A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting
Abstract
:1. Introduction
2. Literature Reviews
3. Datasets
3.1. Confirmed Cased and Deaths Datasets
- Date: Observation date in mm/dd/yyyy.
- State: State of the USA.
- Cases: Cumulative counts of coronavirus cases till that date.
- Deaths: Cumulative counts of coronavirus deaths till that date.
3.2. Vaccinations Dataset
- Date.
- State name.
- Daily count of vaccinations.
4. Methods
4.1. Data Preprocessing
4.2. Model
4.2.1. Encoder
4.2.2. Decoder
4.3. Training Data
4.4. Prediction Accuracy Measurement
5. Experimental Results
5.1. Model Comparison
5.2. Forecasting the Number of Confirmed Cases
5.3. Forecasting the Number of Deaths
5.4. Forecasting the Number of Administrated Vaccine Doses
6. Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paterlini, M. Closing borders is ridiculous’: The epidemiologist behind Sweden’s controversial coronavirus strategy. Nature 2020, 580, 574. [Google Scholar]
- Roda, W.C.; Varughese, M.B.; Han, D.; Li, M.Y. Why is it difficult to accurately predict the COVID-19 epidemic? Infect. Dis. Model. 2020, 5, 271–281. [Google Scholar]
- Ma, N.; Ma, W.; Li, Z. Multi-Model Selection and Analysis for COVID-19. Fractal Fract. 2021, 5, 120. [Google Scholar]
- Scarpino, S.V.; Petri, G. On the predictability of infectious disease outbreaks. Nat. Commun. 2019, 10, 898. [Google Scholar]
- Yang, Z.; Zeng, Z.; Wang, K.; Wong, S.S.; Liang, W.; Zanin, M.; He, J. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. J. Thorac. Dis. 2020, 12, 165. [Google Scholar]
- Längkvist, M.; Karlsson, L.; Loutfi, A. A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognit. Lett. 2014, 42, 11–24. [Google Scholar]
- Benvenuto, D.; Giovanetti, M.; Vassallo, L.; Angeletti, S.; Ciccozzi, M. Application of the ARIMA model on the COVID-2019 epidemic dataset. Data Brief 2020, 29, 105340. [Google Scholar]
- Hua, Y.; Zhao, Z.; Li, R.; Chen, X.; Liu, Z.; Zhang, H. Deep learning with long short-term memory for time series prediction. IEEE Commun. Mag. 2019, 57, 114–119. [Google Scholar]
- Hwang, W.; Lei, W.; Katritsis, N.M.; MacMahon, M.; Chapman, K.; Han, N. Current and prospective computational approaches and challenges for developing COVID-19 vaccines. Adv. Drug Deliv. Rev. 2021, 172, 249–274. [Google Scholar]
- Haiyan, W.; Nao, Y. Using a partial differential equation with google mobility data to predict COVID-19 in arizona. Math. Biosci. Eng. 2020, 17, 4891–4904. [Google Scholar]
- Sarah, T.; Helmut, B.; Matthias, E. A nonstandard finite difference scheme for the SVICDR model to predict COVID-19 dynamics. Math. Biosci. Eng. 2022, 19, 1213–1238. [Google Scholar]
- Khubchandani, J.; Sharma, S.; Price, J.H.; Wiblishauser, M.J.; Sharma, M.; Webb, F.J. COVID-19 vaccination hesitancy in the United States: A rapid national assessment. J. Community Health 2021, 46, 270–277. [Google Scholar]
- Shafiq, A.; Çolak, A.B.; Sindhu, T.N.; Lone, S.A.; Alsubie, A.; Jarad, F. Comparative Study of Artificial Neural Network versus Parametric Method in COVID-19 data Analysis. Results Phys. 2022, 38, 105613. [Google Scholar]
- Pinter, G.; Felde, I.; Mosavi, A.; Ghamisi, P.; Gloaguen, R. COVID-19 pandemic prediction for Hungary; a hybrid machine learning approach. Mathematics 2020, 8, 890. [Google Scholar]
- Torres, J.F.; Hadjout, D.; Sebaa, A.; Martínez-Álvarez, F.; Troncoso, A. Deep learning for time series forecasting: A survey. Big Data 2021, 9, 3–21. [Google Scholar]
- Ma, W.; Zhao, Y.; Guo, L.; Chen, Y. Qualitative and quantitative analysis of the COVID-19 pandemic by a two-side fractional-order compartmental model. ISA Trans. 2022, 124, 144–156. [Google Scholar]
- Kim, T.H.; Hong, K.J.; Do Shin, S.; Park, G.J.; Kim, S.; Hong, N. Forecasting respiratory infectious outbreaks using ED-based syndromic surveillance for febrile ED visits in a Metropolitan City. Am. J. Emerg. Med. 2019, 37, 183–188. [Google Scholar]
- Chimmula, V.K.R.; Zhang, L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos Solitons Fractals 2020, 135, 109864. [Google Scholar]
- Chandra, R.; Jain, A.; Singh Chauhan, D. Deep learning via LSTM models for COVID-19 infection forecasting in India. PLoS ONE 2022, 17, e0262708. [Google Scholar]
- Roy, S.; Bhunia, G.S.; Shit, P.K. Spatial prediction of COVID-19 epidemic using ARIMA techniques in India. Modeling Earth Syst. Environ. 2021, 7, 1385–1391. [Google Scholar]
- Alabdulrazzaq, H.; Alenezi, M.N.; Rawajfih, Y.; Alghannam, B.A.; Al-Hassan, A.A.; Al-Anzi, F.S. On the accuracy of ARIMA based prediction of COVID-19 spread. Results Phys. 2021, 27, 104509. [Google Scholar]
- Shahid, F.; Zameer, A.; Muneeb, M. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Chaos Solitons Fractals 2020, 140, 110212. [Google Scholar]
- Rahimi, I.; Chen, F.; Gandomi, A.H. A review on COVID-19 forecasting models. Neural Comput. Appl. 2021, 1–11. [Google Scholar]
- Li, Y.; Wang, Y.; Ma, K. Integrating Transformer and GCN for COVID-19 Forecasting. Sustainability 2022, 14, 10393. [Google Scholar]
- Miralles-Pechuán, L.; Jiménez, F.; Ponce, H.; Martínez-Villaseñor, L. A methodology based on deep q-learning/genetic algorithms for optimizing covid-19 pandemic government actions. In Proceedings of the 29th ACM International Conference on Information Knowledge Management, New York, NY, USA, 19–23 October 2020; pp. 1135–1144. [Google Scholar]
- Shorten, C.; Khoshgoftaar, T.M.; Furht, B. Deep Learning applications for COVID-19. J. Big Data 2021, 8, 1–54. [Google Scholar]
- Farsani, R.M.; Pazouki, E. A transformer self-attention model for time series forecasting. J. Electr. Comput. Eng. Innov. (JECEI) 2021, 9, 1–10. [Google Scholar]
- La Gatta, V.; Moscato, V.; Postiglione, M.; Sperli, G. An epidemiological neural network exploiting dynamic graph structured data applied to the covid-19 outbreak. IEEE Trans. Big Data 2021, 7, 45–55. [Google Scholar]
- Nytimes. Coronavirus (COVID-19) Data in the United States. Available online: https://github.com/nytimes/covid-19-data (accessed on 20 August 2022).
- Srk. Novel Corona Virus 2019 Dataset. Available online: https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset (accessed on 20 August 2022).
- Edouard, M. State-by-State Data on COVID-19 Vaccinations in the United States. Available online: https://ourworldindata.org/us-states-vaccinations (accessed on 20 August 2022).
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Polosukhin, I. Attention is all you need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Bresson, X.; Laurent, T. Residual gated graph convnets. arXiv 2017, arXiv:1711.07553. [Google Scholar]
- Yang, W.; Zhibin, C. Dynamic graph Conv-LSTM model with dynamic positional encoding for the large-scale traveling salesman problem. Math. Biosci. Eng. 2022, 19, 9730–9748. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Ibrahimi, K.; Cherif, O.O.; Elkoutbi, M.; Rouam, I. Model to Improve the Forecast of the Content Caching based Time-Series Analysis at the Small Base Station. In Proceedings of the 7th International Conference on Wireless Networks and Mobile Communications (WINCOM’19), Fez, Morocco, 29 October–1 November 2019. [Google Scholar]
- Ibrahimi, K.; Serbouti, Y. Prediction of the Content Popularity in the 5G Network: Auto-Regressive, Moving-Average and Exponential Smoothing Approaches. In Proceedings of the International Conference on Wireless Networks and Mobile Communications (WINCOM’17), Rabat, Morocco, 1–4 November 2017. [Google Scholar]
- Adil, B.; Lhazmir, S.; Ghogho, M.; Benbrahim, H. COVID-19-Related Scientific Literature Exploration: Short Survey and Comparative Study. Biology 2022, 11, 1221. [Google Scholar]
Date | State | Cases | Deaths |
---|---|---|---|
2021/4/22 | Ohio | 1,060,119 | 19,033 |
2021/4/22 | Oklahoma | 446,246 | 6716 |
2021/4/22 | Oregon | 178,110 | 2484 |
2021/4/22 | Pennsylvania | 1,128,144 | 25,934 |
2021/4/22 | Puerto Rico | 158,827 | 2238 |
2021/4/22 | Rhode Island | 146,028 | 2660 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Ma, K. A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting. Int. J. Environ. Res. Public Health 2022, 19, 12528. https://doi.org/10.3390/ijerph191912528
Li Y, Ma K. A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting. International Journal of Environmental Research and Public Health. 2022; 19(19):12528. https://doi.org/10.3390/ijerph191912528
Chicago/Turabian StyleLi, Yulan, and Kun Ma. 2022. "A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting" International Journal of Environmental Research and Public Health 19, no. 19: 12528. https://doi.org/10.3390/ijerph191912528
APA StyleLi, Y., & Ma, K. (2022). A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting. International Journal of Environmental Research and Public Health, 19(19), 12528. https://doi.org/10.3390/ijerph191912528