Decoding the Geography of Natural TBEV Microfoci in Germany: A Geostatistical Approach Based on Land-Use Patterns and Climatological Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Definition of a TBEV Microfocus
2.3. Epidemiological Dataset and Case Definition
2.4. Tick Collection, TBEV Detection, and TBEV Isolation
2.5. Environmental Raw Data Sets
2.6. Data Preparation and Processing
2.7. Analyzing the Influence of Environmental Characteristics on the Presence or Absence of TBEV and Selecting the Main Environmental Drivers for the Distribution of TBEV
2.8. Selecting Main Environmental Drivers for the Distribution of TBEV by Using the MaxEnt Model
2.9. Comparing the MaxEnt Probability Distribution and the Number of TBEV Infections in Germany
2.10. Tools
3. Results
3.1. The Impact of Environmental Variables on the Presence or Absence of TBEV
3.2. MaxEnt Prediction Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bogovic, P.; Strle, F. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J. Clin. Cases 2015, 3, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, R. Tick-borne encephalitis. Infect. Dis. Clin. N. Am. 2008, 22, 561–575. [Google Scholar] [CrossRef]
- Ruzek, D.; Avšič Županc, T.; Borde, J.; Chrdle, A.; Eyer, L.; Karganova, G.; Kholodilov, I.; Knap, N.; Kozlovskaya, L.; Matveev, A.; et al. Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antivir. Res. 2019, 164, 23–51. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, N.; Antonello, R.M.; Luzzati, R.; Zajkowska, J.; Di Bella, S.; Giacobbe, D.R. Tick-borne encephalitis in Europe: A brief update on epidemiology, diagnosis, prevention, and treatment. Eur. J. Intern. Med. 2019, 62, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, R. Tick-borne encephalitis (TBE) in Germany and clinical course of the disease. Int. J. Med. Microbiol. 2002, 291, 58–61. [Google Scholar] [CrossRef]
- Michelitsch, A.; Wernike, K.; Klaus, C.; Dobler, G.; Beer, M. Exploring the Reservoir Hosts of Tick-Borne Encephalitis Virus. Viruses 2019, 11, 669. [Google Scholar] [CrossRef] [PubMed]
- Michelitsch, A.; Fast, C.; Sick, F.; Tews, B.A.; Stiasny, K.; Bestehorn-Willmann, M.; Dobler, G.; Beer, M.; Wernike, K. Long-term presence of tick-borne encephalitis virus in experimentally infected bank voles (Myodes glareolus). Ticks Tick Borne Dis. 2021, 12, 101693. [Google Scholar] [CrossRef]
- Borde, J.P.; Kaier, K.; Hehn, P.; Matzarakis, A.; Frey, S.; Bestehorn, M.; Dobler, G.; Chitimia-Dobler, L. The complex interplay of climate, TBEV vector dynamics and TBEV infection rates in ticks-Monitoring a natural TBEV focus in Germany, 2009–2018. PLoS ONE 2021, 16, e0244668. [Google Scholar] [CrossRef]
- Kiffner, C.; Zucchini, W.; Schomaker, P.; Vor, T.; Hagedorn, P.; Niedrig, M.; Rühe, F. Determinants of tick-borne encephalitis in counties of southern Germany, 2001–2008. Int. J. Health Geogr. 2010, 9, 42. [Google Scholar] [CrossRef]
- Brugger, K.; Walter, M.; Chitimia-Dobler, L.; Dobler, G.; Rubel, F. Forecasting next season’s Ixodes ricinus nymphal density: The example of southern Germany 2018. Exp. Appl. Acarol. 2018, 75, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Uusitalo, R.; Siljander, M.; Dub, T.; Sane, J.; Sormunen, J.J.; Pellikka, P.; Vapalahti, O. Modelling habitat suitability for occurrence of human tick-borne encephalitis (TBE) cases in Finland. Ticks Tick Borne Dis. 2020, 11, 101457. [Google Scholar] [CrossRef]
- Lambin, E.F.; Tran, A.; Vanwambeke, S.O.; Linard, C.; Soti, V. Pathogenic landscapes: Interactions between land, people, disease vectors, and their animal hosts. Int. J. Health Geogr. 2010, 9, 54. [Google Scholar] [CrossRef] [PubMed]
- Vanwambeke, S.O.; Šumilo, D.; Bormane, A.; Lambin, E.F.; Randolph, S.E. Landscape Predictors of Tick-Borne Encephalitis in Latvia: Land Cover, Land Use, and Land Ownership. Vector-Borne Zoonotic Dis. 2010, 10, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, A.; Hauffe, H.C.; Tagliapietra, V.; Neteler, M.; Rosà, R. Forest structure and roe deer abundance predict Tick-borne encephalitis risk in Italy. PLoS ONE 2009, 4, e4336. [Google Scholar] [CrossRef] [PubMed]
- Burri, C.; Bastic, V.; Maeder, G.; Patalas, E.; Gern, L. Microclimate and the zoonotic cycle of tick-borne encephalitis virus in Switzerland. J. Med. Entomol. 2011, 48, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Daniel, M.; Kríz, B.; Danielová, V.; Valter, J.; Benes, C. Changes of meteorological factors and tick-borne encephalitis incidence in the Czech Republic. Epidemiol. Mikrobiol. Imunol. 2010, 59, 179–187. [Google Scholar]
- Stefanoff, P.; Rubikowska, B.; Bratkowski, J.; Ustrnul, Z.; Vanwambeke, S.O.; Rosinska, M. A predictive model has identified tick-borne encephalitis high-risk areas in regions where no caseswere reported previously, Poland, 1999–2012. Int. J. Environ. Res. Public Health 2018, 15, 677. [Google Scholar] [CrossRef]
- Zając, Z.; Kulisz, J.; Bartosik, K.; Woźniak, A.; Dzierżak, M.; Khan, A. Environmental determinants of the occurrence and activity of Ixodes ricinus ticks and the prevalence of tick-borne diseases in eastern Poland. Sci. Rep. 2021, 11, 15472. [Google Scholar] [CrossRef]
- Friedsam, A.M.; Brady, O.J.; Pilic, A.; Dobler, G.; Hellenbrand, W.; Nygren, T.M. Geo-Spatial Characteristics of 567 Places of Tick-Borne Encephalitis Infection in Southern Germany, 2018–2020. Microorganisms 2022, 10, 643. [Google Scholar] [CrossRef]
- Nosek, J.; Kozuch, O.; Radda, A. Studies of the ecology of the Central European tick-borne encephalitis virus in Northern Moravia. Zentralbl. Bakteriol. Orig. 1968, 208, 81–87. [Google Scholar]
- Nosek, J.; Kožuch, O.; Grulich, I. The structure of tick-borne encephalitis (TBE) foci in Central Europe. Oecologia 1970, 5, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Dobler, G.; Erber, W.; Schmitt, H.-J.; Broker, M. The TBE Book; Global Health Press: Singapore, 2018. [Google Scholar]
- Zöldi, V.; Papp, T.; Rigó, K.; Farkas, J.; Egyed, L. A 4-year study of a natural tick-borne encephalitis virus focus in Hungary, 2010–2013. Ecohealth 2015, 12, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Dobler, G.; Gniel, D.; Petermann, R.; Pfeffer, M. Epidemiology and distribution of tick-borne encephalitis. Wien. Med. Wochenschr. 2012, 162, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Chitimia-Dobler, L.; Bestehorn, M.; Bröker, M.; Borde, J.; Molcanyi, T.; Andersen, N.S.; Pfeffer, M.; Dobler, G. Morphological anomalies in Ixodes ricinus and Ixodes inopinatus collected from tick-borne encephalitis natural foci in Central Europe. Exp. Appl. Acarol. 2017, 72, 379–397. [Google Scholar] [CrossRef]
- Kupča, A.M.; Essbauer, S.; Zoeller, G.; de Mendonça, P.G.; Brey, R.; Rinder, M.; Pfister, K.; Spiegel, M.; Doerrbecker, B.; Pfeffer, M.; et al. Isolation and molecular characterization of a tick-borne encephalitis virus strain from a new tick-borne encephalitis focus with severe cases in Bavaria, Germany. Ticks Tick Borne Dis. 2010, 1, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Bestehorn, M.; Weigold, S.; Kern, W.V.; Chitimia-Dobler, L.; Mackenstedt, U.; Dobler, G.; Bordeid, J.P. Phylogenetics of tick-borne encephalitis virus in endemic foci in the upper Rhine region in France and Germany. PLoS ONE 2018, 13, e0204790. [Google Scholar] [CrossRef]
- Walz, U. Landschaftsstrukturmaße und Indikatorensysteme zur Erfassung und Bewertung des Landschaftswandels und Seiner Umweltauswirkungen-unter Besonderer Berücksichtigung der biologischen Vielfalt. 2012. Available online: https://rosdok.uni-rostock.de/file/rosdok_disshab_0000000980/rosdok_derivate_0000005089/Habilitationsschrift_Walz_2013.pdf (accessed on 10 September 2022).
- Hesselbarth, M.H.K.; Nowosad, J.; Signer, J.; Graham, L.J. Open-source Tools in R for Landscape Ecology. Curr. Landsc. Ecol. Rep. 2021, 6, 97–111. [Google Scholar] [CrossRef]
- Süss, J.; Schrader, C.; Abel, U.; Voigt, W.P.; Schosser, R. Annual and seasonal variation of tick-borne encephalitis virus (TBEV) prevalence in ticks in selected hot spot areas in Germany using a nRT-PCR: Results from 1997 and 1998. Zent. Bakteriol. 1999, 289, 564–578. [Google Scholar] [CrossRef]
- Lehtinen, I.; Halonen, J.P. EEG findings in tick-borne encephalitis. J. Neurol. Neurosurg. Psychiatry 1984, 47, 500–504. [Google Scholar] [CrossRef]
- Topp, A.K.; Springer, A.; Dobler, G.; Bestehorn-Willmann, M.; Monazahian, M.; Strube, C. New and Confirmed Foci of Tick-Borne Encephalitis Virus (TBEV) in Northern Germany Determined by TBEV Detection in Ticks. Pathogens 2022, 11, 126. [Google Scholar] [CrossRef]
NAME | FEDERAL STATE | GEODATA N | GEODATA E |
---|---|---|---|
SCHILTACH | BW | 48.293264 | 8.320032 |
AUBACHSTRASSE | BW | 48.638261 | 8.124403 |
ZELL A.H. | BW | 48.337588 | 8.069234 |
OBERRIED | BW | 47.955061 | 7.961001 |
OEDENREUTH | BAY | 49.382107 | 10.89899 |
HOEHENGAU | BAY | 49.500923 | 11.859877 |
BURGLENGENFELD | BAY | 49.187749 | 12.037393 |
NEUHOF | BAY | 49.114536 | 11.878744 |
ASCHACH | BAY | 49.468414 | 11.884132 |
POPPENRICHT | BAY | 49.478247 | 11.789021 |
JAEGERSHOF | BAY | 49.299229 | 13.026569 |
BUCHTAL | BAY | 49.404872 | 12.081410 |
ELSENTHAL | BAY | 48.840594 | 13.384545 |
RUIT | BAY | 49.399371 | 12.127877 |
FUERSTENSTEIN | BAY | 48.716547 | 13.316138 |
HASELMUEHL | BAY | 49.408911 | 11.882931 |
HESELBACH | BAY | 49.297312 | 12.200458 |
IMMENSTETTEN I | BAY | 49.499808 | 11.889831 |
IMMENSTETTEN II | BAY | 49.482915 | 11.885282 |
KOELBLDORF | BAY | 49.260300 | 12.247922 |
WACKERSDORF | BAY | 49.320899 | 12.204749 |
WOLFSBACH | BAY | 49.361010 | 11.911637 |
PENKHOF | BAY | 49.411895 | 11.921286 |
MAIS | BAY | 47.982107 | 12.592499 |
LEUPOLZ | BW | 47.752795 | 9.817677 |
AAAASTEINBERG | BAY | 49.275271 | 12.176248 |
MUEHLAU | BAY | 47.724978 | 12.392581 |
PETTING | BAY | 47.926210 | 12.819270 |
BATTAUNE | SAC | 51.599236 | 12.751076 |
HUB | BAY | 49.244607 | 11.961373 |
ELSTERBERG | THUE | 50.611252 | 12.155112 |
EBERMANNSDORF | BAY | 49.395530 | 11.945491 |
SPIESSBERG | BW | 47.699637 | 9.737666 |
FEUERHOF | BAY | 49.522681 | 11.746832 |
RHEINE | NRW | 32.233590 | 7.527555 |
LINGEN | NS | 52.505504 | 7.275217 |
HERRNRIED | BAY | 49.103862 | 11.735617 |
AMOENAU | HES | 50.898691 | 8.689737 |
FRAUNBERG | BAY | 49.468676 | 12.138802 |
WANGEN I | BW | 47.699354 | 9.816652 |
WANGEN II | BW | 47.697346 | 9.798715 |
SCHNAITTENBACH | BAY | 49.529464 | 11.993255 |
GLEISSENBACH | BAY | 48.469833 | 12.062751 |
MUENCHEN-PERLACH | BAY | 48.079474 | 11.595674 |
TUEBINGEN | BW | 48.548510 | 9.060509 |
WAGING | BAY | 47.926538 | 12.736940 |
KARSEE | BW | 47.746614 | 9.806434 |
NUERNBERG | BAY | 49.429985 | 11.142228 |
WETTER | HES | 50.907811 | 8.750076 |
RAFFA | BAY | 49.198897 | 12.077333 |
INZENDORF | BAY | 49.449152 | 12.094763 |
URSULAPOPPENRICHT | BAY | 49.498136 | 11.859962 |
ASBACH | BAY | 49.381200 | 12.169548 |
WEINBERG | BAY | 49.326259 | 12.129508 |
ZWIEFALTEN | BW | 48.247522 | 9.460531 |
HAHNBACH | BAY | 49.498350 | 11.859444 |
(a) | |
LANDSCAPE METRIC (LSM) | p value |
L ED | 0.009 ** |
L SHAPE MN | 0.153 |
L LSI | 0.009 ** |
L AREA MN | 0.023 * |
L NP | 0.015 * |
L CORE SD | 0.721 |
L SHEI | 0.204 |
L SHDI | 0.024 * |
L SIDI | 0.023 * |
L SIEI | 0.173 |
L FRAC MN L PARA MN | 0.124 0.013 * |
L PR | 0.063 |
L PD | 0.015 * |
L LPI | 0.007 ** |
L CONTIG MN L CONTAG | 0.064 0.341 |
L IJI | 0.313 |
L COHESION | 0.021 * |
L MESH | 0.017 * |
L SPLIT | 0.006 ** |
L AI | 0.023 * |
L ENT | 0.012 * |
L DCAD | 0.015 * |
L TCA | 0.041 * |
L JOINENT | 0.003 ** |
P AREA DISCONTINUOUS URBAN FABRIC | 0.58 |
P AREA INDUSTRIAL OR COMMERCIAL UNITS | 0.500 |
P AREA ARABLE LAND | <0.001 *** |
P AREA VINEYARDS | 0.031 * |
P AREA PASTURES | 0.393 |
P AREA BROAD LEAVED FOREST | 0.203 |
P AREA CONIFEROUS FOREST | <0.001 *** |
P AREA MIXED FOREST P AREA CONIFEROUS AND MIXED FOREST | <0.001 *** <0.001 *** |
DISTANCE TO FOREST BORDER | 0.444 |
DISTANCE TO BROAD LEAFED FOREST BORDER | 0.036 * |
DISTANCE TO CONIFEROUS FOREST BORDER | 0.043 * |
DISTANCE TO MIXED FOREST BORDER | 0.002 ** |
DISTANCE TO CONIFEROUS AND MIXED FOREST BORDER | <0.001 *** |
DISTANCE TO ARABLE LAND BORDER | 0.431 |
(b) | |
DIGITAL ELEVATION MODEL | p value |
ELEVATION | <0.001 *** |
TPI | 0.032 * |
ASPECT | 0.323 |
SLOPE | 0.547 |
(c) | |
METEOROLOGICAL VARIABLES | p value |
MATEMP MASUMMERTEMP | <0.001 *** 0.108 |
MATEMPMIN | <0.001 *** |
MATEMPMAX | 0.199 |
MAPRECIP MASUMMERPRECIP | 0.002 ** 0.006 ** |
MAVEGBEG | 0.005 ** |
MAWDAT | <0.001 *** |
MASUN | <0.001 *** |
MAFROSTD | <0.001 *** |
MAICED MASUMMERD | <0.001 *** <0.001 *** |
MAHOTD | <0.001 *** |
MAEVAR | <0.001 *** |
MASOILM | <0.001 *** |
MASOILTEMP MAGRAD | <0.001 *** <0.001 *** |
(d) | |
POPULATION | p value |
POP | 0.363 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borde, J.P.; Glaser, R.; Braun, K.; Riach, N.; Hologa, R.; Kaier, K.; Chitimia-Dobler, L.; Dobler, G. Decoding the Geography of Natural TBEV Microfoci in Germany: A Geostatistical Approach Based on Land-Use Patterns and Climatological Conditions. Int. J. Environ. Res. Public Health 2022, 19, 11830. https://doi.org/10.3390/ijerph191811830
Borde JP, Glaser R, Braun K, Riach N, Hologa R, Kaier K, Chitimia-Dobler L, Dobler G. Decoding the Geography of Natural TBEV Microfoci in Germany: A Geostatistical Approach Based on Land-Use Patterns and Climatological Conditions. International Journal of Environmental Research and Public Health. 2022; 19(18):11830. https://doi.org/10.3390/ijerph191811830
Chicago/Turabian StyleBorde, Johannes P., Rüdiger Glaser, Klaus Braun, Nils Riach, Rafael Hologa, Klaus Kaier, Lidia Chitimia-Dobler, and Gerhard Dobler. 2022. "Decoding the Geography of Natural TBEV Microfoci in Germany: A Geostatistical Approach Based on Land-Use Patterns and Climatological Conditions" International Journal of Environmental Research and Public Health 19, no. 18: 11830. https://doi.org/10.3390/ijerph191811830
APA StyleBorde, J. P., Glaser, R., Braun, K., Riach, N., Hologa, R., Kaier, K., Chitimia-Dobler, L., & Dobler, G. (2022). Decoding the Geography of Natural TBEV Microfoci in Germany: A Geostatistical Approach Based on Land-Use Patterns and Climatological Conditions. International Journal of Environmental Research and Public Health, 19(18), 11830. https://doi.org/10.3390/ijerph191811830