Bio-Physics Approach to Urinary Incontinence Disabilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Rehabilitation Protocol
2.4. Outcome Measures
2.4.1. Pelvic Floor Disability Index (PFDI-20)
2.4.2. Pelvic Floor Impact Questionnaire (PFIQ-7)
2.4.3. Myoton-PRO
2.5. Statistical Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- D’Ancona, C.D.; Haylen, B.T.; Oelke, M.; Herschorn, S.; Abranches-Monteiro, L.; Arnold, E.; Goldman, H.; Hamid, R.; Homma, Y.; Marcelissen, T.; et al. The International Continence Society (ICS) report on the terminology for adult male lower urinary tract and pelvic floor symptoms and dysfunction. Neurourol. Urodyn. 2019, 38, 433–477. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, A.J.; Ramsay, I.M. The psychosocial impact of urinary incontinence in women. Obs. Gynaecol. 2011, 13, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Qaseem, A.; Dallas, P.; Forciea, M.A.; Starkey, M.; Denberg, T.D.; Shekelle, P.; Clinical Guidelines Committee of the American College of Physicians. Nonsurgical management of urinary incontinence in women: A clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 2014, 161, 429–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barassi, G.; Bellomo, R.G.; di Giulio, C.; Giannuzzo, G.; Irace, G.; Barbato, C.; Saggini, R. Effects of Manual Somatic Stimulation on the Autonomic Nervous System and Posture. Adv. Exp. Med. Biol. 2018, 1070, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Barassi, G.; Pokorski, M.; Di Matteo, C.; Supplizi, M.; Prosperi, L.; Guglielmi, V.; Younes, A.; Della Rovere, F.; Di Iorio, A. Manual Pressure Release and Low-Grade Electrical Peripheral Receptor Stimulation in Nonspecific Low Back Pain: A Randomized Controlled Trial. Adv. Exp. Med. Biol. 2021, 1324, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Barassi, G.; Bellomo, R.G.; Porreca, A.; di Felice, P.A.; Prosperi, L.; Saggini, R. Somato-Visceral Effects in the Treatment of Dysmenorrhea: Neuromuscular Manual Therapy and Standard Pharmacological Treatment. J. Altern. Complement. Med. 2018, 24, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Pietrangelo, T.; Mancinelli, R.; Toniolo, L.; Cancellara, L.; Paoli, A.; Puglielli, C.; Iodice, P.; Doria, C.; Bosco, G.; D’Amelio, L.; et al. Effects of local vibrations on skeletal muscle trophism in elderly people: Mechanical, cellular, and molecular events. Int. J. Mol. Med. 2009, 24, 503–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barassi, G.; Bellomo, R.G.; Frondaroli, F.; Frondaroli, S.; Santarelli, A.; di Felice, P.A.; Supplizi, M.; Palermo, T.; Saggini, R. Integrated Rehabilitation Approach with Manual and Mechanic-Acoustic Vibration Therapies for Urinary Incontinence. Adv. Exp. Med. Biol. 2019, 1211, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Barber, M.D.; Walters, M.D.; Bump, R.C. Short forms of two condition-specific quality-of-life questionnaires for women with pelvic floor disorders (PFDI- 20 and PFIQ-7). Am. J. Obstet. Gynecol. 2005, 193, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Petek, B.K.; Necdet, S.; Hatice, K.S. Validation, cultural adaptation and responsiveness of two pelvic-floor-specific quality-of-life questionnaires, PFDI-20 and PFIQ-7, in a Turkish population. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 162, 229–233. [Google Scholar] [CrossRef]
- Van Deun, B.P.T.; Hobbelen, J.S.M.P.T.; Cagnie, B.P.T.; van Eetvelde, B.P.T.; van den Noortgate, N.M.D.; Cambier, D.P.T. Reproducible measurements of muscle characteristics using the MyotonPRO Device: Comparison between individuals with and without paratonia. J. Geriatr. Phys. Ther. 2018, 41, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Peipsi, A.; Kerpe, R.; Jäger, H.; Soeder, S.; Gordon, C.; Schleip, R. Myoton pro: A novel tool for the assessment of mechanical properties of fascial tissues. J. Bodyw. Mov. Ther. 2012, 16, 527. [Google Scholar] [CrossRef]
- Frawley, H.C.; Dean, S.G.; Slade, S.C.; Hay-Smith, E.J.C. Is Pelvic-Floor Muscle Training a Physical Therapy or a Behavioral Therapy? A Call to Name and Report the Physical, Cognitive, and Behavioral Elements. Phys. Ther. 2017, 97, 425–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, S.A.; Roe, B.; Williams, K.; Palmer, M. Bladder training for urinary incontinence in adults. Cochrane Database Syst. Rev. 2004, 2004, CD001308. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, S.B.; Portney, L.G. Examination of motor function: Motor control and motor learning. In Physical Rehabilitation, 5th ed.; O’Sullivan, S.B., Schmitz, T.J., Eds.; FA Davis: Philadelphia, PA, USA, 2006; pp. 233–234. [Google Scholar]
- Butrick, C.W. Pathophysiology of pelvic floor hypertonic disorders. Obstet. Gynecol. Clin. N Am. 2009, 36, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Bisciotti, G.N.; Capellu, M.; Hidalgo, J.M.; Combi, F.; Benazzo, F. Comparison of stiffness resulting from different surgical methods of repair of Achilles tendon rupture. Minerva Ortop. E Traumatol. 2007, 58, 107–114. [Google Scholar]
- Sapsford, R.R.; Hodges, P.W.; Richardson, C.A.; Cooper, D.H.; Markwell, S.J.; Jull, G.A. Co-activation of the abdominal and pelvic floor muscles during voluntary exercises. Neurourol. Urodyn. 2001, 20, 31–42. [Google Scholar] [CrossRef]
- Cerritelli, F.; Chiacchiaretta, P.; Gambi, F.; Perrucci, M.G.; Barassi, G.; Visciano, C.; Bellomo, R.G.; Saggini, R.; Ferretti, A. Effect of manual approaches with osteopathic modality on brain correlates of interoception: An fMRI study. Sci. Rep. 2020, 10, 3214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLancey, J.O. The hidden epidemic of pelvic floor dysfunction: Achievable goals for improved prevention and treatment. Am. J. Obstet. Gynecol. 2005, 192, 1488–1495. [Google Scholar] [CrossRef] [PubMed]
- Todhunter-Brown, A.; Hazelton, C.; Campbell, P.; Elders, A.; Hagen, S.; McClurg, D. Conservative interventions for treating urinary incontinence in women: An Overview of Cochrane systematic reviews. Cochrane Database Syst. Rev. 2022, 9, CD012337. [Google Scholar] [CrossRef] [PubMed]
Variable * | Count | Mean | SD | t-Test p-Value * | ANOVA p-Value * |
---|---|---|---|---|---|
Adductor Muscle D _T0L | 15 | 1.7 | 0.2 | ||
Adductor Muscle D_T2L | 15 | 1.6 | 0.2 | ns | ns |
Adductor Muscle D_T0R | 15 | 1.7 | 0.2 | ||
Adductor Muscle D_T2R | 15 | 1.7 | 0.06 | ns | ns |
Adductor Muscle F_T0L | 15 | 11.6 | 1.3 | ||
Adductor Muscle F_T2L | 15 | 11.2 | 0.8 | ns | ns |
Adductor Muscle F_T0R | 15 | 11.2 | 1.6 | ||
Adductor Muscle F_T2R | 15 | 10.6 | 0.2 | ns | ns |
Adductor Muscle S_T0L | 15 | 206.2 | 27.5 | ||
Adductor Muscle S_T2L | 15 | 204.4 | 25.7 | ns | ns |
Adductor Muscle S_T0R | 15 | 204.9 | 37.4 | ||
Adductor Muscle S_T2R | 15 | 194 | 24.4 | ns | ns |
Dorsal Muscle D_T0L | 15 | 1.8 | 0.4 | ||
Dorsal Muscle D_T2L | 15 | 1.7 | 0.4 | ns | ns |
Dorsal Muscle D_T0R | 15 | 1.7 | 0.3 | ||
Dorsal Muscle D_T2R | 15 | 1.9 | 0.4 | ns | ns |
Dorsal Muscle F_T0L | 15 | 13.8 | 2.2 | ||
Dorsal Muscle F_T2L | 15 | 12 | 2.3 | ns | ns |
Dorsal Muscle F_T0R | 15 | 12.9 | 1.8 | ||
Dorsal Muscle F_T2R | 15 | 12.7 | 1.2 | ns | ns |
Dorsal Muscle S_T0L | 15 | 234.5 | 23.8 | ||
Dorsal Muscle S_T2L | 15 | 238.8 | 29.2 | ns | ns |
Dorsal Muscle S_T0R | 15 | 234.5 | 25.8 | ||
Dorsal Muscle S_T2R | 15 | 241.2 | 32.3 | ns | ns |
Gluteus Maximus Muscle D_T0L | 15 | 2 | 0,5 | ||
Gluteus Maximus Muscle D_T2L | 15 | 2.15 | 0,09 | ns | ns |
Gluteus Maximus Muscle D_T0R | 15 | 2.04 | 0.5 | ||
Gluteus Maximus Muscle D_T2R | 15 | 2.12 | 0.4 | ns | ns |
Gluteus Maximus Muscle F_T0L | 15 | 11.51 | 0.9 | ||
Gluteus Maximus Muscle F_T2L | 15 | 11.07 | 1.1 | ns | ns |
Gluteus Maximus Muscle F_T0R | 15 | 11.46 | 1.02 | ||
Gluteus Maximus Muscle F_T2R | 15 | 11.63 | 1.4 | ns | ns |
Gluteus Maximus Muscle S_T0L | 15 | 231.2 | 29 | ||
Gluteus Maximus Muscle S_T2L | 15 | 235.5 | 29.5 | ns | ns |
Gluteus Maximus Muscle S_T0R | 15 | 232.1 | 32 | ||
Gluteus Maximus Muscle S_T2R | 15 | 230.4 | 34.8 | ns | ns |
Rectus Abdominis Muscle D_T0L | 15 | 1.9 | 0.5 | ||
Rectus Abdominis Muscle D_T2L | 15 | 1.9 | 0.3 | ns | ns |
Rectus Abdominis Muscle D_T0R | 15 | 1.8 | 0.4 | ||
Rectus Abdominis Muscle D_T2R | 15 | 2 | 0.4 | ns | ns |
Rectus Abdominis Muscle F_T0L | 15 | 12.83 | 1.4 | ||
Rectus Abdominis Muscle F_T2L | 15 | 12.93 | 1.6 | ns | ns |
Rectus Abdominis Muscle F_T0R | 15 | 11.26 | 0.8 | ||
Rectus Abdominis Muscle F_T2R | 15 | 11.16 | 0.8 | ns | ns |
Rectus Abdominis Muscle S_T0L | 15 | 231.2 | 29 | ||
Rectus Abdominis Muscle S_T2L | 15 | 235.5 | 29.5 | ns | ns |
Rectus Abdominis Muscle S_T0R | 15 | 202.2 | 37.3 | ||
Rectus Abdominis Muscle S_T2R | 15 | 204.5 | 36.5 | ns | ns |
Variable | Count | Mean | S.D | 95% LCL of Mean | 95% UCL of Mean | p-Value * | ANOVA p-Value * |
---|---|---|---|---|---|---|---|
POPDI-6 T0 (Part of PFDI-20) | 15 | 20.27 | 19.21 | 9.63 | 30.91 | ||
POPDI-6 T2 (Part of PFDI-20) | 15 | 8.05 | 9.24 | 2.93 | 13.17 | 0.00132 | 0.000028 |
CRADI-8 T0 (Part of PFDI-20) | 15 | 9.79 | 9.43 | 4.56 | 15.01 | ||
CRADI-8 T2 (Part of PFDI-20) | 15 | 3.75 | 7.39 | 0.34 | 7.84 | 0.00499 | 0.000635 |
UDI-6 T0 (Part of PFDI-20) | 15 | 27.77 | 18.94 | 17.28 | 38.26 | ||
UDI-6 T2 (Part of PFDI-20) | 15 | 18.05 | 12.36 | 11.20 | 24.9 | 0.00015 | 0.000000 |
PFDI-20 T0 Total Score | 15 | 57.84 | 27.45 | 42.64 | 73.05 | ||
PFDI-20 T2 Total Score | 15 | 29.86 | 16.84 | 20.53 | 39.18 | 0.00001 | 0.000000 |
BLADDER T0 (Part of PFIQ-7) | 15 | 33.65 | 21.33 | 21.83 | 45.46 | ||
BLADDER T2 (Part of PFIQ-7) | 15 | 13.96 | 12.53 | 7.02 | 20.9 | 0.00030 | 0.000016 |
BOWEL T0 (Part of PFIQ-7) | 15 | 11.11 | 16.85 | 1.77 | 20.44 | ||
BOWEL T2 (Part of PFIQ-7) | 15 | 4.44 | 8.71 | 0.38 | 9.27 | ns | 0.038834 |
VAGINA T0 (Part of PFIQ-7) | 15 | 20.95 | 14.92 | 12.68 | 29.21 | ||
VAGINA T2 (Part of PFIQ-7) | 15 | 8.88 | 11.22 | 2.67 | 15.1 | 0.00183 | 0.000071 |
PFIQ-7 T0 Total Score | 15 | 65.71 | 46.14 | 40.16 | 91.26 | ||
PFIQ-7 T2 Total Score | 15 | 27.3 | 28.19 | 11.68 | 42.91 | 0.00072 | 0.000015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prosperi, L.; Barassi, G.; Panunzio, M.; Pellegrino, R.; Marinucci, C.; Di Iulio, A.; Colombo, A.; Licameli, M.; Moccia, A.; Melchionna, M. Bio-Physics Approach to Urinary Incontinence Disabilities. Int. J. Environ. Res. Public Health 2022, 19, 12612. https://doi.org/10.3390/ijerph191912612
Prosperi L, Barassi G, Panunzio M, Pellegrino R, Marinucci C, Di Iulio A, Colombo A, Licameli M, Moccia A, Melchionna M. Bio-Physics Approach to Urinary Incontinence Disabilities. International Journal of Environmental Research and Public Health. 2022; 19(19):12612. https://doi.org/10.3390/ijerph191912612
Chicago/Turabian StyleProsperi, Loris, Giovanni Barassi, Maurizio Panunzio, Raffaello Pellegrino, Celeste Marinucci, Antonella Di Iulio, Antonio Colombo, Marco Licameli, Antonio Moccia, and Mario Melchionna. 2022. "Bio-Physics Approach to Urinary Incontinence Disabilities" International Journal of Environmental Research and Public Health 19, no. 19: 12612. https://doi.org/10.3390/ijerph191912612
APA StyleProsperi, L., Barassi, G., Panunzio, M., Pellegrino, R., Marinucci, C., Di Iulio, A., Colombo, A., Licameli, M., Moccia, A., & Melchionna, M. (2022). Bio-Physics Approach to Urinary Incontinence Disabilities. International Journal of Environmental Research and Public Health, 19(19), 12612. https://doi.org/10.3390/ijerph191912612