2021, 10, 34. [Google Scholar] [CrossRef]
- Maury, A.; Lyoubi, A.; Peiffer-Smadja, N.; de Broucker, T.; Meppiel, E. Neurological manifestations associated with SARS-CoV-2 and other coronaviruses: A narrative review for clinicians. Rev. Neurol. 2020, 177, 51–64. [Google Scholar] [CrossRef]
- Meppiel, E.; Peiffer-Smadja, N.; Maury, A.; Bekri, I.; Delorme, C.; Desestret, V.; Gorza, L.; Hautecloque-Raysz, G.; Landre, S.; Lannuzel, A.; et al. Neurologic manifestations associated with COVID-19: A multicentre registry. Clin. Microbiol. Infect. 2020, 27, 458–466. [Google Scholar] [CrossRef]
- Ramos, A.D.; Koyfman, F.; Byrns, K.; Wu, A.; Yasen, J.; Elreda, L.; Boddu, S.; Pishanidar, S.; Allen, B.; Juthani, R.G. Characterization of Hemorrhagic and Ischemic Stroke in a Diverse Cohort of COVID-19 Patients. Neurohospitalist 2021, 11, 295–302. [Google Scholar] [CrossRef]
- Topcuoglu, M.A.; Pektezel, M.Y.; Oge, D.D.; Yüksel, N.D.B.; Ayvacioglu, C.; Demirel, E.; Balci, S.; Arat, A.; Akinci, S.B.; Arsava, E.M. Stroke Mechanism in COVID-19 Infection: A Prospective Case-Control Study. J. Stroke Cerebrovasc. Dis. 2021, 30, 105919. [Google Scholar] [CrossRef]
- Johansson, K.; Jansson, J.-H.; Johansson, L.; Wiklund, P.-G.; Nilsson, T.K.; Lind, M. D-Dimer Is Associated with First-Ever Intracerebral Hemorrhage. Stroke 2018, 49, 2034–2039. [Google Scholar] [CrossRef]
- Nawabi, J.; Morotti, A.; Wildgruber, M.; Boulouis, G.; Kraehling, H.; Schlunk, F.; Can, E.; Kniep, H.; Thomalla, G.; Psychogios, M.; et al. Clinical and Imaging Characteristics in Patients with SARS-CoV-2 Infection and Acute Intracranial Hemorrhage. J. Clin. Med. 2020, 9, 2543. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, F.; Li, Y.; Li, H.; Ma, L.; Hu, X.; You, C. Changes in Characteristics, Treatment and Outcome in Patients with Hemorrhagic Stroke During COVID-19. J. Stroke Cerebrovasc. Dis. 2020, 30, 105536. [Google Scholar] [CrossRef]
- Adams, H.P.; Davis, P.H.; Leira, E.C.; Chang, K.-C.; Bendixen, B.H.; Clarke, W.R.; Woolson, R.F.; Hansen, M.D. Baseline NIH Stroke Scale score strongly predicts outcome after stroke: A report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). Neurology 1999, 53, 126. [Google Scholar] [CrossRef]
- Greinacher, A.; Langer, F.; Makris, M.; Pai, M.; Pavord, S.; Tran, H.; Warkentin, T.E. Vaccine-induced immune thrombotic thrombocytopenia (VITT): Update on diagnosis and management considering different resources. J. Thromb. Haemost. 2021, 20, 149–156. [Google Scholar] [CrossRef]
- Scully, M.; Singh, D.; Lown, R.; Poles, A.; Solomon, T.; Levi, M.; Goldblatt, D.; Kotoucek, P.; Thomas, W.; Lester, W. Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination. N. Engl. J. Med. 2021, 384, 2202–2211. [Google Scholar] [CrossRef]
- Muir, K.-L.; Kallam, A.; Koepsell, S.A.; Gundabolu, K. Thrombotic Thrombocytopenia after Ad26.COV2.S Vaccination. N. Engl. J. Med. 2021, 384, 1964–1965. [Google Scholar] [CrossRef] [PubMed]
- Purkayastha, P.; Mckechnie, C.; Kalkur, P.; Scully, M. Rare case of COVID-19 vaccine-associated intracranial haemorrhage with venous sinus thrombosis. BMJ Case Rep. 2021, 14, e245092. [Google Scholar] [CrossRef] [PubMed]
- Battegay, R.; Istampoulouoglou, I.; Holbro, A.; Buser, A.; Hirsiger, J.R.; Eckstein, J.; Berger, C.T.; Koechlin, S.; Leuppi-Taegtmeyer, A.B. Immune thrombocytopenia associated with COVID-19 mRNA vaccine tozinameran—A clinical case and global pharmacovigilance data. Swiss Med Wkly. 2021, 151, w30084. [Google Scholar] [CrossRef] [PubMed]
- Syed, K.; Chaudhary, H.; Donato, A. Central Venous Sinus Thrombosis with Subarachnoid Hemorrhage Following an mRNA COVID-19 Vaccination: Are These Reports Merely Co-Incidental? Am. J. Case Rep. 2021, 22, e933397. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yang, J.; Zhao, F.; Zhi, L.; Wang, X.; Liu, L.; Bi, Z.; Zhao, Y. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin. Res. Cardiol. 2020, 109, 531–538. [Google Scholar] [CrossRef]
- Ma, L.-Y.; Chen, W.-W.; Gao, R.-L.; Liu, L.-S.; Zhu, M.-L.; Wang, Y.-J.; Wu, Z.-S.; Li, H.-J.; Gu, D.-F.; Yang, Y.-J.; et al. China cardiovascular diseases report 2018: An updated summary. J. Geriatr. Cardiol. 2020, 17, 1–8. [Google Scholar]
- Shlomai, A.; Ben-Zvi, H.; Bendersky, A.G.; Shafran, N.; Goldberg, E.; Sklan, E.H. Nasopharyngeal viral load predicts hypoxemia and disease outcome in admitted COVID-19 patients. Crit. Care 2020, 24, 539. [Google Scholar] [CrossRef]
- Roy, D.; Ghosh, R.; Dubey, S.; Dubey, M.J.; Benito-León, J.; Ray, B.K. Neurological and Neuropsychiatric Impacts of COVID-19 Pandemic. Can. J. Neurol. Sci. J. Can. Sci. Neurol. 2020, 48, 9–24. [Google Scholar] [CrossRef]
- Anzalone, N.; Castellano, A.; Scotti, R.; Scandroglio, A.M.; Filippi, M.; Ciceri, F.; Tresoldi, M.; Falini, A. Multifocal laminar cortical brain lesions: A consistent MRI finding in neuro-COVID-19 patients. J. Neurol. 2020, 267, 2806–2809. [Google Scholar] [CrossRef]
Parameter/Condition | Hypoxic-Ischemic Encephalopathy | Acute Intracranial Hemorrhage | Acute Ischemic Stroke |
---|---|---|---|
Prevalence | 28–50%, some authors concluded that hypoxic-ischemic lesions are non-specific and cannot be directly linked to COVID-19 | 0.2–0.8% | 1.6–2.5% |
Mortality rate | n/a | ~35–50% | ~19.1–31% |
Neuro-pathology localization | various: frontal cortex, optic chiasm, olfactory bulb, subcortical white matter, neostriatum, CA1 regions of hippocampi, subtentorial structures | most commonly lobar (15–30%), multilobar, basal ganglia | large vessel occlusion, most common: middle cerebral artery (>50%), |
Independent risk factors | ARDS, use of ECMO | hypertension, type 2 diabetes mellitus, elevated plasma D-dimer levels, smoking, use of ECMO | hyperviscosity, use of ECMO, endotheliitis and other endothelial dysfunction, elevated plasma D-dimer levels, dyslipidemia, atrial fibrillation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sojka, M.; Drelich-Zbroja, A.; Kuczyńska, M.; Cheda, M.; Dąbrowska, I.; Kopyto, E.; Halczuk, I.; Zbroja, M.; Cyranka, W.; Jargiełło, T. Ischemic and Hemorrhagic Cerebrovascular Events Related to COVID-19 Coagulopathy and Hypoxemia. Int. J. Environ. Res. Public Health 2022, 19, 11823. https://doi.org/10.3390/ijerph191811823
Sojka M, Drelich-Zbroja A, Kuczyńska M, Cheda M, Dąbrowska I, Kopyto E, Halczuk I, Zbroja M, Cyranka W, Jargiełło T. Ischemic and Hemorrhagic Cerebrovascular Events Related to COVID-19 Coagulopathy and Hypoxemia. International Journal of Environmental Research and Public Health. 2022; 19(18):11823. https://doi.org/10.3390/ijerph191811823
Chicago/Turabian StyleSojka, Michał, Anna Drelich-Zbroja, Maryla Kuczyńska, Mateusz Cheda, Izabela Dąbrowska, Ewa Kopyto, Izabela Halczuk, Monika Zbroja, Weronika Cyranka, and Tomasz Jargiełło. 2022. "Ischemic and Hemorrhagic Cerebrovascular Events Related to COVID-19 Coagulopathy and Hypoxemia" International Journal of Environmental Research and Public Health 19, no. 18: 11823. https://doi.org/10.3390/ijerph191811823
APA StyleSojka, M., Drelich-Zbroja, A., Kuczyńska, M., Cheda, M., Dąbrowska, I., Kopyto, E., Halczuk, I., Zbroja, M., Cyranka, W., & Jargiełło, T. (2022). Ischemic and Hemorrhagic Cerebrovascular Events Related to COVID-19 Coagulopathy and Hypoxemia. International Journal of Environmental Research and Public Health, 19(18), 11823. https://doi.org/10.3390/ijerph191811823