What Is in the Salad? Escherichia coli and Antibiotic Resistance in Lettuce Irrigated with Various Water Sources in Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. General Setting
2.3. Specific Setting and Study Sites
2.4. Sample Collection and Bacterial Identification
2.5. Antibiotic Susceptibility Testing
2.6. Identification of Resistant Genes by Molecular Methods
2.7. Quality Control Procedures
2.8. Study Inclusion and Period
2.9. Data Collection and Analysis
3. Results
3.1. E. coli Counts in Lettuce Irrigated from Different Water Sources
3.2. Antibiotic Resistance Patterns and Resistant Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varadaraju, R. Health Benefits of Vegetables. Int. J. Chem. Stud. 2019, 7, 82–87. [Google Scholar]
- Drechsel, P.; Keraita, B. Irrigated Urban Vegetable Production in Ghana: Characteristics, Benefits and Risk Mitigation; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2014; ISBN 9789290907985. [Google Scholar]
- Khalid, S.; Shahid, M.; Natasha; Bibi, I.; Sarwar, T.; Shah, A.H.; Niazi, N.K. A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries. Int. J. Environ. Res. Public Health 2018, 15, 895. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, M.N.; McNab, P.R.; Clayton, M.L.; Neff, R.A. A Systematic Review of Urban Agriculture and Food Security Impacts in Low-Income Countries. Food Policy 2015, 55, 131–146. [Google Scholar] [CrossRef]
- United Nations. Agenda for Sustainable Development; United Nations: San Francisco, CA, USA, 2016; ISBN 9781138029415. [Google Scholar]
- Keraita, B.; Abaidoo, R.; Beernaerts, I.; Koo-Oshima, S.; Amoah, P.; Drechsel, P.; Konradsen, F. Safe Re-Use Practices in Wastewater-Irrigated Urban Vegetable Farming in Ghana. J. Agric. Food Syst. Community Dev. 2012, 2, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Antwi-agyei, P.; Ensink, J. Wastewater Use for Vegetable Farming and Post-Harvest Health Risk Management in Ghana—A Policy Brief; London School of Hygiene & Tropical Medicine: London, UK, 2016; pp. 1–11. [Google Scholar]
- Bougnom, B.P.; Thiele-Bruhn, S.; Ricci, V.; Zongo, C.; Piddock, L.J.V. Raw Wastewater Irrigation for Urban Agriculture in Three African Cities Increases the Abundance of Transferable Antibiotic Resistance Genes in Soil, Including Those Encoding Extended Spectrum β-Lactamases (ESBLs). Sci. Total Environ. 2020, 698, 134201. [Google Scholar] [CrossRef] [PubMed]
- Bougnom, B.P.; Zongo, C.; Mcnally, A.; Ricci, V.; Etoa, F.X. Wastewater Used for Urban Agriculture in West Africa as a Reservoir for Antibacterial Resistance Dissemination. Environ. Res. 2019, 168, 14–24. [Google Scholar] [CrossRef]
- WHO; UNEP. Guidelines for the Safe Use Wastewater, Excreta and Greywater. Policy and Regulatory Aspects Vol 1; World Health Organization: Geneva, Switzerland, 2006; ISBN 92 4 154682 4. [Google Scholar]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [Green Version]
- Cabello, F.C.; Godfrey, H.P.; Tomova, A.; Ivanova, L.; Dölz, H.; Millanao, A.; Buschmann, A.H. Antimicrobial Use in Aquaculture Re-Examined: Its Relevance to Antimicrobial Resistance and to Animal and Human Health. Environ. Microbiol. 2013, 15, 1917–1942. [Google Scholar] [CrossRef]
- Bouki, C.; Venieri, D.; Diamadopoulos, E. Detection and Fate of Antibiotic Resistant Bacteria in Wastewater Treatment Plants: A Review. Ecotoxicol. Environ. Saf. 2013, 91, 1–9. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sànchez-Melsió, A.; Borrego, C.M.; Barceló, D.; Balcázar, J.L. Occurrence of Antibiotics and Antibiotic Resistance Genes in Hospital and Urban Wastewaters and Their Impact on the Receiving River. Water Res. 2015, 69, 234–242. [Google Scholar] [CrossRef]
- Da Costa, P.M.; Loureiro, L.; Matos, A.J.F. Transfer of Multidrug-Resistant Bacteria between Intermingled Ecological Niches: The Interface between Humans, Animals and the Environment. Int. J. Environ. Res. Public Health 2013, 10, 278–294. [Google Scholar] [CrossRef] [PubMed]
- Lundborg, C.; Tamhankar, A. Antibiotic Residues in the Environment of South East Asia. BMJ 2017, 358, j2440. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Action Plan on Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2015; pp. 1–28. ISBN 978 92 4 150976 3. [Google Scholar]
- García-Vello, P.; González-Zorn, B.; Saba, C.K.S. Antibiotic Resistance Patterns in Human, Animal, Food and Environmental Isolates in Ghana: A Review. Pan Afr. Med. J. 2020, 35, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Banu, R.A.; Alvarez, J.M.; Reid, A.J.; Enbiale, W.; Labi, A.-K.; Ansa, E.D.O.; Annan, E.A.; Akrong, M.O.; Borbor, S.; Adomako, L.A.B.; et al. Extended Spectrum Beta-Lactamase Escherichia coli in River Waters Collected from Two Cities in Ghana, 2018–2020. Trop. Med. Infect. Dis. 2021, 6, 105. [Google Scholar] [CrossRef] [PubMed]
- Adomako, L.A.B.; Yirenya-Tawiah, D.; Nukpezah, D.; Abrahamya, A.; Labi, A.K.; Grigoryan, R.; Ahmed, H.; Owusu-Danquah, J.; Annang, T.Y.; Banu, R.A.; et al. Reduced Bacterial Counts from a Sewage Treatment Plant but Increased Counts and Antibiotic Resistance in the Recipient Stream in Accra, Ghana—A Cross-Sectional Study. Trop. Med. Infect. Dis. 2021, 6, 79. [Google Scholar] [CrossRef]
- Tabit Shaban, N.; Tzvetkova, N.; Cherkez, R.; Parvanova, P. Evaluation of Response of Lettuce (Lactuca sativa L.) to Temperature and Light Stress. Acta Agrobot. 2016, 69, 166. [Google Scholar] [CrossRef]
- WHO. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis; World Health Organization, Licence, C., Eds.; World Health Organization: Geneva, Switzerland, 2017; ISBN 9789240026438. [Google Scholar]
- Amoah, P.; Drechsel, P.; Abaidoo, R.C.; Henseler, M. Irrigated Urban Vegetable Production in Ghana: Microbiological Contamination in Farms and Markets and Associated Consumer Risk Groups. J. Water Health 2007, 5, 455–466. [Google Scholar] [CrossRef] [Green Version]
- Adzitey, F. Antibiotic Resistance of Escherichia coli and Salmonella enterica Isolated from Cabbage and Lettuce Samples in Tamale Metropolis of Ghana. Int. J. Food Contam. 2018, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Kwaku, G.M. Resistance of Bacteria Isolates from Cabbage (Brassica oleracea), Carrots (Daucus carota) and Lettuce (Lactuca sativa) in the Kumasi Metropolis of Ghana. Int. J. Nutr. Food Sci. 2016, 5, 297. [Google Scholar] [CrossRef] [Green Version]
- Karikari, A.B.; Kpordze, S.W.; Yamik, D.Y.; Saba, C.K.S. Ready-to-Eat Food as Sources of Extended-Spectrum β-Lactamase-Producing Salmonella and E. coli in Tamale, Ghana. Front. Trop. Dis. 2022, 3, 1–7. [Google Scholar] [CrossRef]
- Quansah, J.; Chen, H.-J. Antibiotic Resistance Profile of Salmonella enterica Isolated from Exotic and Indigenous Leafy Green Vegetables in Accra, Ghana. J. Food Prot. 2021, 84, 1040–1046. [Google Scholar] [CrossRef]
- Ghana Statistical Service. Ghana 2021 Population and Housing Census General Report; Ghana Statistical Service: Accra, Ghana, 2021; Volume 3B. [Google Scholar]
- UN-Habitat. Ghana: Tamale City Profile; UN-Habitat: Nairobi, Kenya, 2010; ISBN 9789211321821. [Google Scholar]
- Amoah, P. Wastewater Irrigated Vegetable Production: Contamination Pathway for Health Risk Reduction in Accra, Kumasi and Tamale–Ghana. Ph.D. Thesis, Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, 2008. [Google Scholar]
- .Akrong, M.; Ampofo, J.; Banu, R.; Danso, S. Assessment of Bacteria and Heavy Metals Contamination in Lettuce at Farm Gate and Market in the Accra Metropolis. Br. Microbiol. Res. J. 2015, 7, 226–234. [Google Scholar] [CrossRef]
- Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association, American Water Works Association, Water Environment Federation, Eds.; American Water Works Association (AWWA) and Water Environment Federation: Washington, DC, USA, 2012. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; CLSI: Wayne, PA, USA, 2020; Volume 60. [Google Scholar]
- WHO. WHO Integrated Global Surveillance on ESBL-Producing E. coli Using a “One Health” Approach. Available online: https://www.who.int/publications/i/item/who-integrated-global-surveillance-on-esbl-producing-e.-coli-using-a-one-health-approach (accessed on 28 July 2022).
- Zymo Research Quick-DNA Kits. Available online: https://www.zymoresearch.com/collections/quick-dna-kits (accessed on 5 November 2021).
- Dsani, E.; Afari, E.A.; Danso-Appiah, A.; Kenu, E.; Kaburi, B.B.; Egyir, B. Antimicrobial Resistance and Molecular Detection of Extended Spectrum β-Lactamase Producing Escherichia coli Isolates from Raw Meat in Greater Accra Region, Ghana. BMC Microbiol. 2020, 20, 253. [Google Scholar] [CrossRef] [PubMed]
- Lyimo, B.; Buza, J.; Subbiah, M.; Smith, W.; Call, D.R. Comparison of Antibiotic Resistant Escherichia coli Obtained from Drinking Water Sources in Northern Tanzania: A Cross-Sectional Study. BMC Microbiol. 2016, 16, 254. [Google Scholar] [CrossRef] [Green Version]
- Basuni, M.; Muhi, J.; Othman, N.; Verweij, J.J.; Ahmad, M.; Miswan, N.; Rahumatullah, A.; Aziz, F.A.; Zainudin, N.S.; Noordin, R. A Pentaplex Real-Time Polymerase Chain Reaction Assay for Detection of Four Species of Soil-Transmitted Helminths. Am. J. Trop. Med. Hyg. 2011, 84, 338–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. WHO AWaRe Classification of Antibiotics; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Balali, G.I.; Yar, D.D.; Afua Dela, V.G.; Adjei-Kusi, P. Microbial Contamination, an Increasing Threat to the Consumption of Fresh Fruits and Vegetables in Today’s World. Int. J. Microbiol. 2020, 2020, 3029295. [Google Scholar] [CrossRef] [PubMed]
- Njage, P.M.K.; Buys, E.M. Quantitative Assessment of Human Exposure to Extended Spectrum and AmpC β-Lactamases Bearing E. coli in Lettuce Attributable to Irrigation Water and Subsequent Horizontal Gene Transfer. Int. J. Food Microbiol. 2017, 240, 141–151. [Google Scholar] [CrossRef]
- Freitag, C.; Michael, G.B.; Li, J.; Kadlec, K.; Wang, Y.; Hassel, M.; Schwarz, S. Occurrence and Characterisation of ESBL-Encoding Plasmids among Escherichia coli Isolates from Fresh Vegetables. Vet. Microbiol. 2018, 219, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Blaak, H.; van Hoek, A.H.A.M.; Veenman, C.; Docters van Leeuwen, A.E.; Lynch, G.; van Overbeek, W.M.; de Roda Husman, A.M. Extended Spectrum β-Lactamase- and Constitutively AmpC-Producing Enterobacteriaceae on Fresh Produce and in the Agricultural Environment. Int. J. Food Microbiol. 2014, 168–169, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Vital, P.G.; Zara, E.S.; Paraoan, C.E.M.; Dimasupil, M.A.Z.; Abello, J.J.M.; Santos, I.T.G.; Rivera, W.L. Antibiotic Resistance and Extended-Spectrum Beta-Lactamase Production of Escherichia coli Isolated from Irrigation waters in Selected Urban Farms in Metro Manila, Philippines. Water 2018, 10, 548. [Google Scholar] [CrossRef] [Green Version]
- Brunn, A.; Kadri-Alabi, Z.; Moodley, A.; Guardabassi, L.; Taylor, P.; Mateus, A.; Waage, J. Characteristics and Global Occurrence of Human Pathogens Harboring Antimicrobial Resistance in Food Crops: A Scoping Review. Front. Sustain. Food Syst. 2022, 6, 1–19. [Google Scholar] [CrossRef]
- Njage, P.M.K.; Buys, E.M. Pathogenic and Commensal Escherichia coli from Irrigation Water Show Potential in Transmission of Extended Spectrum and AmpC β-Lactamases Determinants to Isolates from Lettuce. Microb. Biotechnol. 2015, 8, 462–473. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbrouckef, J. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies; WHO: Geneva, Switzerland, 2007; pp. 867–872. [Google Scholar]
- Amoah, P.; Drechsel, P.; Abaidoo, R.C.; Klutse, A. Effectiveness of Common and Improved Sanitary Washing Methods in Selected Cities of West Africa for the Reduction of Coliform Bacteria and Helminth Eggs on Vegetables. Trop. Med. Int. Health 2007, 12, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Ebo Yahans Amuah, E.; Amanin-Ennin, P.; Antwi, K. Irrigation Water Quality in Ghana and Associated Implications on Vegetables and Public Health. A Systematic Review. J. Hydrol. 2022, 604, 127211. [Google Scholar] [CrossRef]
- Adegoke, A.A.; Amoah, I.D.; Stenström, T.A.; Verbyla, M.E.; Mihelcic, J.R. Epidemiological Evidence and Health Risks Associated with Agricultural Reuse of Partially Treated and Untreated Wastewater: A Review. Front. Public Health 2018, 6, 337. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, R.; Louvois, J.; Donovan, T.; Little, C.; Nye, K.; Ribeiro, C.; Richards, J.; Roberts, D.; Bolton, F. Guidelines for the Microbiological Quality of Some Ready-to-Eat Foods Sampled at the Point of Sale. Commun. Dis. Public Health 2000, 3, 163–167. [Google Scholar]
- Antwi-Agyei, P.; Cairncross, S.; Peasey, A.; Price, V.; Bruce, J.; Baker, K.; Moe, C.; Ampofo, J.; Armah, G.; Ensink, J. A Farm to Fork Risk Assessment for the Use of Wastewater in Agriculture in Accra, Ghana. PLoS ONE 2015, 10, e0142346. [Google Scholar] [CrossRef]
Sample Sites | Irrigation Water Source | Escherichia coli Counts | |
---|---|---|---|
Median (CFU/g) | Range | ||
Site 1, Site 2 | Open drain | 1670 | 56–600,000 |
Site 3 | Multiple sources (drain, pond, well) | 280 | 37–144,000 |
Site 4 | Tap water flowing to open ponds | 186 | 72–1180 |
Site 5 | Tap water using hose pipes | 3000 | 220–14,880 |
Total | 5136 | 385–760,060 |
Resistant Isolates in Lettuce Irrigated with Different Water Sources | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Open Drain | Multiple Open Sources (Drain, Pond, Well) | Tap Water Flowing to Open Ponds | Tap Water Using Hose Pipes | Total | ||||||
Site 1, 2 | Site 3 | Site 4 | Site 5 | |||||||
AWaRe Categories | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) |
Total | 50 | 25 | 25 | 25 | 125 | |||||
Access antibiotics | ||||||||||
Gentamicin 10 µg | 13 | (26) | 7 | (28) | 1 | (4) | 6 | (24) | 27 | (22) |
Chloramphenicol 30 µg | 31 | (62) | 23 | (92) | 12 | (48) | 17 | (68) | 83 | (66) |
Trimethoprim–sulfamethoxazole 1.25/23.75 µg | 46 | (92) | 24 | (96) | 9 | (36) | 18 | (72) | 95 | (76) |
Amoxicillin/Clavulanate 20/10 µg | 44 | (88) | 22 | (88) | 21 | (84) | 22 | (88) | 96 | (77) |
Watch antibiotics | ||||||||||
Ceftriaxone 30 µg | 35 | (70) | 19 | (76) | 13 | (52) | 19 | (76) | 86 | (69) |
Ciprofloxacin 5 µg | 20 | (40) | 19 | (76) | 6 | (24) | 16 | (54) | 61 | (49) |
Cefuroxime 30 µg | 34 | (68) | 17 | (68) | 14 | (56) | 20 | (80) | 85 | (68) |
Ertapenem 10µg | 27 | (54) | 25 | (100) | 17 | (68) | 18 | (72) | 87 | (70) |
Reserve antibiotics | ||||||||||
Aztreonam 15 µg | 28 | (56) | 14 | (56) | 18 | (72) | 14 | (56) | 74 | (59) |
Multidrug resistance (≥3 antibiotic classes) | 38 | (76) | 25 | (100) | 18 | (72) | 21 | (84) | 102 | (82) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quarcoo, G.; Boamah Adomako, L.A.; Abrahamyan, A.; Armoo, S.; Sylverken, A.A.; Addo, M.G.; Alaverdyan, S.; Jessani, N.S.; Harries, A.D.; Ahmed, H.; et al. What Is in the Salad? Escherichia coli and Antibiotic Resistance in Lettuce Irrigated with Various Water Sources in Ghana. Int. J. Environ. Res. Public Health 2022, 19, 12722. https://doi.org/10.3390/ijerph191912722
Quarcoo G, Boamah Adomako LA, Abrahamyan A, Armoo S, Sylverken AA, Addo MG, Alaverdyan S, Jessani NS, Harries AD, Ahmed H, et al. What Is in the Salad? Escherichia coli and Antibiotic Resistance in Lettuce Irrigated with Various Water Sources in Ghana. International Journal of Environmental Research and Public Health. 2022; 19(19):12722. https://doi.org/10.3390/ijerph191912722
Chicago/Turabian StyleQuarcoo, Gerard, Lady A. Boamah Adomako, Arpine Abrahamyan, Samuel Armoo, Augustina A. Sylverken, Matthew Glover Addo, Sevak Alaverdyan, Nasreen S. Jessani, Anthony D. Harries, Hawa Ahmed, and et al. 2022. "What Is in the Salad? Escherichia coli and Antibiotic Resistance in Lettuce Irrigated with Various Water Sources in Ghana" International Journal of Environmental Research and Public Health 19, no. 19: 12722. https://doi.org/10.3390/ijerph191912722
APA StyleQuarcoo, G., Boamah Adomako, L. A., Abrahamyan, A., Armoo, S., Sylverken, A. A., Addo, M. G., Alaverdyan, S., Jessani, N. S., Harries, A. D., Ahmed, H., Banu, R. A., Borbor, S., Akrong, M. O., Amonoo, N. A., Bekoe, E. M. O., Osei-Atweneboana, M. Y., & Zachariah, R. (2022). What Is in the Salad? Escherichia coli and Antibiotic Resistance in Lettuce Irrigated with Various Water Sources in Ghana. International Journal of Environmental Research and Public Health, 19(19), 12722. https://doi.org/10.3390/ijerph191912722