Assessment of the Driving Pollution Factors of Soil Environmental Quality Based on China’s Risk Control Standard: Multiple Bigdata-Based Approaches with Intensive Sampling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Assessment and Grading
2.1.1. Standard of Soil Pollutants Assessment
2.1.2. Grading of Soil Environmental Quality
2.2. Field Sampling and Chemical Analysis
2.2.1. Field Sampling
2.2.2. Chemical Analysis
2.2.3. Quality Control
2.3. Data Analysis
2.3.1. Intervention Value-Based Pollutant Index of Pollutant Factors
2.3.2. Statistical Analysis
3. Results
3.1. Pollutant Content
3.2. Soil Environmental Quality Grading
3.3. PCA, GLM, and RF Analysis
4. Discussion
4.1. Pollutants in the Survey Area
4.2. The Driving Pollutant Factors
4.3. Environmental Management Suggestions Based on Soil Environmental Quality Assessment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrews, S.S.; Karlen, D.L.; Mitchell, J.P. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Nortcliff, S. Standardisation of soil quality attributes. Agric. Ecosyst. Environ. 2002, 88, 161–168. [Google Scholar] [CrossRef]
- Alexander, M. Environmental Improvement: Agriculture’s Challenge in the Seventies; National Academy of Sciences: Washington, DC, USA, 1971. [Google Scholar]
- Bone, J.; Head, M.; Barraclough, D.; Archer, M.; Scheib, C.; Flight, D.; Voulvoulis, N. Soil quality assessment under emerging regulatory requirements. Environ. Int. 2010, 36, 609–622. [Google Scholar] [CrossRef]
- Hurni, H.; Giger, M.; Liniger, H.; Mekdaschi Studer, R.; Messerli, P.; Portner, B.; Schwilch, G.; Wolfgramm, B.; Breu, T. Soils, agriculture and food security: The interplay between ecosystem functioning and human well-being. Curr. Opin. Environ. Sustain. 2015, 15, 25–34. [Google Scholar] [CrossRef]
- Sonneveld, M.P.W.; Hack-ten Broeke, M.J.D.; van Diepen, C.A.; Boogaard, H.L. Thirty years of systematic land evaluation in the Netherlands. Geoderma 2010, 156, 84–92. [Google Scholar] [CrossRef]
- Schwilch, G.; Hessel, R. Desire for Greener Land: Options for Sustainable Land Management in Drylands; University of Bern: Bern, Switzerland, 2012. [Google Scholar]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The Soil Management Assessment Framework. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- de Paul Obade, V.; Lal, R. Towards a standard technique for soil quality assessment. Geoderma 2016, 265, 96–102. [Google Scholar] [CrossRef]
- Lilburne, L.; Sparling, G.; Schipper, L. Soil quality monitoring in New Zealand: Development of an interpretative framework. Agric. Ecosyst. Environ. 2004, 104, 535–544. [Google Scholar] [CrossRef]
- Idowu, O.J.; van Es, H.M.; Abawi, G.S.; Wolfe, D.W.; Schindelbeck, R.R.; Moebius-Clune, B.N.; Gugino, B.K. Use of an integrative soil health test for evaluation of soil management impacts. Renew. Agric. Food Syst. 2009, 24, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.C.R.; Brussaard, L.; Totola, M.R.; Hoogmoed, W.B.; de Goede, R.G.M. A functional evaluation of three indicator sets for assessing soil quality. Appl. Soil Ecol. 2013, 64, 194–200. [Google Scholar] [CrossRef]
- Morrow, J.G.; Huggins, D.R.; Carpenter-Boggs, L.A.; Reganold, J.P. Evaluating Measures to Assess Soil Health in Long-Term Agroecosystem Trials. Soil Sci. Soc. Am. J. 2016, 80, 450–462. [Google Scholar] [CrossRef]
- Rinot, O.; Levy, G.J.; Steinberger, Y.; Svoray, T.; Eshel, G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci. Total Environ. 2019, 648, 1484–1491. [Google Scholar] [CrossRef] [PubMed]
- Andrea, F.; Bini, C.; Amaducci, S. Soil and ecosystem services: Current knowledge and evidences from Italian case studies. Appl. Soil Ecol. 2018, 123, 693–698. [Google Scholar] [CrossRef]
- D’Hose, T.; Cougnon, M.; De Vliegher, A.; Vandecasteele, B.; Viaene, N.; Cornelis, W.; Van Bockstaele, E.; Reheul, D. The positive relationship between soil quality and crop production: A case study on the effect of farm compost application. Appl. Soil Ecol. 2014, 75, 189–198. [Google Scholar] [CrossRef]
- Fine, A.K.; van Es, H.M.; Schindelbeck, R.R. Statistics, Scoring Functions, and Regional Analysis of a Comprehensive Soil Health Database. Soil Sci. Soc. Am. J. 2017, 81, 589–601. [Google Scholar] [CrossRef]
- Raiesi, F. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecol. Indic. 2017, 75, 307–320. [Google Scholar] [CrossRef]
- Wu, C.; Liu, G.; Huang, C.; Liu, Q. Soil quality assessment in Yellow River Delta: Establishing a minimum data set and fuzzy logic model. Geoderma 2019, 334, 82–89. [Google Scholar] [CrossRef]
- Dedeke, G.A.; Owagboriaye, F.O.; Adebambo, A.O.; Ademolu, K.O. Earthworm metallothionein production as biomarker of heavy metal pollution in abattoir soil. Appl. Soil Ecol. 2016, 104, 42–47. [Google Scholar] [CrossRef]
- Guan, Y.; Shao, C.; Ju, M. Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas. Int. J. Environ. Res. Public Health 2014, 11, 7286. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Qin, C.; Hong, X.; Kang, G.; Qin, M.; Yang, D.; Pang, B.; Li, Y.; He, J.; Dick, R.P. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China. Sci. Total Environ. 2018, 633, 1136–1147. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Cui, B.; Chen, B.; Zhang, K.; Deng, W.; Gao, H.; Xiao, R. Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecol. Model. 2011, 222, 301–306. [Google Scholar] [CrossRef]
- Micó, C.; Recatalá, L.; Peris, M.; Sánchez, J. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef]
- Norra, S.; Lanka-Panditha, M.; Kramar, U.; Stüben, D. Mineralogical and geochemical patterns of urban surface soils, the example of Pforzheim, Germany. Appl. Geochem. 2006, 21, 2064–2081. [Google Scholar] [CrossRef]
- van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 2013, 362, 319–334. [Google Scholar] [CrossRef]
- Wei, S.; Zhou, Q.; Saha, U.K.; Xiao, H.; Hu, Y.; Ren, L.; Ping, G. Identification of a Cd accumulator Conyza canadensis. J. Hazard. Mater. 2009, 163, 32–35. [Google Scholar] [CrossRef]
- Xiao, R.; Wang, S.; Li, R.; Wang, J.J.; Zhang, Z. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicol. Environ. Saf. 2017, 141, 17–24. [Google Scholar] [CrossRef]
- Xiang, M.; Li, Y.; Yang, J.; Lei, K.; Li, Y.; Li, F.; Zheng, D.; Fang, X.; Cao, Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environ. Pollut. 2021, 278, 116911. [Google Scholar] [CrossRef]
- Zheng, N.; Wang, Q.; Liang, Z.; Zheng, D. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environ. Pollut. 2008, 154, 135–142. [Google Scholar] [CrossRef]
- Manta, D.S.; Angelone, M.; Bellanca, A.; Neri, R.; Sprovieri, M. Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Sci. Total Environ. 2002, 300, 229–243. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Nemerow, N. Scientific Stream Pollution Analysis; Scripta Book, Co.: Washington, DC, USA, 1974. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Guo, P.-T.; Li, M.-F.; Luo, W.; Tang, Q.-F.; Liu, Z.-W.; Lin, Z.-M. Digital mapping of soil organic matter for rubber plantation at regional scale: An application of random forest plus residuals kriging approach. Geoderma 2015, 237–238, 49–59. [Google Scholar] [CrossRef]
- Wang, B.; Waters, C.; Orgill, S.; Cowie, A.; Clark, A.; Li Liu, D.; Simpson, M.; McGowen, I.; Sides, T. Estimating soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of eastern Australia. Ecol. Indic. 2018, 88, 425–438. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Saberioon, M.; Ben-Dor, E.; Borůvka, L. Monitoring of selected soil contaminants using proximal and remote sensing techniques: Background, state-of-the-art and future perspectives. Crit. Rev. Environ. Sci. Technol. 2018, 48, 243–278. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Saberioon, M.; Carmon, N.; Boruvka, L.; Ben-Dor, E. Examining the Performance of PARACUDA-II Data-Mining Engine versus Selected Techniques to Model Soil Carbon from Reflectance Spectra. Remote Sens. 2018, 10, 1172. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment China. Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. 2018. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/trhj/201807/W020190626595212456114.pdf (accessed on 1 August 2018). (In Chinese)
- Barsova, N.; Yakimenko, O.; Tolpeshta, I.; Motuzova, G. Current state and dynamics of heavy metal soil pollution in Russian Federation—A review. Environ. Pollut. 2019, 249, 200–207. [Google Scholar] [CrossRef]
- Bech, J.; Poschenrieder, C.; Llugany, M.; Barceló, J.; Tume, P.; Tobias, F.J.; Barranzuela, J.L.; Vásquez, E.R. Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Sci. Total Environ. 1997, 203, 83–91. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.; Zhang, J.; Liu, S.; Ou, C.; Yan, J.; Sun, T. Status, fuzzy integrated risk assessment, and hierarchical risk management of soil heavy metals across China: A systematic review. Sci. Total Environ. 2021, 785, 147180. [Google Scholar] [CrossRef]
- Hu, B.; Shao, S.; Ni, H.; Fu, Z.; Hu, L.; Zhou, Y.; Min, X.; She, S.; Chen, S.; Huang, M.; et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level. Environ. Pollut. 2020, 266, 114961. [Google Scholar] [CrossRef] [PubMed]
- Mireles, F.; Davila, J.I.; Pinedo, J.L.; Reyes, E.; Speakman, R.J.; Glascock, M.D. Assessing urban soil pollution in the cities of Zacatecas and Guadalupe, Mexico by instrumental neutron activation analysis. Microchem. J. 2012, 103, 158–164. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Ecology and Environment China. Technical Guideline for the Development of Environmental Monitoringanalytical Method Standards. 2020. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/other/qt/202012/W020201230767258917724.pdf (accessed on 1 April 2021). (In Chinese)
- R Core Team. R: A Language and Environment for Statistical Computing, Version 4.0.4; R Foundation for Statistical Computing: Vienna, Austria, 2021. Available online: https://www.R-project.org/(accessed on 1 June 2020).
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. Forest 2001, 2, 18–22. [Google Scholar]
- R Core Team. RStudio: Integrated Development for R, Version 2021.09.1; RStudio, Inc.: Boston, MA, USA, 2015. Available online: http://www.rstudio.com/(accessed on 1 September 2021).
- Jin, Y.; O’Connor, D.; Ok, Y.S.; Tsang, D.C.W.; Liu, A.; Hou, D. Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis. Environ. Int. 2019, 124, 320–328. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; He, M.; Christakos, G. Beyond mere pollution source identification: Determination of land covers emitting soil heavy metals by combining PCA/APCS, GeoDetector and GIS analysis. Catena 2020, 185, 104297. [Google Scholar] [CrossRef]
- Ministry of the Environment, Finland. Government Decree on the Assessment of Soil Contamination and Remediation Needs. 2007. Available online: https://www.finlex.fi/en/laki/kaannokset/2007/en20070214.pdf (accessed on 1 March 2007).
- Rosstandart, M.I.R. Hygienic Standards GN 2.1.7.2041-06. Maximum Allowable Concentrations (MAC) of Chemical Substances in Soil. 2006. Available online: https://files.stroyinf.ru/Data2/1/4293850/4293850511.pdf (accessed on 1 April 2006).
- USEPA. Selecting Remediation Techniques for Contaminated Sediment; USEPA: Washington, DC, USA, 1993.
- Procuraduria Federal de Proteccion al Ambiente. Norma Oficial Mexicana NOM-147-SEMARNAT/SSA1-2004. 2016. Available online: https://www.gob.mx/profepa/documentos/norma-oficial-mexicana-nom-147-semarnat-ssa1-2004 (accessed on 13 September 2016).
- Jennings, A.A. Analysis of worldwide regulatory guidance values for the most commonly regulated elemental surface soil contamination. J. Environ. Manag. 2013, 118, 72–95. [Google Scholar] [CrossRef]
- Das, P.; Samantaray, S.; Rout, G.R. Studies on cadmium toxicity in plants: A review. Environ. Pollut. 1997, 98, 29–36. [Google Scholar] [CrossRef]
- Walsh, L.M.; Sumner, M.E.; Keeney, D.R. Occurrence and Distribution of Arsenic in Soils and Plants. Environ. Health Perspect. 1977, 19, 67–71. [Google Scholar] [CrossRef]
- Liu, J.; Li, K.; Xu, J.; Zhang, Z.; Ma, T.; Lu, X.; Yang, J.; Zhu, Q. Lead toxicity, uptake, and translocation in different rice cultivars. Plant Sci. 2003, 165, 793–802. [Google Scholar] [CrossRef]
Pollutant Factor | Utility Function | Risk-Screening Value (Total Content, mg·kg−1) | |||
---|---|---|---|---|---|
pH Range | |||||
Lower than 5.5 | 5.5 to 6.5 | 6.5 to 7.5 | Higher than 7.5 | ||
Cd | Paddy | 0.3 | 0.4 | 0.6 | 0.8 |
Others | 0.3 | 0.3 | 0.3 | 0.6 | |
Hg | Paddy | 0.5 | 0.5 | 0.6 | 1.0 |
Others | 1.3 | 1.8 | 2.4 | 3.4 | |
As | Paddy | 30 | 30 | 25 | 20 |
Others | 40 | 40 | 30 | 25 | |
Pb | Paddy | 80 | 100 | 140 | 240 |
Others | 70 | 90 | 120 | 170 | |
Cr | Paddy | 250 | 250 | 300 | 350 |
Others | 150 | 150 | 200 | 250 |
Pollutant Factor | Risk-Intervention Value (Total Content, mg·kg−1) | |||
---|---|---|---|---|
pH Range | ||||
Lower than 5.5 | 5.5 to 6.5 | 6.5 to 7.5 | Higher than 7.5 | |
Cd | 1.5 | 2 | 3 | 4 |
Hg | 2 | 2.5 | 4 | 6 |
As | 200 | 150 | 120 | 100 |
Pb | 400 | 500 | 700 | 1000 |
Cr | 800 | 850 | 1000 | 3000 |
Pollutant Content | Class of Single Factor | Overall Class | ||||
---|---|---|---|---|---|---|
Cd | Hg | As | Pb | Cr | ||
Lower than risk-screening value | 1 | 1 | 1 | 1 | 1 | Determined by the highest class of single pollutant factor |
Between risk-screening value and risk-intervention value | 2 | 2 | 2 | 2 | 2 | |
Higher than risk-intervention value | 3 | 3 | 3 | 3 | 3 |
Pollutant | Mean | Median | Minimum | Maximum | SD | CV | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|---|---|
mg·kg−1 | |||||||||
Content | Cd | 0.48 | 0.32 | 0.02 | 7.71 | 0.58 | 121.06% | 5.68 | 50.59 |
Hg | 0.10 | 0.09 | 0.01 | 1.03 | 0.05 | 55.87% | 4.58 | 53.78 | |
As | 19.89 | 15.81 | 1.10 | 407.65 | 20.28 | 101.96% | 8.24 | 122.62 | |
Pb | 49.19 | 33.61 | 8.11 | 1416.33 | 77.73 | 158.02% | 9.13 | 114.67 | |
Cr | 75.10 | 77.71 | 8.31 | 236.80 | 21.43 | 28.54% | −0.28 | 5.72 | |
Index | Cd | 0.19 | 0.15 | 0.01 | 3.59 | 0.18 | 92.62% | 7.35 | 95.79 |
Hg | 0.03 | 0.03 | 0.00 | 0.52 | 0.02 | 69.70% | 6.27 | 93.87 | |
As | 0.15 | 0.10 | 0.01 | 2.33 | 0.18 | 115.97% | 5.27 | 48.06 | |
Pb | 0.08 | 0.07 | 0.01 | 1.85 | 0.10 | 119.27% | 10.56 | 155.77 | |
Cr | 0.08 | 0.08 | 0.01 | 0.28 | 0.03 | 32.95% | 0.25 | 4.54 | |
pH | 6.20 | 5.89 | 4.05 | 8.40 | 1.12 | 18.01% | 0.40 | 1.83 |
PC1 | PC2 | |
---|---|---|
Cd | −0.535 | 0.210 |
Hg | −0.368 | −0.464 |
As | −0.521 | 0.058 |
Pb | −0.512 | 0.367 |
Cr | −0.206 | −0.775 |
Standard Deviation | 1.679 | 1.055 |
Proportion of Variance | 56.4% | 22.2% |
Cumulative Proportion | 56.4% | 78.6% |
Coefficient | Standard Error | t-Value | p-Value | |
---|---|---|---|---|
Intercept | 2.853 | 0.163 | 17.483 | <0.001 |
Cd | 1.378 | 0.040 | 34.261 | <0.001 |
Hg | −0.209 | 0.042 | −4.909 | <0.001 |
As | 0.689 | 0.042 | 16.498 | <0.001 |
Pb | −0.462 | 0.048 | −9.527 | <0.001 |
Cr | −0.215 | 0.056 | −3.808 | <0.001 |
pH | −0.114 | 0.007 | −15.495 | <0.001 |
Factors | Increase in Mean Squared Error (%) | Increase in Node Purity |
---|---|---|
Cd | 32.5 | 341.765 |
Hg | 0.6 | 28.035 |
As | 10.0 | 146.863 |
Pb | 4.0 | 62.480 |
Cr | 0.4 | 18.004 |
pH | 6.5 | 79.173 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wei, N.; Ji, G.; Liu, R.; Huang, G.; Zhang, H. Assessment of the Driving Pollution Factors of Soil Environmental Quality Based on China’s Risk Control Standard: Multiple Bigdata-Based Approaches with Intensive Sampling. Int. J. Environ. Res. Public Health 2022, 19, 12459. https://doi.org/10.3390/ijerph191912459
Wang X, Wei N, Ji G, Liu R, Huang G, Zhang H. Assessment of the Driving Pollution Factors of Soil Environmental Quality Based on China’s Risk Control Standard: Multiple Bigdata-Based Approaches with Intensive Sampling. International Journal of Environmental Research and Public Health. 2022; 19(19):12459. https://doi.org/10.3390/ijerph191912459
Chicago/Turabian StyleWang, Xiahui, Nan Wei, Guohua Ji, Ruiping Liu, Guoxin Huang, and Hongzhen Zhang. 2022. "Assessment of the Driving Pollution Factors of Soil Environmental Quality Based on China’s Risk Control Standard: Multiple Bigdata-Based Approaches with Intensive Sampling" International Journal of Environmental Research and Public Health 19, no. 19: 12459. https://doi.org/10.3390/ijerph191912459
APA StyleWang, X., Wei, N., Ji, G., Liu, R., Huang, G., & Zhang, H. (2022). Assessment of the Driving Pollution Factors of Soil Environmental Quality Based on China’s Risk Control Standard: Multiple Bigdata-Based Approaches with Intensive Sampling. International Journal of Environmental Research and Public Health, 19(19), 12459. https://doi.org/10.3390/ijerph191912459