Tpeak-Tend Interval during Pregnancy and Postpartum
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ECG | Electrocardiogram |
LQTS | Long QT Syndrome |
QTc | QT interval corrected with Bazett formula |
QTp | (Q-Tpeak) |
TpTe | Tpeak—Tend interval |
References
- Tamirisa, K.P.; Elkayam, U.; Briller, J.E.; Mason, P.K.; Pillarisetti, J.; Merchant, F.M.; Patel, H.; Lakkireddy, D.R.; Russo, A.M.; Volgman, A.S.; et al. Arrhythmias in Pregnancy. JACC Clin. Electrophysiol. 2021, 8, 120–135. [Google Scholar] [CrossRef]
- Adamson, D.L.; Nelson-Piercy, C. Managing palpitations and arrhythmias during pregnancy. Postgrad. Med. J. 2008, 84, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Michels, G.; Kochanek, M.; Pfister, R. Life-threatening cardiac arrhythmias due to drug-induced QT prolongation. Med. Klin.-Intensiv. und Notfallmedizin 2015, 111, 302–309. [Google Scholar] [CrossRef]
- Silversides, C.K.; Harris, L.; Haberer, K.; Sermer, M.; Colman, J.M.; Siu, S. Recurrence Rates of Arrhythmias During Pregnancy in Women With Previous Tachyarrhythmia and Impact on Fetal and Neonatal Outcomes. Am. J. Cardiol. 2006, 97, 1206–1212. [Google Scholar] [CrossRef]
- Fu, Q.; Lin, J. Risk factors for heart failure during pregnancy among Chinese women with cardiac disease. Int. J. Gynecol. Obstet. 2015, 130, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Rashba, E.J.; Zareba, W.; Moss, A.J.; Hall, W.J.; Robinson, J.; Locati, E.H.; Schwartz, P.J.; Andrews, M. Influence of Pregnancy on the Risk for Cardiac Events in Patients With Hereditary Long QT Syndrome. Circulation 1998, 97, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Ishibashi, K.; Aiba, T.; Kamiya, C.; Miyazaki, A.; Sakaguchi, H.; Wada, M.; Nakajima, I.; Miyamoto, K.; Okamura, H.; Noda, T.; et al. Arrhythmia risk and Beta-blocker therapy in pregnant women with long QT syndrome. Heart 2017, 103, 1374–1379. [Google Scholar] [CrossRef]
- Khositseth, A.; Tester, D.J.; Will, M.L.; Bell, C.M.; Ackerman, M.J. Identification of a common genetic substrate underlying postpartum cardiac events in congenital long QT syndrome. Hear. Rhythm 2004, 1, 60–64. [Google Scholar] [CrossRef]
- Heradien, M.J.; Goosen, A.; Crotti, L.; Durrheim, G.; Corfield, V.; Brink, P.; Schwartz, P.J. Does Pregnancy Increase Cardiac Risk for LQT1 Patients With the KCNQ1-A341V Mutation? J. Am. Coll. Cardiol. 2006, 48, 1410–1415. [Google Scholar] [CrossRef] [Green Version]
- Seth, R.; Moss, A.J.; McNitt, S.; Zareba, W.; Andrews, M.L.; Qi, M.; Robinson, J.L.; Goldenberg, I.; Ackerman, M.J.; Benhorin, J.; et al. Long QT Syndrome and Pregnancy. J. Am. Coll. Cardiol. 2007, 49, 1092–1098. [Google Scholar] [CrossRef]
- Kirbas, A.; Kirbas, O.; Daglar, K.; Inal, H.A.; Kurmus, O.; Kara, O.; Timur, H.; Gencosmanoglu, G.; Danisman, N. Novel indexes of arrhythmogenesis in preeclampsia: QT dispersion, Tp-e interval, and Tp-e/QT ratio. Pregnancy Hypertens. Int. J. Women’s Cardiovasc. Health 2016, 6, 38–41. [Google Scholar] [CrossRef]
- Achmad, C.; Iqbal, M.; Karwiky, G.; Prameswari, H.S.; Febrianora, M. T-Peak to T-End Improvements After Beta-Blocker Administration in Peripartum Cardiomyopathy Patients. Cardiol. Res. 2020, 11, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Shimizu, M.; Ino, H.; Terai, H.; Uchiyama, K.; Oe, K.; Mabuchi, T.; Konno, T.; Kaneda, T.; Mabuchi, H. T wave peak-to-end interval and QT dispersion in acquired long QT syndrome: A new index for arrhythmogenicity. Clin. Sci. 2003, 105, 671–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topilski, I.; Rogowski, O.; Rosso, R.; Justo, D.; Copperman, Y.; Glikson, M.; Belhassen, B.; Hochenberg, M.; Viskin, S. The Morphology of the QT Interval Predicts Torsade de Pointes During Acquired Bradyarrhythmias. J. Am. Coll. Cardiol. 2007, 49, 320–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, N.; Kobayashi, Y.; Tanno, K.; Miyoshi, F.; Asano, T.; Kawamura, M.; Mikami, Y.; Adachi, T.; Ryu, S.; Miyata, A.; et al. Transmural dispersion of repolarization and ventricular tachyarrhythmias. J. Electrocardiol. 2004, 37, 191–200. [Google Scholar] [CrossRef]
- Yan, G.-X.; Antzelevitch, C. Cellular Basis for the Normal T Wave and the Electrocardiographic Manifestations of the Long-QT Syndrome. Circulation 1998, 98, 1928–1936. [Google Scholar] [CrossRef] [PubMed]
- Antzelevitch, C.; Shimizu, W.; Yan, G.-X.; Sicouri, S.; Weissenburger, J.; Nesterenko, V.V.; Burashnikov, A.; Diego, J.; Saffitz, J.; Thomas, G.P. The M Cell: Its Contribution to the ECG and to Normal and Abnormal Electrical Function of the Heart. J. Cardiovasc. Electrophysiol. 1999, 10, 1124–1152. [Google Scholar] [CrossRef] [PubMed]
- Antzelevitch, C.; Oliva, A. Amplification of spatial dispersion of repolarization underlies sudden cardiac death associated with catecholaminergic polymorphic VT, long QT, short QT and Brugada syndromes. J. Intern. Med. 2005, 259, 48–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sucu, M.; Ozer, O.; Davutoglu, V.; Ercan, S.; Yuce, M.; Coskun, F.Y. Relationship between Neurocardiogenic Syncope and Ventricular Repolarization. Pacing Clin. Electrophysiol. 2015, 38, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Hancock, E.W.; Deal, B.J.; Mirvis, D.M.; Okin, P.; Kligfield, P.; Gettes, L.S.; Bailey, J.J.; Childers, R.; Gorgels, A.; Josephson, M.; et al. AHA/ACCF/HRS Recommendations for the Standardization and Interpretation of the Electrocardiogram: Part V: Electrocardiogram Changes Associated With Cardiac Chamber Hypertrophy A Scientific Statement From the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society Endorsed by the International Society for Computerized Electrocardiology. J. Am. Coll. Cardiol. 2009, 53, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- Tanindi, A.; Akgun, N.; Pabuccu, E.G.; Gursoy, A.Y.; Yüce, E.; Tore, H.F.; Duvan, C.I. Electrocardiographic P-Wave Duration, QT Interval, T Peak to End Interval and Tp-e/QT Ratio in Pregnancy with Respect to Trimesters. Ann. Noninvasive Electrocardiol. 2015, 21, 169–174. [Google Scholar] [CrossRef]
- Guillon, A.; Leyre, S.; Remérand, F.; Taihlan, B.; Perrotin, F.; Fusciardi, J.; Laffon, M. Modification of Tp-e and QTc intervals during caesarean section under spinal anaesthesia. Anaesthesia 2010, 65, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Gazi, E.; Gencer, M.; Temiz, A.; Barutcu, A.; Altun, B.; Gungor, A.N.C.; Hacivelioglu, S.; Uysal, A.; Cosar, E. Does pregnancy-induced hypertension affect the electrophysiology of the heart? J. Obstet. Gynaecol. 2015, 36, 183–186. [Google Scholar] [CrossRef]
- Cheng, J. Evidences of the gender-related differences in cardiac repolarization and the underlying mechanisms in different animal species and human. Fundam. Clin. Pharmacol. 2006, 20, 1–8. [Google Scholar] [CrossRef]
- Bidoggia, H.; Maciel, J.P.; Capalozza, N.; Mosca, S.; Blaksley, E.J.; Valverde, E.; Bertran, G.; Arini, P.; Biagetti, M.O.; Quinteiro, R.A. Sex differences on the electrocardiographic pattern of cardiac repolarization: Possible role of testosterone. Am. Heart J. 2000, 140, 678–683. [Google Scholar] [CrossRef] [PubMed]
- Vrtovec, B.; Starc, V.; Meden-Vrtovec, H. The effect of estrogen replacement therapy on ventricular repolarization dynamics in healthy postmenopausal women. J. Electrocardiol. 2001, 34, 277–283. [Google Scholar] [CrossRef]
- Akboga, M.K. Tp-e interval and Tp-e/QTc ratio as novel surrogate markers for prediction of ventricular arrhythmic events in hypertrophic cardiomyopathy. Anatol. J. Cardiol. 2017, 18, 48–53. [Google Scholar] [CrossRef]
- Alizade, E.; Avcı, A.; Fidan, S.; Tabakci, M.; Bulut, M.; Zehir, R.; Simsek, Z.; Evlice, M.; Arslantas, U.; Çakır, H.; et al. The Effect of Chronic Anabolic–Androgenic Steroid Use on Tp-E Interval, Tp-E/Qt Ratio, and Tp-E/Qtc Ratio in Male Bodybuilders. Ann. Noninvasive Electrocardiol. 2015, 20, 592–600. [Google Scholar] [CrossRef]
- Braschi, A.; Abrignani, M.G.; Francavilla, V.C.; Abrignani, V.; Francavilla, G. Age- and sex-based reference ranges for non-invasive ventricular repolarisation parameters. Int. J. Clin. Pract. 2017, 71, e12949. [Google Scholar] [CrossRef] [PubMed]
- Haarmark, C.; Kyvik, K.O.; Vedel-Larsen, E.; Budtz-Jørgensen, E.; Kanters, J.K. Heritability of Tpeak-Tend Interval and T-Wave Amplitude. Circ. Cardiovasc. Genet. 2011, 4, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Xianpei, W.; Sha, W.; Chuanyu, G.; Juanjuan, Y.; Chong, C.; Yongen, S.; Yu, F.; Zhenhao, L. Tpeak-Tend dispersion as a predictor for malignant arrhythmia events in patients with vasospastic angina. Int. J. Cardiol. 2017, 249, 61–65. [Google Scholar] [CrossRef]
- Scott, P.A.; Rosengarten, J.A.; Shahed, A.; Yue, A.M.; Murday, D.C.; Roberts, P.R.; Peebles, C.R.; Harden, S.P.; Curzen, N.P.; Morgan, J.M. The relationship between left ventricular scar and ventricular repolarization in patients with coronary artery disease: Insights from late gadolinium enhancement magnetic resonance imaging. Europace 2012, 15, 899–906. [Google Scholar] [CrossRef] [Green Version]
- Haarmark, C.; Hansen, P.R.; Vedel-Larsen, E.; Pedersen, S.H.; Graff, C.; Andersen, M.P.; Toft, E.; Wang, F.; Struijk, J.J.; Kanters, J.K. The prognostic value of the Tpeak-Tend interval in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. J. Electrocardiol. 2009, 42, 555–560. [Google Scholar] [CrossRef]
- Onur, S.T.; Emet, S.; Sokucu, S.N.; Onur, I. T wave peak-to-end interval in COPD. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 2157–2162. [Google Scholar] [CrossRef] [Green Version]
- Ilgenli, T.F.; Tokatli, A.; Akpinar, O.; Kilicaslan, F. The Effects of Cigarette Smoking on the Tp-e Interval, Tp-e/QT Ratio and Tp-e/QTc Ratio. Adv. Clin. Exp. Med. 2015, 24, 973–978. [Google Scholar] [CrossRef]
- Kuzu, F. The effect of type 2 diabetes on electrocardiographic markers of significant cardiac events. Pak. J. Med. Sci. 2018, 34, 626–632. [Google Scholar] [CrossRef]
- Kayali, S.; Demir, F. The effects of cigarette smoking on ventricular repolarization in adolescents. Einstein (São Paulo) 2017, 15, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Yılmaz, M.; Kayançiçek, H.; Gözel, N.; Bilen, M.; Kurtoğlu, E.; Seçen, O.; Öner, P.; Demirkıran, S.; Uku, O.; Çekici, Y.; et al. Spotlights on some electrocardiographic paradigms: How should we evaluate normal reference values of Tp–Te interval, Tp–Te dispersion and Tp–Te/QT ratio? Adv. Clin. Exp. Med. 2020, 29, 1091–1099. [Google Scholar] [CrossRef]
- Ciobanu, A.; Tse, G.; Liu, T.; Deaconu, M.V.; Gheorghe, G.S.; Ilieşiu, A.M.; Nanea, I.T. Electrocardiographic measures of repolarization dispersion and their relationships with echocardiographic indices of ventricular remodeling and premature ventricular beats in hypertension. J. Geriatr. Cardiol. 2017, 14, 717–724. [Google Scholar] [CrossRef]
- Garg, L.; Garg, J.; Krishnamoorthy, P.; Ahnert, A.; Shah, N.; Dusaj, R.S.; Bozorgnia, B. Influence of Pregnancy in Patients With Congenital Long QT Syndrome. Cardiol. Rev. 2017, 25, 197–201. [Google Scholar] [CrossRef] [PubMed]
QTcB [ms] | I Trimester | II Trimester | III Trimester | Postpartum | Control |
---|---|---|---|---|---|
N | 36 | 30 | 30 | 32 | 32 |
Mean | 420.57 | 427.58 | 426.56 | 428.83 | 411.23 |
SD | 24.91 | 18.61 | 16.12 | 22.52 | 20.84 |
Minimum | 372.62 | 388.89 | 390.01 | 394.13 | 378.11 |
Maximum | 466.16 | 460.93 | 466.69 | 505.96 | 455.96 |
Median | 420.65 | 427.42 | 426.82 | 426.98 | 411.63 |
I trimester | — | p = 0.212 | p = 0.306 | p = 0.163 | p = 0.110 |
II trimester | p = 0.212 | — | p = 0.742 | p = 0.815 | p = 0.002 |
III trimester | p = 0.306 | p = 0.742 | — | p = 0.589 | p = 0.003 |
Postpartum | p = 0.163 | p = 0.815 | p = 0.589 | — | p = 0.002 |
Control | p = 0.110 | p = 0.002 | p = 0.003 | p = 0.002 | — |
(I-III trim.) vs. Control | p < 0.001 | ||||
(I trim-post.) vs. Control | p < 0.001 |
TpTe | I Trimester | II Trimester | III Trimester | Postpartum | Control |
---|---|---|---|---|---|
N | 36 | 30 | 30 | 32 | 32 |
Mean | 76.11 | 81.33 | 87.33 | 97.09 | 74.06 |
SD | 6.45 | 5.71 | 5.83 | 12.95 | 6.14 |
Minimum | 60.00 | 70,00 | 80.0 | 80.00 | 60.00 |
Maximum | 90.00 | 90.00 | 100,00 | 130,00 | 80,00 |
Median | 80.00 | 80.00 | 90.00 | 100.00 | 70.00 |
I trimester | — | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.186 |
II trimester | p < 0.001 | — | p < 0.001 | p < 0.001 | p < 0.001 |
III trimester | p < 0.001 | p < 0.001 | — | p < 0.001 | p < 0.001 |
Postpartum | p < 0.001 | p < 0.001 | p < 0.001 | — | p < 0.001 |
Control | p = 0.186 | p < 0.001 | p < 0.001 | p < 0.001 | — |
(I-III trim.) vs. Control | p < 0.001 | ||||
(I trim-post.) vs. Control | p < 0.001 |
TpTe/QT | I Trimester | II Trimester | III Trimester | Postpartum | Control |
---|---|---|---|---|---|
N | 36 | 30 | 30 | 32 | 32 |
Mean | 0.21 | 0.22 | 0.24 | 0.24 | 0.20 |
SD | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 |
Minimum | 0.16 | 0.19 | 0.20 | 0.16 | 0.14 |
Maximum | 0.24 | 0.25 | 0.27 | 0.29 | 0.23 |
Median | 0.21 | 0.22 | 0.24 | 0.25 | 0.20 |
I trimester | — | p = 0.012 | p < 0.001 | p < 0.001 | p = 0.045 |
II trimester | p = 0.012 | — | p < 0.001 | p < 0.001 | p < 0.001 |
III trimester | p < 0.001 | p < 0.001 | — | p = 0.469 | p < 0.001 |
Postpartum | p < 0.001 | p < 0.001 | p = 0.469 | — | p < 0.001 |
Control | p = 0.045 | p < 0.001 | p < 0.001 | p < 0.001 | — |
(I-III trim.) vs. Control | p < 0.001 | ||||
(I trim-post.) vs. Control | p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandzia, T.; Markiewicz-Łoskot, G.; Binkiewicz, P. Tpeak-Tend Interval during Pregnancy and Postpartum. Int. J. Environ. Res. Public Health 2022, 19, 12638. https://doi.org/10.3390/ijerph191912638
Kandzia T, Markiewicz-Łoskot G, Binkiewicz P. Tpeak-Tend Interval during Pregnancy and Postpartum. International Journal of Environmental Research and Public Health. 2022; 19(19):12638. https://doi.org/10.3390/ijerph191912638
Chicago/Turabian StyleKandzia, Tomasz, Grażyna Markiewicz-Łoskot, and Przemysław Binkiewicz. 2022. "Tpeak-Tend Interval during Pregnancy and Postpartum" International Journal of Environmental Research and Public Health 19, no. 19: 12638. https://doi.org/10.3390/ijerph191912638
APA StyleKandzia, T., Markiewicz-Łoskot, G., & Binkiewicz, P. (2022). Tpeak-Tend Interval during Pregnancy and Postpartum. International Journal of Environmental Research and Public Health, 19(19), 12638. https://doi.org/10.3390/ijerph191912638