Gaseous Air Pollutants and Respirable Crystalline Silica Inside and Outside Homes at Brick Kilns in Bhaktapur, Kathmandu Valley, Nepal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Respirable Crystalline SiO2 Measurement
2.3. CO and CO2 Measurement
2.4. NO2 and SO2 Measurement
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Global Air Quality Guidelines. Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; Available online: https://apps.who.int/iris/bitstream/handle/10665/345329/9789240034228-eng.pdf?sequence=1&isAllowed=y (accessed on 28 July 2022).
- Saud, B.; Paudel, G. The threat of ambient air pollution in Kathmandu, Nepal. J. Environ. Public Health 2018, 2018, 1504591. [Google Scholar] [CrossRef] [PubMed]
- Shakya, K.M.; Rupakheti, M.; Shahi, A.; Maskey, R.; Pradhan, B.; Panday, A.; Puppala, S.P.; Lawrence, M.; Peltier, R.E. Near-road sampling of PM2.5, BC, and fine-particle chemical components in Kathmandu Valley. Nepal. Atmos. Chem. Phys. 2017, 17, 6503–6516. [Google Scholar] [CrossRef]
- Sanjel, S.; Khanal, S.N.; Thygerson, S.M.; Carter, W.; Johnston, J.D.; Joshi, S.K. Exposure to respirable silica among clay brick workers in Kathmandu valley, Nepal. Arch. Environ. Occup. Health 2018, 73, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Thygerson, S.M.; Beard, J.D.; House, M.J.; Smith, R.L.; Burbidge, H.C.; Andrus, K.N.; Weber, F.X.; Chartier, R.; Johnston, J.D. Air-quality assessment of on-site brick-kiln worker housing in Bhaktapur, Nepal: Chemical speciation of indoor and outdoor PM2.5 pollution. Int. J. Environ. Res. Public Health 2019, 16, 4114. [Google Scholar] [CrossRef]
- Johnston, J.D.; Beard, J.D.; Montague, E.J.; Sanjel, S.; Lu, J.H.; McBride, H.; Weber, F.X.; Chartier, R.T. Chemical composition of PM2.5 in wood fire and LPG cookstove homes of Nepali brick workers. Atmosphere 2021, 12, 911. [Google Scholar] [CrossRef]
- Johnston, J.D.; Hawks, M.E.; Johnston, H.B.; Johnson, L.A.; Beard, J.D. Comparison of liquefied petroleum gas cookstoves and wood cooking fires on PM2.5 trends in brick workers’ homes in Nepal. Int. J. Environ. Res. Public Health 2020, 17, 5681. [Google Scholar] [CrossRef]
- Sanjel, S.; Khanal, S.N.; Thygerson, S.M.; Carter, W.S.; Johnston, J.D.; Joshi, S.K. Respiratory symptoms and illnesses related to the concentration of airborne particulate matter among brick kiln workers in Kathmandu valley, Nepal. Ann. Occup. Environ. Med. 2017, 29, 9. [Google Scholar] [CrossRef]
- Eisner, M.D.; Anthonisen, N.; Coultas, D.; Kuenzli, N.; Perez-Padilla, R.; Postma, D.; Romieu, I.; Silverman, E.K.; Balmes, J.R. Environmental Occupational Health Assembly Committee on Nonsmoking COPD. An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2010, 182, 693–718. [Google Scholar] [CrossRef]
- Li, J.; Qin, C.; Lv, J.; Guo, Y.; Bian, Z.; Zhou, W.; Hu, J.; Zhang, Y.; Chen, J.; Cao, W.; et al. Solid fuel use and incident COPD in Chinese adults: Findings from the China Kadoorie Biobank. Environ. Health Perspect. 2019, 127, 57008. [Google Scholar] [CrossRef]
- Bell, M.L.; Ebisu, K.; Leaderer, B.P.; Gent, J.F.; Lee, H.J.; Koutrakis, P.; Wang, Y.; Dominici, F.; Peng, R.D. Associations of PM2.5 constituents and sources with hospital admissions: Analysis of four counties in Connecticut and Massachusetts (USA) for persons ≥ 65 years of age. Environ. Health Perspect. 2014, 122, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Ostro, B.; Roth, L.; Malig, B.; Marty, M. The effects of fine particle components on respiratory hospital admissions in children. Environ. Health Perspect. 2009, 117, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Pariyar, S.K.; Das, T.; Ferdous, T. Environment and health impact for brick kilns in Kathmandu valley. Int. J. Sci. Technol. Res. 2013, 2, 184–187. [Google Scholar]
- Joshi, S.K.; Dudani, I. Environmental health effects of brick kilns in Kathmandu valley. Kathmandu Univ. Med. J. 2008, 6, 3–11. [Google Scholar]
- Dhakal, S. Implications of transportation policies on energy and environment in Kathmandu Valley, Nepal. Energy Policy 2003, 31, 1493–1507. [Google Scholar] [CrossRef]
- Mahata, K.S.; Rupakheti, M.; Panday, A.K.; Bhardwaj, P.; Naja, M.; Singh, A.; Mues, A.; Cristofanelli, P.; Pudasainee, D.; Bonasoni, P.; et al. Observation and analysis of spatiotemporal characteristics of surface ozone and carbon monoxide at multiple sites in the Kathmandu Valley, Nepal. Atmos. Chem. Phys. 2018, 18, 14113–14132. [Google Scholar] [CrossRef]
- Shrestha, S.R.; Oanh, N.T.K.; Xu, Q.; Rupakheti, M.; Lawrence, M.G. Analysis of the vehicle fleet in the Kathmandu Valley for estimation of environment and climate co-benefits of technology intrusions. Atmos. Environ. 2013, 81, 579–590. [Google Scholar] [CrossRef]
- Salonen, H.; Salthammer, T.; Morawska, L. Human exposure to NO2 in school and office indoor environments. Environ. Int. 2019, 130, 104887. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, S.; Sun, Y.; Liu, Y.; Beazley, R.; Hou, X. Assessing NO2-related health effects by non-linear and linear methods on a national level. Sci. Total Environ. 2020, 744, 140909. [Google Scholar] [CrossRef]
- Chen, T.M.; Gokhale, J.; Shofer, S.; Kuschner, W.G. Outdoor air pollution: Nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. Am. J. Med. Sci. 2007, 333, 249–256. [Google Scholar] [CrossRef]
- Hoy, R.F.; Chambers, D.C. Silica-related diseases in the modern world. Allergy 2020, 75, 2805–2817. [Google Scholar] [CrossRef]
- U.S. Code of Federal Regulations Title 45, Part 46.104. Available online: https://www.ecfr.gov/current/title-45/subtitle-A/subchapter-A/part-46/subpart-A/section-46.104 (accessed on 26 July 2022).
- National Institute for Occupational Safety and Health. Method 7500 Silica, Crystalline, by XRD (Filter Redeposition). In NIOSH Manual of Analytical Methods, 4th ed.; Schlecht, P.C., O’Connor, P.F., Eds.; Issue 4, DHHS (NIOSH) Publication No. 2003-154; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health: Cincinnati, OH, USA, 2003. Available online: https://www.cdc.gov/niosh/docs/2003-154/pdfs/7500.pdf (accessed on 26 July 2022).
- Beard, J.D.; Erdely, A.; Dahm, M.M.; de Perio, M.A.; Birch, M.E.; Evans, D.E.; Fernback, J.E.; Eye, T.; Kodali, V.; Mercer, R.R.; et al. Carbon nanotube and nanofiber exposure and sputum and blood biomarkers of early effect among U.S. workers. Environ. Int. 2018, 116, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Lubin, J.H.; Colt, J.S.; Camann, D.; Davis, S.; Cerhan, J.R.; Severson, R.K.; Bernstein, L.; Hartge, P. Epidemiologic evaluation of measurement data in the presence of detection limits. Environ. Health Perspect. 2004, 112, 1691–1696. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.P.; Niu, J.L. Modeling particle dispersion and deposition in indoor environments. Atmos. Environ. 2007, 41, 3862–3876. [Google Scholar] [CrossRef] [PubMed]
- Tandon, S.; Gupta, S.; Singh, S.; Kumar, A. Respiratory abnormalities among occupationally exposed, non-smoking brick kiln workers from Punjab, India. Int. J. Occup. Environ. Med. 2017, 8, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Pangtey, B.S.; Kumar, S.; Bihari, V.; Mathur, N.; Rastogi, S.K.; Srivastava, A.K. An environmental profile of brick kilns in Lucknow. J. Environ. Sci. Eng. 2004, 46, 239–244. [Google Scholar] [PubMed]
- Raza, A.; Ali, Z. Impact of air pollution generated by brick kilns on the pulmonary health of workers. J. Health Pollut. 2021, 11, 210906. [Google Scholar] [PubMed]
- Satish, U.; Mendell, M.J.; Shekhar, K.; Hotchi, T.; Sullivan, D.; Streufert, S.; Fisk, W.J. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ. Health Perspect. 2012, 120, 1671–1677. [Google Scholar] [CrossRef]
- Shriram, S.; Ramamurthy, K.; Ramakrishnan, S. Effect of occupant-induced indoor CO2 concentration and bioeffluents on human physiology using a spirometric test. Build. Environ. 2019, 149, 58–67. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Overview of Greenhouse Gases. Available online: https://www.epa.gov/ghgemissions/overview-greenhouse-gases (accessed on 26 July 2022).
- Sadavarte, P.; Rupakheti, M.; Bhave, P.; Shakya, K.; Lawrence, M. Nepal emission inventory–Part I: Technologies and combustion sources (NEEMI-Tech) for 2001–2016. Atmos. Chem. Phys. 2019, 19, 12953–12973. [Google Scholar] [CrossRef]
- Occupational Safety and Health Administration. Potential Carbon Dioxide (CO2) Asphyxiation Hazard When Filling Stationary Low Pressure CO2 Supply Systems; OSHA HIB 06-05-1996; U.S. Department of Labor, Occupational Health and Safety Administration: Washington, DC, USA, 1996. Available online: https://www.osha.gov/publications/hib19960605 (accessed on 26 July 2022).
- Calvert, G.M.; Rice, F.L.; Boiano, J.M.; Sheehy, J.W.; Sanderson, W.T. Occupational silica exposure and risk of various diseases: An analysis using death certificates from 27 states of the United States. Occup. Environ. Med. 2003, 60, 122–129. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Silica; U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2019. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp211.pdf (accessed on 26 July 2022).
- Sato, T.; Shimosato, T.; Klinman, D.M. Silicosis and lung cancer: Current perspectives. Lung Cancer Targets Ther. 2018, 9, 91–101. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Arsenic, Metals, Fibres, and Dusts. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2012; Volume 100C, Available online: https://publications.iarc.fr/120 (accessed on 26 July 2022).
- Occupational Safety and Health Administration. Silica, Crystalline. Available online: https://www.osha.gov/silica-crystalline (accessed on 26 July 2022).
- Gottesfeld, P.; Tirima, S.; Anka, S.M.; Fotso, A.; Nota, M.M. Reducing lead and silica dust exposures in small-scale mining in northern Nigeria. Ann. Work Expo. Health 2019, 63, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institute for Occupational Safety and Health. NIOSH Policy Statement. Respiratory Protection Recommendations for Airborne Exposures to Crystalline Silica; DHHS (NIOSH) Publication No. 2008–140; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health: Cincinnati, OH, USA, 2008. Available online: https://www.cdc.gov/niosh/docs/2008-140/pdfs/2008-140.pdf (accessed on 26 July 2022).
Characteristic | Samples, n | Missing, n | AM | SD | Min | Q1 | Median | Q3 | Max |
---|---|---|---|---|---|---|---|---|---|
Total | 32 | ||||||||
Size of house, feet2 | 28 | 4 | 82.16 | 36.39 | 20.00 | 52.00 | 84.00 | 112.00 | 150.00 |
Size of house, m2 | 28 | 4 | 7.64 | 3.35 | 1.90 | 4.80 | 7.80 | 10.40 | 13.90 |
How long lived in house, months | 28 | 4 | 8.82 | 7.89 | 4.00 | 5.00 | 5.50 | 7.00 | 30.00 |
How many people live in house | 24 | 8 | 4.71 | 2.19 | 2.00 | 3.00 | 4.00 | 6.00 | 9.00 |
Occupant density, residents/100 m2 | 22 | 10 | 73.48 | 49.89 | 19.23 | 43.17 | 62.50 | 90.91 | 210.53 |
Total Samples | |||||||||
---|---|---|---|---|---|---|---|---|---|
Above LDL | |||||||||
Air Pollutant | LDL Mass (μg) | LDL Concentration Range | Missing, n | Below LDL, n (%) | n (%) | GM a | 95% CI a | Min b | Max b |
CO, ppm | NA | 6.00 | 30 (94) | 2 (6) | 0.84 | 0.05, 14.00 | 9.91 | 12.99 | |
CO2, ppm | NA | 3000.00 | 24 (75) | 8 (25) | 1447.34 | 651.18, 3216.95 | 3799.32 | 12,975.99 | |
NO2, μg/m3 | 2.50 | 325.47, 404.79 | 32 (100) | 0 (0) | NA | NA | NA | NA | |
SiO2 (cristobalite), μg/m3 | 5.00 | 4.55, 6.04 | 1 | 31 (100) | 0 (0) | NA | NA | NA | NA |
SiO2 (quartz), μg/m3 | 5.00 | 4.55, 6.04 | 1 | 12 (39) | 19 (61) | 6.22 | 4.56, 8.48 | 5.19 | 43.28 |
SiO2 (tridymite), μg/m3 | 30.00 | 27.29, 36.22 | 1 | 31 (100) | 0 (0) | NA | NA | NA | NA |
SO2, μg/m3 | 1.80 | 266.71, 331.71 | 32 (100) | 0 (0) | NA | NA | NA | NA |
CO2, ppm | |||||
---|---|---|---|---|---|
Characteristic | Below LDL, n (%) | Above LDL, n (%) | Exact OR a | Exact 95% CI a | Exact p-Value a |
Kiln number | |||||
1 | 6 (25) | 2 (25) | 1.00 | Reference | |
2 | 6 (25) | 2 (25) | 1.00 | 0.05, 18.27 | |
3 | 6 (25) | 2 (25) | 1.00 | 0.05, 18.27 | |
4 | 6 (25) | 2 (25) | 1.00 | 0.05, 18.27 | 1.00 |
Type of home | |||||
Worker | 13 (54) | 3 (38) | 1.00 | Reference | |
Fire master | 11 (46) | 5 (63) | 1.93 | 0.29, 15.34 | 0.69 |
Location of sample | |||||
Indoor | 11 (46) | 5 (63) | 1.00 | Reference | |
Outdoor | 13 (54) | 3 (38) | 0.52 | 0.07, 3.39 | 0.69 |
Size of house, 50 feet2 | 1.00 | 0.30, 3.33 | 1.00 | ||
Missing | 3 | 1 | |||
Size of house, m2 | 1.00 | 0.77, 1.30 | 1.00 | ||
Missing | 3 | 1 | |||
How long lived in house, two months | 1.09 | 0.88, 1.32 | 0.43 | ||
Missing | 3 | 1 | |||
How many people live in house | 1.02 | 0.67, 1.54 | 0.93 | ||
Missing | 7 | 1 | |||
Occupant density, 10 residents/100 m2 | 1.03 | 0.84, 1.22 | 0.78 | ||
Missing | 8 | 2 | |||
How many children 0–18 years-old live in house | |||||
0 | 12 (57) | 6 (86) | 1.00 | Reference | |
1–3 | 9 (43) | 1 (14) | 0.23 | <0.01, 2.49 | 0.37 |
Missing | 3 | 1 | |||
How many children under 6 years-old live in house | |||||
0 | 12 (63) | 6 (86) | 1.00 | Reference | |
1–3 | 7 (37) | 1 (14) | 0.30 | 0.01, 3.35 | 0.55 |
Missing | 5 | 1 | |||
Primary fuel used for cooking | |||||
Gas only | 6 (26) | 0 (0) | 0.37 b | 0.00, 2.38 | |
Wood only | 13 (57) | 5 (71) | 1.00 | Reference | |
Other c | 4 (17) | 2 (29) | 1.29 | 0.09, 12.96 | 0.49 |
Missing | 1 | 1 | |||
Type of heating source in the home | |||||
Electricity | 12 (63) | 4 (80) | 1.00 | Reference | |
Other d or none | 7 (37) | 1 (20) | 0.44 | 0.01, 5.79 | 0.89 |
Missing | 5 | 3 | |||
Type of non-electric light source in the home | |||||
Candle | 11 (52) | 3 (43) | 0.56 | 0.04, 9.11 | |
Generator | 6 (29) | 2 (29) | 0.69 | 0.03, 13.30 | |
Other e or none | 4 (19) | 2 (29) | 1.00 | Reference | 1.00 |
Missing | 3 | 1 | |||
Any smokers living in the home | |||||
No | 8 (35) | 2 (29) | 1.00 | Reference | |
Yes | 15 (65) | 5 (71) | 1.32 | 0.16, 16.87 | 1.00 |
Missing | 1 | 1 | |||
How many smokers living in the home | |||||
0 | 8 (42) | 2 (40) | 1.00 | Reference | |
1–2 | 6 (32) | 2 (40) | 1.31 | 0.07, 23.23 | |
3–4 | 5 (26) | 1 (20) | 0.81 | 0.01, 19.75 | 1.00 |
Missing | 5 | 3 | |||
How many smokers living in the home regularly smoke inside the home | |||||
0–1 | 10 (71) | 2 (50) | 1.00 | Reference | |
2–4 | 4 (29) | 2 (50) | 2.36 | 0.13, 44.12 | 0.81 |
Missing | 10 | 4 |
SiO2 (Quartz), μg/m3 | |||||
---|---|---|---|---|---|
Characteristic | Below LDL, n (%) | Above LDL, n (%) | GM a | 95% CI a | p-Value a |
Kiln number | |||||
1 | 0 (0) | 8 (42) | 9.26 | 5.62, 15.27 | |
2 | 2 (15) | 6 (32) | 6.69 | 3.97, 11.27 | |
3 | 4 (31) | 4 (21) | 7.27 | 4.09, 12.90 | |
4 | 7 (54) | 1 (5) | 2.67 | 1.20, 5.93 | 0.08 |
Type of home | |||||
Worker | 8 (62) | 8 (42) | 4.98 | 3.23, 7.66 | |
Fire master | 5 (38) | 11 (58) | 7.75 | 5.25, 11.43 | 0.13 |
Location of sample | |||||
Indoor | 6 (46) | 10 (53) | 6.00 | 3.94, 9.13 | |
Outdoor | 7 (54) | 9 (47) | 6.48 | 4.19, 10.00 | 0.80 |
Size of house, 50 feet2 | 1.08 b | 0.64, 1.83 b | 0.78 | ||
Missing | 0 | 4 | |||
Size of house, m2 | 1.01 b | 0.91, 1.14 b | 0.80 | ||
Missing | 0 | 4 | |||
How long lived in house, two months | 1.09 b | 1.02, 1.18 b | 0.01 | ||
Missing | 1 | 3 | |||
How many people live in house | 1.10 b | 0.91, 1.32 b | 0.32 | ||
Missing | 2 | 6 | |||
Occupant density, 10 residents/100 m2 | 0.97 b | 0.87, 1.08 b | 0.55 | ||
Missing | 2 | 8 | |||
How many children 0–18 years-old live in house | |||||
0 | 9 (75) | 9 (56) | 5.64 | 3.59, 8.86 | |
1–3 | 3 (25) | 7 (44) | 6.56 | 3.81, 11.31 | 0.67 |
Missing | 1 | 3 | |||
How many children under 6 years-old live in house | |||||
0 | 9 (75) | 9 (64) | 5.63 | 3.57, 8.90 | |
1–3 | 3 (25) | 5 (36) | 5.32 | 2.84, 9.96 | 0.88 |
Missing | 1 | 5 | |||
Primary fuel used for cooking | |||||
Gas only | 4 (31) | 2 (12) | 3.88 | 1.73, 8.69 | |
Wood only | 8 (62) | 10 (59) | 6.39 | 4.16, 9.80 | |
Other c | 1 (8) | 5 (29) | 7.25 | 3.72, 14.12 | 0.46 |
Missing | 0 | 2 | |||
Type of heating source in the home | |||||
Electricity | 12 (100) | 4 (33) | 3.77 | 2.48, 5.75 | |
Other d or none | 0 (0) | 8 (67) | 10.15 | 6.84, 15.07 | 0.0008 |
Missing | 1 | 7 | |||
Type of non-electric light source in the home | |||||
Candle | 8 (67) | 6 (38) | 5.37 | 3.20, 8.99 | |
Generator | 0 (0) | 8 (50) | 9.26 | 5.27, 16.28 | |
Other e or none | 4 (33) | 2 (13) | 4.04 | 1.79, 9.09 | 0.20 |
Missing | 1 | 3 | |||
Any smokers living in the home | |||||
No | 2 (15) | 8 (47) | 9.36 | 5.78, 15.13 | |
Yes | 11 (85) | 9 (53) | 4.75 | 3.16, 7.14 | 0.03 |
Missing | 0 | 2 | |||
How many smokers living in the home | |||||
0 | 2 (22) | 8 (53) | 9.43 | 6.04, 14.75 | |
1–2 | 5 (56) | 3 (20) | 3.53 | 1.91, 6.54 | |
3–4 | 2 (22) | 4 (27) | 7.52 | 4.15, 13.61 | 0.03 f |
Missing | 4 | 4 | |||
How many smokers living in the home regularly smoke inside the home | |||||
0–1 | 8 (80) | 4 (50) | 4.14 | 2.27, 7.55 | |
2–4 | 2 (20) | 4 (50) | 6.11 | 3.17, 11.79 | 0.37 |
Missing | 3 | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beard, J.D.; Thygerson, S.M.; Olivares, A.; Tadje, J.E.; Willis, S.; Johnston, J.D. Gaseous Air Pollutants and Respirable Crystalline Silica Inside and Outside Homes at Brick Kilns in Bhaktapur, Kathmandu Valley, Nepal. Int. J. Environ. Res. Public Health 2022, 19, 12431. https://doi.org/10.3390/ijerph191912431
Beard JD, Thygerson SM, Olivares A, Tadje JE, Willis S, Johnston JD. Gaseous Air Pollutants and Respirable Crystalline Silica Inside and Outside Homes at Brick Kilns in Bhaktapur, Kathmandu Valley, Nepal. International Journal of Environmental Research and Public Health. 2022; 19(19):12431. https://doi.org/10.3390/ijerph191912431
Chicago/Turabian StyleBeard, John D., Steven M. Thygerson, Alisandra Olivares, Jaxson E. Tadje, Selah Willis, and James D. Johnston. 2022. "Gaseous Air Pollutants and Respirable Crystalline Silica Inside and Outside Homes at Brick Kilns in Bhaktapur, Kathmandu Valley, Nepal" International Journal of Environmental Research and Public Health 19, no. 19: 12431. https://doi.org/10.3390/ijerph191912431
APA StyleBeard, J. D., Thygerson, S. M., Olivares, A., Tadje, J. E., Willis, S., & Johnston, J. D. (2022). Gaseous Air Pollutants and Respirable Crystalline Silica Inside and Outside Homes at Brick Kilns in Bhaktapur, Kathmandu Valley, Nepal. International Journal of Environmental Research and Public Health, 19(19), 12431. https://doi.org/10.3390/ijerph191912431