Ultraviolet Measurements and Photoclimatotherapy for Psoriasis at the Dead Sea: 25 Years of Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Parameters
2.2. Broad-Band Measurements
2.3. Narrow-Band Measurements
2.4. Additional Measurements
3. Results
3.1. Broad-Band Measurements
3.2. Narrow-Band Measurements
3.3. Additional Measurements
3.4. Application to Dead Sea Psoriasis Treatment Protocol
- The recommended UVB irradiation dose required during a patient’s stay at the Dead Sea, e.g., Table 5 for a 2-week stay based upon clinical experience at the Dead Sea Clinic, Ein Bokek (Dead Sea basin);
- Hours suitable for sun exposure (less then 2 MED/h)—italics;
- Hours not suitable for sun exposure due to insufficient irradiation intensity—underlined;
- Hours not suitable for sun exposure because of the relatively high irradiation intensity—bold.
3.5. Photoclimatotherapy Results
3.6. Ongoing Research Program
4. Conclusions
- UVA and UVB solar irradiation intensities at the Dead Sea basin are both attenuated relative to Beer Sheva, with UVB at a greater extent than UVA;
- The degree of attenuation is inversely proportional to the wavelength. As a result, the erythema wavelength range (ca. 300 nm) is attenuated to greatest extent than the therapeutic wavelength range for psoriasis (ca. 311 nm) at the Dead Sea;
- The diurnal optical path length is at the minimum at solar noon. Consequently, solar exposure should be avoided because the therapeutic-to-erythema ratio is also a minimum;
- The incident UVB solar irradiation at the Dead Sea has a higher ratio of therapeutic-to-erythema irradiation relative to other sites.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steinhorn, I.; Gat, J.R. Scientific American; Scientific American. INC.: New York, NY, USA, 1983; pp. 84–91. [Google Scholar]
- Even-Paz, Z.; Efron, D. The Dead Sea as a Spa Health Resort. Isr. J. Med. Sci. 1996, 32, 4–8. [Google Scholar]
- Dostrovsky, A.; Sagher, F. Preliminary Report; the Therapeutic Effect of the Hot Springs of Zohar (Dead Sea) on Some Skin Diseases. Harefuah 1959, 57, 143–145. [Google Scholar] [PubMed]
- Avrach, W.W.; Niordsen, A.M. Treatment of Psoriasis at the Dead Sea (Danish). Ugeskr. Laeger. 1974, 136, 2687–2690. [Google Scholar] [PubMed]
- Abels, D.J.; Kattan-Byron, J. Psoriasis Treatment at the Dead Sea: A Natural Selective Ultraviolet Phototherapy. J. Am. Acad. Derm. 1985, 12, 639–643. [Google Scholar] [CrossRef]
- Sukenik, S. Spa Treatment for Arthritis at the Dead Sea Area. Isr. J. Med. Sci. 1994, 30, 919–921. [Google Scholar]
- Even-Paz, Z.; Efron, D.; Kipnis, V.; Abels, D.J. How Much Dead Sea Sun for Psoriasis? J. Dermatol. Treat. 1996, 7, 17–19. [Google Scholar] [CrossRef]
- Abels, D.J.; Kipnis, V. Bioclimatology and Balneology in Dermatology: A Dead Sea Perspective. Clin. Derm. 1998, 16, 695–698. [Google Scholar] [CrossRef]
- Harari, M.; Shani, J. Demographic Evaluation of Successful Antipsoriatic Climatotherapy at the Dead Sea (Israel) DMZ Clinic. Int. J. Derm. 1997, 36, 304–308. [Google Scholar] [CrossRef]
- Kushelevsky, A.P.; Kudish, A.I. Intercomparison of Global, Ultraviolet B and A Radiation Measurements in the Dead Sea Region (Ein Borer) and Beer Sheva. Isr. J. Med. Sci. 1996, 32, S24–S27. [Google Scholar]
- Kushelevsky, A.P.; Slifkin, M.A. Ultraviolet Measurements at the Dead Sea and at Beersheba. Isr. J. Med. Sci. 1975, 11, 488–490. [Google Scholar]
- Abels, D.J.; Even-Paz, Z.; Efron, D. Bioclimatology at the Dead Sea in Israel. Clin. Derm. 1996, 14, 653–658. [Google Scholar] [CrossRef]
- McKinlay, A.F. Reference Action Spectrum for Ultraviolet Induced Erythema in Human Skin. In Human Exposure to Ultraviolet Radiation: Risks and Regulations; Passchler, W.R., Bosnajokovic, B.F.M., Eds.; Elsevier (Elsevier Science Publisher B.V.): Amsterdam, The Netherlands, 1987; pp. 83–87. [Google Scholar]
- Moon, P. Proposed Standard Solar-Radiation Curves for Engineering Use. J. Frankl. Inst. 1940, 230, 583–617. [Google Scholar] [CrossRef]
- Parrish, J.A.; Jaenicke, K.F. Action Spectrum for Phototherapy of Psoriasis. J. Investig. Dermatol. 1981, 76, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Vanicek, K.; Frei, T.; Litynsks, Z.; Schnalwieser, A. UV- Index for the Public. COST-713 Action (UV-B Forecasting); Office for Official Publications of the European Communities: Luxembourg City, Luxembourg, 2000; p. 27. [Google Scholar]
- Cohen, A.D.; Van-Dijk, D.; Naggan, L.; Vardy, D.A. Effectiveness of Climatotherapy at the Dead Sea for Psoriasis Vulgaris: A Community-oriented Study Introducing the ‘Beer Sheva Psoriasis Severity Score’. J. Dermatol. Treat. 2005, 16, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Timis, T.L.; Florian, I.A.; Mitrea, D.R.; Orasan, R. Mind-body Interventions as Alternative and Complementary Therapies for Psoriasis: A Systematic Review of the English Literature. Medicina 2021, 57, 410. [Google Scholar] [CrossRef] [PubMed]
- Kopel, E.; Levi, A.; Harari, M.; Ruzicka, T.; Ingber, A. Effect of the Dead Sea Climatotherapy for Psoriasis on Quality of Life. Isr. Med. Assoc. J. 2012, 15, 99–102. [Google Scholar]
- Emmanuel, T.; Lybæk, D.; Johansen, C.; Iversen, L. Effect of Dead Sea Climatotherapy on Psoriasis; A Prospective Cohort Study. Front. Med. (Lausanne) 2020, 7, 83. [Google Scholar] [CrossRef]
- Kudish, A.I.; Harari, M.; Evseev, E.G. The Measurement and Analysis of Normal Incidence Solar UVB Radiation and Its Application to the Photoclimatherapy Protocol for Psoriasis at the Dead Sea, Israel. Photochem. Photobiol. 2011, 87, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Harari, M. Commentary: Effect of Dead Sea Climatotherapy on Psoriasis; A Prospective Cohort Study. Front. Med. (Lausanne) 2020, 7, 586418. [Google Scholar] [CrossRef] [PubMed]
- Kudish, A.I.; Harari, M.; Evseev, E.G. The Solar Ultraviolet B Radiation Protection Provided by Shading Devices with Regard to Its Diffuse Component. Photodermatol. Photoimmunol. Photomed. 2011, 27, 236–244. [Google Scholar] [CrossRef]
- Kudish, A.L.; Evseev, E.; Kushelevsky, A.P. The Analysis of Ultraviolet Radiation in the Dead Sea Basin, Israel. Int. J. Climatol. 1997, 17, 1697–1704. [Google Scholar] [CrossRef]
Month | Neve Zohar (kW/m2) | Days | Beer Sheva (kW/m2) | Relative Attenuation (%) 1 |
---|---|---|---|---|
Jan | 2.98 | 692 | 3.10 | −3.64 |
Feb | 3.82 | 675 | 3.98 | −4.02 |
Mar | 5.10 | 755 | 5.29 | −3.53 |
Apr | 6.36 | 700 | 6.60 | −3.67 |
May | 7.32 | 739 | 7.66 | −4.48 |
June | 7.92 | 698 | 8.35 | −5.13 |
July | 7.70 | 733 | 8.06 | −4.36 |
Aug | 7.09 | 707 | 7.39 | −4.08 |
Sept | 6.11 | 710 | 6.28 | −2.86 |
Oct | 4.72 | 727 | 4.79 | −1.43 |
Nov | 3.57 | 631 | 3.67 | −2.55 |
Dec | 2.94 | 677 | 2.99 | −1.71 |
Month | Neve Zohar (MED) | Days | Beer Sheva (MED) | Relative Attenuation (%) 1 |
---|---|---|---|---|
Jan | 6.00 | 509 | 6.49 | −7.51 |
Feb | 9.01 | 463 | 9.96 | −9.53 |
Mar | 13.22 | 649 | 14.29 | −7.53 |
Apr | 17.31 | 700 | 18.80 | −7.92 |
May | 21.18 | 740 | 23.54 | −10.03 |
June | 24.57 | 701 | 27.79 | −11.59 |
July | 23.60 | 702 | 26.72 | −11.68 |
Aug | 21.28 | 678 | 23.86 | −10.82 |
Sept | 17.35 | 657 | 19.19 | −9.56 |
Oct | 11.75 | 683 | 13.04 | −9.89 |
Nov | 7.47 | 566 | 8.58 | −13.00 |
Dec | 5.46 | 537 | 5.84 | −6.56 |
Month | Neve Zohar (W/m2) | Days | Beer Sheva (W/m2) | Relative Attenuation (% ) 1 |
---|---|---|---|---|
Jan | 140.28 | 494 | 139.21 | 0.77 |
Feb | 175.35 | 468 | 184.58 | −5.00 |
Mar | 234.56 | 614 | 244.19 | −3.94 |
Apr | 288.56 | 641 | 306.50 | −5.85 |
May | 340.76 | 688 | 360.93 | −5.59 |
June | 381.38 | 681 | 400.17 | −4.70 |
July | 363.90 | 694 | 387.40 | −6.07 |
Aug | 330.90 | 659 | 353.80 | −6.47 |
Sept | 279.05 | 658 | 296.80 | −5.98 |
Oct | 210.13 | 694 | 225.57 | −6.84 |
Nov | 155.39 | 631 | 166.13 | −6.46 |
Dec | 124.89 | 588 | 134.06 | −6.84 |
Skin Type | 1 MED |
---|---|
I | 20 mJ/cm2 |
II | 25 mJ/cm2 |
III | 35 mJ/cm2 |
IV | 45 mJ/cm2 |
Skin Type | MED’s | mJ/cm2 |
---|---|---|
II | 25.5 | 637.5 |
III | 27.5 | 962.5 |
IV | 33.5 | 1507.5 |
Month/hour | 7/8 | 8/9 | 9/10 | 10/11 | 11/12 | 12/13 | 13/14 | 14/15 | 15/16 | 16/17 |
---|---|---|---|---|---|---|---|---|---|---|
Mar. | 0.25 | 0.67 | 1.22 | 1.70 | 1.94 | 1.86 | 1.48 | 0.95 | 0.46 | 0.14 |
Apr. | 0.48 | 1.02 | 1.65 | 2.18 | 2.41 | 2.27 | 1.83 | 1.20 | 0.60 | 0.19 |
May | 0.70 | 1.37 | 2.07 | 2.60 | 2.81 | 2.64 | 2.14 | 1.44 | 0.76 | 0.29 |
June | 0.81 | 1.56 | 2.35 | 2.97 | 3.22 | 3.04 | 2.49 | 1.72 | 0.97 | 0.41 |
July | 0.71 | 1.40 | 2.18 | 2.78 | 3.06 | 2.94 | 2.44 | 1.71 | 0.96 | 0.40 |
Aug. | 0.61 | 1.27 | 2.02 | 2.63 | 2.89 | 2.76 | 2.23 | 1.49 | 0.79 | 0.29 |
Sept. | 0.48 | 1.08 | 1.77 | 2.30 | 2.51 | 2.31 | 1.76 | 1.08 | 0.50 | 0.14 |
Oct. | 0.30 | 0.37 | 1.26 | 1.66 | 1.78 | 1.58 | 1.13 | 0.62 | 0.24 | 0.03 |
Day | MED | mJ/cm2 | Morning (hours) | Afternoon (hours) |
---|---|---|---|---|
1 | 0.4 | 10.0 | 8:00–8:35 | 14:35–15:00 |
2 | 0.6 | 15.0 | 8:00–8:55 | 14:20–15:00 |
3 | 0.8 | 20.0 | 8:00–9:05 | 14:10–15:00 |
4 | 1.1 | 27.5 | 8:00–9:20 | 13:55–15:00 |
5 | 1.3 | 32.5 | 8:00–9:30 | 13:45–15:00 |
6 | 1.5 | 37.5 | 8:00–9:40 | 13:40–15:00 |
7 | 1.7 | 42.5 | 8:00–9:10 | 14:05–15:00 |
8 | 1.9 | 47.5 | 8:00–9:15 | 14:00–15:00 |
9 | 2.1 | 52.5 | 8:00–9:20 | 13:55–15:00 |
10 | 2.3 | 57.5 | 8:00–9:25 | 13:50–15:00 |
11 | 2.5 | 62.5 | 8:00–9:30 | 13:50–15:00 |
12 | 2.8 | 70.0 | 8:00–9:35 | 13:40–15:00 |
13 | 3.1 | 77.5 | 8:00–9:45 | 13:35–15:00 |
14 | 3.4 | 85.0 | 8:00–9:50 | 13:30–15:00 |
Total | 25.5 | 637.5 | ||
Subtotal exposure | Days 1–6 Days 7–14 | Either/or Both | 425 min (7.1 h) 710 min (11.8 h) | 335 min (5.6 h) 575 min (9.6 h) |
Total exposure | Maximum Minimum | 1710 min (28.5 h) 1620 min (27.0 h) | (28.5 h) (27.0 h) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudish, A.I.; Evseev, E.G.; Cohen, G.; Harari, M. Ultraviolet Measurements and Photoclimatotherapy for Psoriasis at the Dead Sea: 25 Years of Experience. Int. J. Environ. Res. Public Health 2022, 19, 12364. https://doi.org/10.3390/ijerph191912364
Kudish AI, Evseev EG, Cohen G, Harari M. Ultraviolet Measurements and Photoclimatotherapy for Psoriasis at the Dead Sea: 25 Years of Experience. International Journal of Environmental Research and Public Health. 2022; 19(19):12364. https://doi.org/10.3390/ijerph191912364
Chicago/Turabian StyleKudish, Avraham I., Efim G. Evseev, Guy Cohen, and Marco Harari. 2022. "Ultraviolet Measurements and Photoclimatotherapy for Psoriasis at the Dead Sea: 25 Years of Experience" International Journal of Environmental Research and Public Health 19, no. 19: 12364. https://doi.org/10.3390/ijerph191912364
APA StyleKudish, A. I., Evseev, E. G., Cohen, G., & Harari, M. (2022). Ultraviolet Measurements and Photoclimatotherapy for Psoriasis at the Dead Sea: 25 Years of Experience. International Journal of Environmental Research and Public Health, 19(19), 12364. https://doi.org/10.3390/ijerph191912364