Effect of Sprint Interval Training on Cardiometabolic Biomarkers and Adipokine Levels in Adolescent Boys with Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Anthropometry and Pubertal Maturation
2.3. Cardiorespiratory Fitness
2.4. Cardiometabolic Risk Factors
2.5. Training Program
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Body Composition
3.3. Cardiometabolic Risk Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bentham, J.; di Cesare, M.; Bilano, V.; Bixby, H.; Zhou, B.; Stevens, G.A.; Riley, L.M.; Taddei, C.; Hajifathalian, K.; Lu, Y.; et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- Raj, M.; Kumar, K.R. Obesity in children & adolescents. Indian J. Med. Res. 2010, 132, 598–607. [Google Scholar] [PubMed]
- Bass, R.; Eneli, I. Severe childhood obesity: An under-recognised and growing health problem. Postgrad. Med. J. 2015, 91, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Tremmel, M.; Gerdtham, U.-G.; Nilsson, P.M.; Saha, S. Economic Burden of Obesity: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2017, 14, 435. [Google Scholar] [CrossRef]
- Tong, T.K.; Zhang, H.; Shi, H.; Liu, Y.; Ai, J.; Nie, J.; Kong, Z. Comparing Time Efficiency of Sprint vs. High-Intensity Interval Training in Reducing Abdominal Visceral Fat in Obese Young Women: A Randomized, Controlled Trial. Front. Physiol. 2018, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Zhang, H.; Kong, Z.; Shi, Q.; Tong, T.K.; Nie, J. Twelve weeks of low volume sprint interval training improves cardio-metabolic health outcomes in overweight females. J. Sports Sci. 2019, 37, 1257–1264. [Google Scholar] [CrossRef]
- Gillen, J.B.; Martin, B.J.; MacInnis, M.; Skelly, L.E.; Tarnopolsky, M.A.; Gibala, M.J. Twelve Weeks of Sprint Interval Training Improves Indices of Cardiometabolic Health Similar to Traditional Endurance Training despite a Five-Fold Lower Exercise Volume and Time Commitment. PLoS ONE 2016, 11, e0154075. [Google Scholar] [CrossRef] [Green Version]
- Ouerghi, N.; Ben Fradj, M.K.; Bezrati, I.; Khammassi, M.; Feki, M.; Kaabachi, N.; Bouassida, A. Effects of high-intensity interval training on body composition, aerobic and anaerobic performance and plasma lipids in overweight/obese and normal-weight young men. Biol. Sport 2017, 34, 385–392. [Google Scholar] [CrossRef]
- Martin-Smith, R.; Cox, A.; Buchan, D.S.; Baker, J.S.; Grace, F.; Sculthorpe, N. High Intensity Interval Training (HIIT) Improves Cardiorespiratory Fitness (CRF) in Healthy, Overweight and Obese Adolescents: A Systematic Review and Meta-Analysis of Controlled Studies. Int. J. Environ. Res. Public Health 2020, 17, 2955. [Google Scholar] [CrossRef]
- Lee, S.J.; Spector, J.; Reilly, S. High-intensity interval training programme for obese youth (HIP4YOUTH): A pilot feasibility study. J. Sports Sci. 2017, 35, 1794–1798. [Google Scholar] [CrossRef]
- Silva, H.J.G.; Andersen, L.B.; Lofrano-Prado, M.C.; Barros, M.V.; Freitas, I.F.; Hill, J.; Prado, W.L.D. Improvements on Cardiovascular Diseases Risk Factors in Obese Adolescents: A Randomized Exercise Intervention Study. J. Phys. Act. Health 2015, 12, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.R.; Cavero-Redondo, I.; Ortega, F.B.; Welk, G.J.; Andersen, L.B.; Martinez-Vizcaino, V. Cardiorespiratory fitness cut points to avoid cardiovascular disease risk in children and adolescents; what level of fitness should raise a red flag? A systematic review and meta-analysis. Br. J. Sports Med. 2016, 50, 1451–1458. [Google Scholar] [CrossRef]
- Ali, K.M.; Wonnerth, A.; Huber, K.; Wojta, J. Cardiovascular disease risk reduction by raising HDL cholesterol—Current therapies and future opportunities. Br. J. Pharm. 2012, 167, 1177–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talayero, B.G.; Sacks, F.M. The Role of Triglycerides in Atherosclerosis. Curr. Cardiol. Rep. 2011, 13, 544–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tirosh, A.; Shai, I.; Bitzur, R.; Kochba, I.; Tekes-Manova, D.; Israeli, E.; Shochat, T.; Rudich, A. Changes in Triglyceride Levels Over Time and Risk of Type 2 Diabetes in Young Men. Diabetes Care 2008, 31, 2032–2037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostovski, M.; Simeonovski, V.; Mironska, K.; Tasic, V.; Gucev, Z. Metabolic profiles in obese children and adolescents with insulin resistance. Open Access Maced. J. Med. Sci. 2018, 6, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.M.; Gurka, M.J.; Deboer, M.D. A MetS severity score to estimate risk in adolescents and adults: Current evidence and future potential. Expert Rev. Cardiovasc. Ther. 2016, 14, 411–413. [Google Scholar] [CrossRef] [Green Version]
- Lätt, E.; Jürimäe, J.; Harro, J.; Loit, H.-M.; Mäestu, J. Low fitness is associated with metabolic risk independently of central adiposity in a cohort of 18-year-olds. Scand. J. Med. Sci. Sports 2018, 28, 1084–1091. [Google Scholar] [CrossRef]
- Mäestu, E.; Harro, J.; Veidebaum, T.; Kurrikoff, T.; Jürimäe, J.; Mäestu, J. Changes in cardiorespiratory fitness through adolescence predict metabolic syndrome in young adults. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 701–708. [Google Scholar] [CrossRef]
- Lee, A.M.; Gurka, M.J.; Deboer, M.D. Correlation of metabolic syndrome severity with cardiovascular health markers in adolescents. Metabolism 2017, 69, 87–95. [Google Scholar] [CrossRef]
- Gurka, M.J.; Ice, C.L.; Sun, S.S.; DeBoer, M.D. A confirmatory factor analysis of the metabolic syndrome in adolescents: An examination of sex and racial/ethnic differences. Cardiovasc. Diabetol. 2012, 11, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeBoer, M.D.; Gurka, M.J. Clinical utility of metabolic syndrome severity scores: Considerations for practitioners. Diabetes Metab. Syndr. Obes. 2017, 10, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lelis, D.D.F.; de Freitas, D.F.; Machado, A.S.; Crespo, T.; Santos, S.H.S. Angiotensin-(1-7), Adipokines and Inflammation. Metabolism 2019, 95, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, P. The role of adipokines in chronic inflammation. ImmunoTargets Ther. 2016, 5, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galic, S.; Oakhill, J.S.; Steinberg, G.R. Adipose tissue as an endocrine organ. Mol. Cell. Endocrinol. 2010, 316, 129–139. [Google Scholar] [CrossRef]
- Argente, J.; Barrios, V.; Chowen, J.; Sinha, M.; Considine, R. Leptin plasma levels in healthy Spanish children and adolescents, children with obesity, and adolescents with anorexia nervosa and bulimia nervosa. J. Pediatr. 1997, 131, 833–838. [Google Scholar] [CrossRef]
- Panagopoulou, P.; Galli-Tsinopoulou, A.; Fleva, A.; Pavlitou-Tsiontsi, E.; Vavatsi-Christaki, N.; Nousia-Arvanitakis, S. Adiponectin and Insulin Resistance in Childhood Obesity. J. Pediatric Gastroenterol. Nutr. 2008, 47, 356–362. [Google Scholar] [CrossRef]
- King, D.E.; Carek, P.; Mainous, A.G.; Pearson, W.S. Inflammatory Markers and Exercise: Differences Related to Exercise Type. Med. Sci. Sports Exerc. 2003, 35, 575–581. [Google Scholar] [CrossRef]
- Otu, L.I.; Otu, A. Adiponectin and the Control of Metabolic Dysfunction: Is Exercise the Magic Bullet? Front. Physiol. 2021, 12, 1–6. [Google Scholar] [CrossRef]
- Milling, S. Adipokines and the control of mast cell functions: From obesity to inflammation? Immunology 2019, 158, 1–2. [Google Scholar] [CrossRef]
- Khammassi, M.; Ouerghi, N.; Hadj-Taieb, S.; Feki, M.; Thivel, D.; Bouassida, A. Impact of a 12-week high-intensity interval training without caloric restriction on body composition and lipid profile in sedentary healthy overweight/obese youth. J. Exerc. Rehabil. 2018, 14, 118–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racil, G.; Ben Ounis, O.; Hammouda, O.; Kallel, A.; Zouhal, H.; Chamari, K.; Amri, M. Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. Eur. J. Appl. Physiol. 2013, 113, 2531–2540. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Sun, S.; Liu, M.; Shi, Q. Short-Term High-Intensity Interval Training on Body Composition and Blood Glucose in Overweight and Obese Young Women. J. Diabetes Res. 2016, 2016, 4073618. [Google Scholar] [CrossRef] [Green Version]
- Kordi, M.; Choopani, S.; Hemmatinafar, M.; Choopani, Z. The effects of six weeks high intensity interval training (HIIT) on resting plasma levels of adiponectin and fat loss in sedentary young women. J. Jahrom. Univ. Med. Sci. 2013, 11, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Trapp, E.G.; Chisholm, D.J.; Freund, J.; Boutcher, S.H. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int. J. Obes. 2008, 32, 684–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grünberg, H.; Adojaan, B.; Thetloff, M. Kasvamine ja Kasvuhäired: Metoodiline Juhend Laste Füüsilise Arengu Hindamiseks; Tartu Ülikool: Tartu, Estonia, 1998. [Google Scholar]
- Norton, K.; Whittingham, N.; Carter, L.; Kerr, D.; Gore, C.; Marfell-Jones, M. Measurement Techniques in Anthropometry. In Anthropometrica; UNSW Press: Sydney, Australia, 1996. [Google Scholar]
- Lätt, E.; Mäestu, J.; Rääsk, T.; Jürimäe, T.; Jürimäe, J. Cardiovascular fitness, physical activity, and metabolic syndrome risk factors among adolescent estonian boys: A longitudinal study. Am. J. Hum. Biol. 2016, 28, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Mengel, E.; Tillmann, V.; Remmel, L.; Kool, P.; Purge, P.; Lätt, E.; Jürimäe, J. Changes in inflammatory markers in estonian pubertal boys with different BMI values and increments: A 3-Year Follow-Up Study. Obesity 2017, 25, 600–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, P.; Jürimäe, T.; Purge, P.; Maestu, J.; Wonisch, M.; Pokan, R.; von Duvillard, S.P. HRTP, Prolonged Ergometer Exercise, and Single Sculling. Int. J. Sports Med. 2007, 28, 964–969. [Google Scholar] [CrossRef]
- Tjønna, A.E.; Lee, S.J.; Rognmo, Ø.; Stølen, T.O.; Bye, A.; Haram, P.M.; Loennechen, J.P.; Al-Share, Q.Y.; Skogvoll, E.; Slørdahl, S.A.; et al. Aerobic Interval Training Versus Continuous Moderate Exercise as a Treatment for the Metabolic Syndrome. Circulation 2008, 118, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Kurtoğlu, S.; Hatipoğlu, N.; Mazicioglu, M.M.; Kendirici, M.; Keskin, M.; Kondolot, M. Insulin resistance in obese children and adolescents: HOMA-IR cut-off levels in the prepubertal and pubertal periods. J. Clin. Res. Pediatric Endocrinol. 2010, 2, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Sink, K.M.; Espeland, M.A.; Castro, C.M.; Church, T.; Cohen, R.; Dodson, J.A.; Guralnik, J.; Hendrie, H.C.; Jennings, J.; Katula, J.; et al. Effect of a 24-Month Physical Activity Intervention vs Health Education on Cognitive Outcomes in Sedentary Older Adults. JAMA 2015, 314, 781. [Google Scholar] [CrossRef]
- Kwak, S.K.; Kim, J.H. Statistical data preparation: Management of missing values and outliers. Korean J. Anesth. 2017, 70, 407. [Google Scholar] [CrossRef] [PubMed]
- Kirk, R.E. Practical Significance: A Concept Whose Time Has Come. Educ. Psychol. Meas. 1996, 56, 746–759. [Google Scholar] [CrossRef]
- Kong, Z.; Fan, X.; Sun, S.; Song, L.; Shi, Q.; Nie, J. Comparison of high-intensity interval training and moderate-to-vigorous continuous training for cardiometabolic health and exercise enjoyment in obese young women: A randomized controlled trial. PLoS ONE 2016, 11, e0158589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeBoer, M.D.; Gurka, M.J.; Woo, J.G.; Morrison, J.A. Severity of Metabolic Syndrome as a Predictor of Cardiovascular Disease between Childhood and Adulthood: The Princeton Lipid Research Cohort Study. J. Am. Coll. Cardiol. 2015, 66, 755–757. [Google Scholar] [CrossRef] [Green Version]
- DeBoer, M.D.; Gurka, M.J.; Woo, J.G.; Morrison, J.A. Severity of the metabolic syndrome as a predictor of type 2 diabetes between childhood and adulthood: The Princeton Lipid Research Cohort Study. Diabetologia 2015, 58, 2745–2752. [Google Scholar] [CrossRef] [Green Version]
- Silva, G.; Aires, L.; Martins, C.; Mota, J.; Oliveira, J.; Ribeiro, J.C. Cardiorespiratory Fitness Associates with Metabolic Risk Independent of Central Adiposity. Int. J. Sports Med. 2013, 34, 912–916. [Google Scholar] [CrossRef]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory Fitness as a Quantitative Predictor of All-Cause Mortality and Cardiovascular Events in Healthy Men and Women. JAMA 2009, 301, 2024–2035. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, T.R.; Olsson, A.G.; F’Rgeman, O.; Kjekshus, J.; Wedel, H.; Kjekshus, K.; Wilhelmsen, L.; Haghfelt, T.; Thorgeirsson, G.; Pyörälä, K.; et al. Lipoprotein Changes and Reduction in the Incidence of Major Coronary Heart Disease Events in the Scandinavian Simvastatin Survival Study (4S). Circulation 1998, 97, 1453–1460. [Google Scholar] [CrossRef]
- Koubaa, A. Effect of Intermittent and Continuous Training on Body Composition Cardiorespiratory Fitness and Lipid Profile in Obese Adolescents. IOSR J. Pharm. 2013, 3, 31–37. [Google Scholar] [CrossRef]
- Racil, G.; Coquart, J.B.; Elmontassar, W.; Haddad, M.; Goebel, R.; Chaouachi, A.; Amri, M.; Chamari, K. Greater effects of high- compared with moderate-intensity interval training on cardio-metabolic variables, blood leptin concentration and ratings of perceived exertion in obese adolescent females. Biol. Sport 2016, 33, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Ardoy, D.N.; Artero, E.G.; Ruiz, J.R.; Labayen, I.; Sjöström, M.; Castillo, M.J.; Ortega, F.B. Effects on adolescents’ lipid profile of a fitness-enhancing intervention in the school setting; the EDUFIT study. Nutr. Hosp. 2013, 28, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Dias, K.A.; Ingul, C.B.; Tjønna, A.E.; Keating, S.E.; Gomersall, S.R.; Follestad, T.; Hosseini, M.S.; Hollekim-Strand, S.M.; Ro, T.B.; Haram, M.; et al. Effect of High-Intensity Interval Training on Fitness, Fat Mass and Cardiometabolic Biomarkers in Children with Obesity: A Randomised Controlled Trial. Sports Med. 2018, 48, 733–746. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Fulton, J.E.; Harrist, R.B.; Grunbaum, J.A.; Steffen, L.M.; Labarthe, D.R. Blood Lipids in Children: Age-Related Patterns and Association with Body-Fat Indices. Project HeartBeat! Am. J. Prev. Med. 2009, 37, S56–S64. [Google Scholar] [CrossRef]
- Shashaj, B.; Luciano, R.; Contoli, B.; Morino, G.S.; Spreghini, M.R.; Rustico, C.; Sforza, R.W.; Dallapiccola, B.; Manco, M. Reference ranges of HOMA-IR in normal-weight and obese young Caucasians. Acta Diabetol. 2016, 53, 251–260. [Google Scholar] [CrossRef]
- Blackburn, G. Effect of Degree of Weight Loss on Health Benefits. Obes. Res. 1995, 3, 211s–216s. [Google Scholar] [CrossRef]
- Morrissey, C.; Montero, D.; Raverdy, C.; Masson, D.; Amiot, M.-J.; Vinet, A. Effects of Exercise Intensity on Microvascular Function in Obese Adolescents. Int. J. Sports Med. 2018, 39, 450–455. [Google Scholar] [CrossRef]
- Eddolls, W.T.B.; McNarry, M.A.; Stratton, G.; Winn, C.O.N.; Mackintosh, K.A. High-Intensity Interval Training Interventions in Children and Adolescents: A Systematic Review. Sports Med. 2017, 47, 2363–2374. [Google Scholar] [CrossRef] [Green Version]
- Tenório, T.R.; Balagopal, P.B.; Andersen, L.B.; Ritti-Dias, R.M.; Hill, J.O.; Lofrano-Prado, M.C.; Prado, W.L. Effect of low vs. high intensity exercise training on biomarkers of inflammation and endothelial dysfunction in adolescents with obesity: A 6-month randomized exercise intervention study. Pediatr. Exerc. Sci. 2017, 30, 96–105. [Google Scholar] [CrossRef]
- Cipryan, L.; Dostal, T.; Plews, D.J.; Hofmann, P.; Laursen, P.B. Adiponectin/leptin ratio increases after a 12-week very low-carbohydrate, high-fat diet, and exercise training in healthy individuals: A non-randomized, parallel design study. Nutr. Res. 2021, 87, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Atakan, M.; Li, Y.; Koşar, Ş.N.; Turnagöl, H.; Yan, X. Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. Int. J. Environ. Res. Public Health 2021, 18, 7201. [Google Scholar] [CrossRef] [PubMed]
Variable | Week 1–4 | Week 5–8 | Week 9–12 |
---|---|---|---|
SIT | 4 × 30 s all-out, 4 min recovery | 5 × 30 s all-out, 4 min recovery | 6 × 30 s all-out, 4 min recovery |
HRmax (%) | 81.7. ± 1.5 | 82.5 ± 1.5 | 79.8 ± 1.2 |
Peak Power (W/kg) | 5.8 ± 0.4 | 6.5 ± 0.6 * | 7.0 ± 0.6 *,# |
Mean Power (W/kg) | 3.6 ± 0.3 | 3.8 ± 0.3 * | 3.6 ± 0.3 |
Fatigue index | 38.2 | 40.1 | 46.9 |
Variable | SIT (n = 14) | CONT (n = 14) | p Value |
---|---|---|---|
Age (years) | 13.1 ± 1.3 | 13.7 ± 1.6 | 0.320 |
Tanner stages I/II/III/IV/V (%) | 0.348 | ||
I | 0 | 0 | |
II | 21.43 | 14.28 | |
III | 21.43 | 14.28 | |
IV | 50.00 | 35.72 | |
V | 7.14 | 35.72 | |
Body mass (kg) | 89.1 ± 15.9 | 99.3 ± 23.9 | 0.198 |
Height (cm) | 170.6 ± 10.0 | 173.5 ± 10.8 | 0.301 |
BMI (kg·m−2) | 30.3 ± 3.2 | 32.6 ± 5.9 | 0.408 |
FM (kg) | 35.9 ± 2.1 | 38.6 ± 3.4 | 0.506 |
BF (%) | 41.1 ± 1.3 | 39.6 ± 1.9 | 0.495 |
WC (cm) | 96.2 ± 2.4 | 100.8 ± 4.3 | 0.364 |
MAP (mmHg) | 91.7 ± 3.1 | 93.4 ± 3.7 | 0.725 |
VO2peak (mL·kg−1·min−1) | 29.7 ± 1.4 | 27.6 ± 1.6 | 0.336 |
Glucose (mmol·L−1) | 5.19 ± 0.1 | 5.24 ± 0.1 | 0.647 |
Insulin (μU·mL−1) | 20.91 ± 1.7 | 34.41 ± 5.0 | 0.020 |
HOMA-IR | 4.85 ± 0.4 | 8.11 ± 1.2 | 0.024 |
TC (mmol·L−1) | 3.90 ± 0.1 | 4.67 ± 0.2 | 0.005 |
HDLc (mmol·L−1) | 1.16 ± 0.06 | 1.03 ± 0.04 | 0.084 |
LDLc (mmol·L−1) | 1.99 ± 0.1 | 2.53 ± 0.2 | 0.014 |
TG (mmol·L−1) | 1.12± 0.1 | 1.89 ± 0.2 | 0.005 |
Adiponectin (μg·mL−1) | 4.11 ± 0.3 | 3.59 ± 0.3 | 0.227 |
Leptin (ng·mL−1) | 26.49 ± 2.2 | 28.61 ± 1.6 | 0.447 |
MSSS (z-score) | 2.16 ± 0.1 | 2.27 ± 0.1 | 0.353 |
Variable | SIT (n = 14) | CONT (n = 14) | Difference a (95% CI) b | |||||
---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | SIT | CONT | p Value | η2 | |
MAP (mmHg) | 91.7 ± 3.1 | 89.5 ± 2.9 | 93.4 ± 3.7 | 92.5 ± 2.9 | −2.6 ± 2.2 (−7.2, 2.0) | −0.5 ± 2.2 (−5.1 ± 4.2) | 0.509 | 0.02 |
VO2peak (L·min−1) | 2.6 ± 0.2 | 2.9 ± 0.2 # | 2.7 ± 0.2 | 2.8 ± 0.2 | 0.3 ± 0.1 (0.1, 0.5) | 0.1 ± 0.1 (−0.1, 0.2) | 0.044 | 0.15 |
VO2peak/kg (mL·kg−1·min−1) | 29.7 ± 1.4 | 33.0 ± 1.2 # | 27.6 ± 1.6 | 28.0 ± 1.3 | 3.7 ± 0.8 (2.0, 5.3) | 0.1 ± 0.8 (−1.6, 1.7) | 0.004 | 0.29 |
VO2peak/LBM (mL·kg−1·min−1) | 53.9 ± 2.1 | 57.5 ± 1.3 # | 48.8 ± 1.8 | 48.1 ± 1.1 | 5.2 ± 1.1 (3.0, 7.3) | −2.1 ± 1.1 (−4.4, −0.04) | <0.001 | 0.48 |
Glucose (mmol·L−1) | 5.19 ± 0.1 | 5.11 ± 0.1 | 5.24 ± 0.1 | 5.19 ± 0.1 | −0.09 ± 0.1 (−0.21, 0.03) | −0.04 ± 0.1 (−0.16, 0.03) | 0.558 | 0.01 |
Insulin (μU·mL−1) | 20.91 ± 1.7 | 20.64 ± 1.8 | 34.41 ± 5.0 | 31.80 ± 6.6 | −1.63 ± 2.0 (−5.76, 2.51) | −4.33 ± 2.0 (−8.46, −0.19) | 0.376 | 0.03 |
HOMA-IR | 4.85 ± 0.4 | 4.72 ± 0.4 | 8.11 ± 1.2 | 7.45 ± 1.6 | 0.06 ± 0.6 (−1.20, 1.33) | −0.86 ± 0.6 (−2.12, 0.40) | 0.305 | 0.04 |
TC (mmol·L−1) | 3.90 ± 0.1 | 3.99 ± 0.1 | 4.67 ± 0.2 | 4.64 ± 0.2 | −0.04 ± 0.1 (−0.22, 0.14) | 0.11 ± 0.1 (−0.07, 0.29) | 0.272 | 0.05 |
HDLc (mmol·L−1) | 1.16 ± 0.06 | 1.07 ± 0.05 # | 1.03 ± 0.04 | 0.96 ± 0.03 # | −0.06 ± 0.03 (−0.12, −0.003) | −0.09 ± 0.03 (−0.15, −0.04) | 0.450 | 0.02 |
LDLc (mmol·L−1) | 1.99 ± 0.1 | 2.05 ± 0.1 | 2.53 ± 0.2 | 2.60 ± 0.1 | −0.06 ± 0.1 (−0.21, 0.08) | 0.19 ± 0.1 (0.05, 0.34) | 0.025 | 0.19 |
TG (mmol·L−1) | 1.12± 0.1 | 1.20 ± 0.1 | 1.89 ± 0.2 | 1.69 ± 0.2 | 0.03 ± 0.1 (−0.22, 0.27) | −0.14 ± 0.1 (−0.38, 0.10) | 0.364 | 0.03 |
Adiponectin (μg·mL−1) | 4.11 ± 0.3 | 3.49 ± 0.3 # | 3.59 ± 0.3 | 3.15 ± 0.2 # | −0.55 ± 0.1 (−0.83, −0.27) | −0.52 ± 0.1 (−0.79, −0.24) | 0.865 | 0.001 |
Leptin (ng·mL−1) | 26.49 ± 2.2 | 26.69 ± 1.2 | 28.61 ± 1.6 | 25.12 ± 2.2 | −0.23 ± 1.4 (−3.05, 2.59) | −3.06 ± 1.4 (−5.88, −0.24) | 0.159 | 0.08 |
MSSS (z-score) | 2.16 ± 0.1 | 2.09 ± 0.1 # | 2.27 ± 0.1 | 2.27 ± 0.1 | −0.06 ± 0.03 (−0.11, 0.003) | −0.01 ± 0.03 (−0.06, 0.04) | 0.222 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salus, M.; Tillmann, V.; Remmel, L.; Unt, E.; Mäestu, E.; Parm, Ü.; Mägi, A.; Tali, M.; Jürimäe, J. Effect of Sprint Interval Training on Cardiometabolic Biomarkers and Adipokine Levels in Adolescent Boys with Obesity. Int. J. Environ. Res. Public Health 2022, 19, 12672. https://doi.org/10.3390/ijerph191912672
Salus M, Tillmann V, Remmel L, Unt E, Mäestu E, Parm Ü, Mägi A, Tali M, Jürimäe J. Effect of Sprint Interval Training on Cardiometabolic Biomarkers and Adipokine Levels in Adolescent Boys with Obesity. International Journal of Environmental Research and Public Health. 2022; 19(19):12672. https://doi.org/10.3390/ijerph191912672
Chicago/Turabian StyleSalus, Marit, Vallo Tillmann, Liina Remmel, Eve Unt, Evelin Mäestu, Ülle Parm, Agnes Mägi, Maie Tali, and Jaak Jürimäe. 2022. "Effect of Sprint Interval Training on Cardiometabolic Biomarkers and Adipokine Levels in Adolescent Boys with Obesity" International Journal of Environmental Research and Public Health 19, no. 19: 12672. https://doi.org/10.3390/ijerph191912672
APA StyleSalus, M., Tillmann, V., Remmel, L., Unt, E., Mäestu, E., Parm, Ü., Mägi, A., Tali, M., & Jürimäe, J. (2022). Effect of Sprint Interval Training on Cardiometabolic Biomarkers and Adipokine Levels in Adolescent Boys with Obesity. International Journal of Environmental Research and Public Health, 19(19), 12672. https://doi.org/10.3390/ijerph191912672