Is There a Relation between Brain and Muscle Activity after Virtual Reality Training in Individuals with Stroke? A Cross-Sectional Study
Abstract
:1. Introduction
2. Methods
2.1. Design Study
2.2. Evaluation of Brain Electrical Activity (EEG)
2.3. Evaluation of Muscle Electrical Activity
2.4. Training Protocol
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lindsay, M.P.; Norrving, B.; Sacco, R.L.; Brainin, M.; Hacke, W.; Martins, S.; Pandian, J.; Feigin, V. World Stroke Organization (WSO): Global Stroke Fact Sheet 2019. Int. J. Stroke 2019, 14, 806–817. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, A.; Veerbeek, J.M.; Held, J.P.O.; Buurke, J.H.; Luft, A.R. Measures of Interjoint Coordination Post-Stroke Across Different Upper Limb Movement Tasks. Front. Bioeng. Biotechnol. 2021, 8, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Rafii, M.S.; Hillis, A.E. Compendium of Cerebrovascular Diseases. Int. Rev. Psychiatry 2006, 18, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Zorowitz, R.D.; Gillard, P.J.; Brainin, M. Poststroke Spasticity Sequelae and Burden on Stroke Survivors and Caregivers. Neurology 2013, 80, S45–S52. [Google Scholar] [CrossRef]
- Gemperline, J.; Allen, S.; Walk, D.; Rymer, W. Characteristics of Motor Unit Discharge in Subjects with Hemiparesis. Muscle Nerve 1995, 18, 1101–1114. [Google Scholar] [CrossRef]
- Burden, A. How Should We Normalize Electromyograms Obtained from Healthy Participants? What We Have Learned from over 25 Years of Research. J. Electromyogr. Kinesiol. 2010, 20, 1023–1035. [Google Scholar] [CrossRef]
- Borich, M.R.; Wheaton, L.A.; Brodie, S.M.; Lakhani, B.; Boyd, L.A.; Lett Author manuscript, N. Evaluating Interhemispheric Cortical Responses to Transcranial Magnetic Stimulation in Chronic Stroke: A TMS-EEG Investigation. Neurosci. Lett. 2016, 618, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Jasper, H.H.; Andrews, H.L. Brain Potentials and Voluntary Muscle Activity in Man. J. Neurophysiol. 1938, 1, 87–100. [Google Scholar] [CrossRef]
- Siemionow, V.; Yue, G.H.; Ranganathan, V.K.; Liu, J.Z.; Sahgal, V. Relationship between Motor Activity-Related Cortical Potential and Voluntary Muscle Activation. Exp. Brain Res. 2000, 133, 303–311. [Google Scholar] [CrossRef]
- Van Duinen, H.; Renken, R.; Maurits, N.M.; Zijdewind, I. Relation between Muscle and Brain Activity during Isometric Contractions of the First Dorsal Interosseus Muscle. Hum. Brain Mapp. 2008, 29, 281–299. [Google Scholar] [CrossRef]
- Zadry, H.; Dawal, S.; Taha, Z. The Relation Between Upper Limb Muscle and Brain Activity in Two Precision Levels of Repetitive Light Tasks. Int. J. Occup. Saf. Ergon. 2011, 17, 373–384. [Google Scholar] [CrossRef]
- Soundirarajan, M.; Pakniyat, N.; Sim, S.; Nathan, V.; Namazi, H. Information-Based Analysis of the Relationship between Brain and Facial Muscle Activities in Response to Static Visual Stimuli. Technol. Health Care 2021, 29, 99–109. [Google Scholar] [CrossRef]
- Ackerman, P.L.; Kanfer, R.; Calderwood, C. Use It or Lose It? Wii Brain Exercise Practice and Reading for Domain Knowledge. Psychol. Aging 2010, 25, 753–766. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.T.S.; Vieira, L.P.; de Barbosa, E.O.; Oliveira, L.M.; Maillot, P.; Vaghetti, C.A.O.; Carta, M.G.; Machado, S.; Gatica-Rojas, V.; Monteiro-Junior, R.S. Virtual Reality-Based Exercise with Exergames as Medicine in Different Contexts: A Short Review. Clin. Pract. Epidemiol. Ment. Health 2019, 15, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Wiley, E.; Khattab, S.; Tang, A. Examining the Effect of Virtual Reality Therapy on Cognition Post-Stroke: A Systematic Review and Meta-Analysis. Disabil. Rehabil. Assist. Technol. 2022, 17, 50–60. [Google Scholar] [CrossRef]
- Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual Reality for Stroke Rehabilitation. Cochrane Database Syst. Rev. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, A.B.G.S.; dos Passos, J.O.; de Brito, D.P.; Campos, T.F. Comparison of the Immediate Effect of the Training with a Virtual Reality Game in Stroke Patients According Side Brain Injury. NeuroRehabilitation 2014, 35, 39–45. [Google Scholar] [CrossRef]
- Calabrò, R.S.; Naro, A.; Russo, M.; Leo, A.; De Luca, R.; Balletta, T.; Buda, A.; La Rosa, G.; Bramanti, A.; Bramanti, P. The Role of Virtual Reality in Improving Motor Performance as Revealed by EEG: A Randomized Clinical Trial. J. Neuroeng. Rehabil. 2017, 14, 53. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; Mchugh, P.R. “Mini-Mental State” A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Biering-Sorensen, F.; Nielsen, J.B.; Klinge, K. Spasticity-Assessment: A Review. Spinal Cord 2006, 44, 708–722. [Google Scholar] [CrossRef]
- Fugl-Meyer, A.R.; Jääsköl, L.; Leyman, I.; Olsson, S.S. The Post-Stroke Hemiplegic Patient. 1. A Method for Evaluation of Physical Performance. Scand J. Rehabil. Med. 1975, 7, 13–31. [Google Scholar]
- Kasner, S. Clinical Interpretation and Use of Stroke Scales. Lancet Neurol. 2006, 5, 603–612. [Google Scholar] [CrossRef]
- Schulz, K.F.; Altman, D.G.; Moher, D.; Goodman, S.; Grunberg, S. CONSORT 2010 Statement Updated Guidelines for Reporting Parallel Group Randomized Trials Background to CONSORT. Mayo Clin. Coll. Med. 2010, 115, 1097. [Google Scholar] [CrossRef]
- Bastos, V.H.; Cunha, M.; Veiga, H.; McDowell, K.; Pompeu, F.; Cagy, M.; Piedade, R.; Ribeiro, P. Analysis of Cortical Power Distribution as a Function of the Typewriting Skill. Rev. Bras. Med. Esporte 2004, 10, 500–504. [Google Scholar]
- Stegeman, D.F.; Hermens, H.J. Standards for Surface Electromyography: The European Project “Surface EMG for Non-Invasive Assessment of Muscles (SENIAM)”. Enschede Roessingh Res. Dev. 2007, 10, 8–12. [Google Scholar]
- Mayer, R.F. The Motor Unit and Electromyography-the Legacy of Derek Denny-Brown. J. Neurol. Sci. 2001, 189, 7–11. [Google Scholar] [CrossRef]
- Bridwell, D.A.; Wu, L.; Eichele, T.; Calhoun, V.D. The Spatiospectral Characterization of Brain Networks: Fusing Concurrent EEG Spectra and FMRI Maps. Neuroimage 2013, 1, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Kim, L.; Kim, Y.H.; Yoo, S.K. Cross-Association Analysis of EEG and EMG Signals According to Movement Intention State. Cogn. Syst. Res. 2017, 44, 1–9. [Google Scholar] [CrossRef]
- Hashimoto Y; Ushiba J; Kimura A; Liu M; Tomita Y Correlation between EEG–EMG coherenceduring Isometric Contraction and Its Imaginary Execution. Acta Neurobiol. Exp. 2010, 70, 76–85.
- Li, X.; Shin, H.; Zhou, P.; Niu, X.; Liu, J.; Rymer, W.Z. Power Spectral Analysis of Surface Electromyography (EMG) at Matched Contraction Levels of the First Dorsal Interosseous Muscle in Stroke Survivors. Clin. Neurophysiol. 2014, 125, 988–994. [Google Scholar] [CrossRef]
- Kennedy, D.S.; Mcneil, C.J.; Gandevia, S.C.; Taylor, J.L.; Kaufman, M. Effects of Fatigue on Corticospinal Excitability of the Human Knee Extensors. Exp. Physiol. 2016, 101, 1552–1564. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.J.; Maenza, C.; Good, D.C.; Huang, X.; Park, J.; Sainburg, R.L.; Latash, M.L.; Latash, M. Effects of Unilateral Stroke on Multi-Finger Synergies and Their Feed-Forward Adjustments. Neuroscience 2016, 319, 194–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohse, K.R.; Hilderman, C.G.E.; Cheung, K.L.; Tatla, S.; Machiel Van Der Loos, H.F. Virtual Reality Therapy for Adults Post-Stroke: A Systematic Review and Meta-Analysis Exploring Virtual Environments and Commercial Games in Therapy. PLoS ONE 2014, 9, e93318. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.J.; Park, H.K.; Kim, H.J.; Lim, T.; Ku, J.; Cho, S.; Kim, S.I.; Park, E.S. Upper Extremity Rehabilitation of Stroke: Facilitation of Corticospinal Excitability Using Virtual Mirror Paradigm. J. Neuroeng. Rehabil. 2012, 9, 71. [Google Scholar] [CrossRef]
- Bao, X.; Mao, Y.R.; Lin, Q.; Qiu, Y.H.; Chen, S.Z.; Li, L.; Cates, R.S.; Zhou, S.F.; Huang, D.F. Mechanism of Kinect-Based Virtual Reality Training for Motor Functional Recovery of Upper Limbs after Subacute Stroke. Neural Regen. Res. 2013, 8, 2904–2913. [Google Scholar] [CrossRef]
- Kim, H.; Choi, W.; Lee, K.; Song, C. Virtual Dual-Task Treadmill Training Using Video Recording for Gait of Chronic Stroke Survivors: A Randomized Controlled Trial. J. Phys. Ther. Sci. 2015, 27, 3693–3697. [Google Scholar] [CrossRef] [Green Version]
- De Bruin, E.D.; Schoene, D.; Pichierri, G.; Smith, S.T. Use of Virtual Reality Technique for the Training of Motor Control in the Elderly. Z. Gerontol. Geriat. 2010, 43, 229–234. [Google Scholar] [CrossRef]
Characteristics | n = 14 |
---|---|
Age (year), ± σ, CI 95% | 56.30 ± 2.88 |
50.01–62.59 | |
BMI (Kg/cm2), ± σ, CI 95% | 25.59 ± 0.75 |
23.95–27.22 | |
Injury time (months), ± σ, CI 95% | 102.92 ± 24.23 |
50.12–155.72 | |
Education (years), ± σ, CI 95% | 2.23 ± 0.23 |
1.72–2.73 | |
Affected hemisphere, n (%) | |
Right | 7 (50%) |
Left | 7 (50%) |
Characteristics | n = 14 | |
---|---|---|
Mini-Mental (score), ± σ, IC 95% | 24.38 ± 0.85 | |
22.52–26.23 | ||
Fugl–Meyer Scale (score), ± σ, IC 95% | 88.07 ± 20.05 | |
75.95-100.10 | ||
NIHSS Scale | ||
Light | 12 (85.71%) | |
Moderate | 2 (14.28%) | |
MAS–Elbows | ||
F, n (%) | 0 | 2 (14.3%) |
E, n (%) | 2 (14.3%) | |
F, n (%) | 1 | - |
E, n (%) | - | |
F, n (%) | 1+ | 6 (42.9%) |
E, n (%) | 7 (50%) | |
F, n (%) | 2 | 6 (42.9%) |
E, n (%) | 4 (28.6%) | |
F, n (%) | 3 | - |
E, n (%) | 1 (7.1%) | |
MAS–Fist | ||
F, n (%) | 0 | 6 (42.9%) |
E, n (%) | 6 (42.9%) | |
F, n (%) | 1 | 5 (35.7%) |
E, n (%) | 3 (21.4%) | |
F, n (%) | 1+ | - |
E, n (%) | - | |
F, n (%) | 2 | 2 (14.3%) |
E, n (%) | 3 (21.4%) | |
F, n (%) | 3 | 3 (7.1%) |
E, n (%) | 2 (14.3%) |
EEG | EV1 | EV2 | EV3 |
---|---|---|---|
AF3/AF4 (µv) | 10.79 ± 3.80 | 12.18 ± 5.44 | 10.92 ± 4.20 |
F7/F8 (µv) | 10.96 ± 4.12 | 13.54 ± 5.82 | 11.04 ± 3.98 |
F3/F4 (µv) | 11.97 ± 5.52 | 12.09 ± 5.34 | 10.24 ± 1.31 |
FC5/FC6 (µv) | 11.85 ± 4.65 | 14.43 ± 6.79 | 10.97 ± 4.18 |
T7/T8 (µv) | 12.82 ± 5.63 | 12.00 ± 5.05 | 13.18 ± 6.40 |
P7/P8 (µv) | 10.56 ± 3.83 | 12.20 ± 4.96 | 11.46 ± 4.93 |
O1/O2 (µv) | 11.57 ± 4.97 | 11.12 ± 3.70 | 10.49 ± 3.01 |
EMG | EV1 | EV2 | EV3 |
BB (%) | 39.06 ± 19.26 | 55.03 ± 8.28 | 69.89 ± 11.73 |
AD (%) | 50.08 ± 5.60 | 56.82 ± 6.96 | 90.07 ± 5.22 |
Variable | n = 14 | ||||||
---|---|---|---|---|---|---|---|
EMG | BB | AD | |||||
EEG | EV1 | EV2 | EV3 | EV1 | EV2 | EV3 | |
AF3/AF4 | r | 0.49 | 0.07 | −0.13 | 0.29 | 0.73 | 0.05 |
p | 0.86 | 0.81 | 0.65 | 0.33 | 0.004 * | 0.85 | |
F7/F8 | r | 0.59 | 0.06 | −0.14 | 0.31 | 0.53 | 0.32 |
p | 0.030 * | 0.83 | 0.62 | 0.29 | 0.05 | 0.25 | |
F3/F4 | r | 0.71 | 0.31 | 0.3 | 0.06 | 0.3 | 0.01 |
p | 0.006 * | 0.28 | 0.29 | 0.82 | 0.32 | 0.97 | |
FC5/FC6 | r | 0.32 | 0.38 | −0.15 | 0.42 | 0.08 | 0.18 |
p | 0.27 | 0.17 | 0.6 | 0.16 | 0.77 | 0.51 | |
T7/T8 | r | 0.12 | −0.03 | −0.04 | 0.24 | −0.18 | 0.7 |
p | 0.69 | 0.91 | 0.87 | 0.41 | 0.55 | 0.005 * | |
P7/P8 | r | 0.05 | 0.27 | 0.17 | 0.28 | 0.06 | 0.12 |
p | 0.85 | 0.35 | 0.55 | 0.34 | 0.84 | 0.67 | |
O1/O2 | r | 0.12 | −0.07 | −0.04 | −0.07 | 0.02 | −0.07 |
p | 0.68 | 0.81 | 0.88 | 0.81 | 0.92 | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, M.P.F.; Silva Santos, A.T.; Calixto-Júnior, R.; De Oliveira, V.A.; Kosour, C.; Silva Vilela Terra, A.M. Is There a Relation between Brain and Muscle Activity after Virtual Reality Training in Individuals with Stroke? A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 12705. https://doi.org/10.3390/ijerph191912705
Dias MPF, Silva Santos AT, Calixto-Júnior R, De Oliveira VA, Kosour C, Silva Vilela Terra AM. Is There a Relation between Brain and Muscle Activity after Virtual Reality Training in Individuals with Stroke? A Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2022; 19(19):12705. https://doi.org/10.3390/ijerph191912705
Chicago/Turabian StyleDias, Miqueline Pivoto Faria, Adriana Teresa Silva Santos, Ruanito Calixto-Júnior, Viviane Aparecida De Oliveira, Carolina Kosour, and Andréia Maria Silva Vilela Terra. 2022. "Is There a Relation between Brain and Muscle Activity after Virtual Reality Training in Individuals with Stroke? A Cross-Sectional Study" International Journal of Environmental Research and Public Health 19, no. 19: 12705. https://doi.org/10.3390/ijerph191912705
APA StyleDias, M. P. F., Silva Santos, A. T., Calixto-Júnior, R., De Oliveira, V. A., Kosour, C., & Silva Vilela Terra, A. M. (2022). Is There a Relation between Brain and Muscle Activity after Virtual Reality Training in Individuals with Stroke? A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 19(19), 12705. https://doi.org/10.3390/ijerph191912705