Modeling and Validation of Fatigue and Recovery of Muscles for Manual Demolition Tasks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment
2.2. Apparatus and Tools
2.3. Participants
2.4. Experimental Design
2.5. Procedures
2.6. Data Processing
3. Results
3.1. Modeling and Validation of Muscle Fatigue
3.2. Modeling and Validation of Recovery of Muscle Fatigue
4. Discussion
4.1. Muscle Fatigue
4.2. Muscle Fatigue Recovery
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atlas, A.; Bondoc, R.G.; Garrovillas, R.A.; Lo, R.D.; Recinto, J.; Yu, K.J. Prevalence of low back pain among public high school teachers in the city of Manila. Philipp. J. Allied Health Sci. 2007, 2, 34–40. [Google Scholar] [CrossRef]
- Shuai, J.; Yue, P.; Li, L.; Liu, F.; Wang, S. Assessing the effects of an educational program for the prevention of work-related musculoskeletal disorders among school teachers. BMC Public Health 2014, 14, 1211. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Yan, M.; Lin, H.; Xu, G.; Yan, H.; He, Z. Evaluation of work-related musculoskeletal disorders among sonographers in general hospitals in Guangdong province, China. Int. J. Occup. Saf. Ergon. 2020, 26, 802–810. [Google Scholar] [CrossRef]
- Xu, G.; Pang, D.; Liu, F.; Pei, D.; Wang, S.; Li, L. Prevalence of low back pain and associated occupational factors among Chinese coal miners. BMC Public Health 2012, 12, 149. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Yu, I.T.S.; Li, Z.; Wang, X.; Sun, T.; Lin, H.; Wan, S.; Qiu, H.; Xie, S. Work-related injuries and musculoskeletal disorders among factory workers in a major city of China. Accid. Anal. Prev. 2012, 48, 457–463. [Google Scholar] [CrossRef]
- Barrero, L.H.; Hsu, Y.-H.; Terwedow, H.; Perry, M.J.; Dennerlein, J.T.; Brain, J.D.; Xu, X. Prevalence and physical determinants of low back pain in a rural Chinese population. Spine 2006, 31, 2728–2734. [Google Scholar] [CrossRef]
- Feng, Z.; Zhan, J.; Wang, C.; Ma, C.; Huang, Z. The association between musculoskeletal disorders and driver behaviors among professional drivers in China. Int. J. Occup. Saf. Ergon. 2020, 26, 551–561. [Google Scholar] [CrossRef]
- Bao, S.; Winkel, J.; Shahnavaz, H. Prevalence of musculoskeletal disorders at workplaces in the People’s Republic of China. Int. J. Occup. Saf. Ergon. 2000, 6, 557–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Notice of the National Health Commission of the People’s Republic of China on the Issuance of the Classification and Cata-Logue of Occupational Diseases. Available online: http://www.gov.cn/gzdt/2013-12/30/content_2557352.htm (accessed on 13 November 2021).
- Kierklo, A.; Kobus, A.; Jaworska, M.; Botuliński, B. Work-related musculoskeletal disorders among dentists - a questionnaire survey. Ann. Agric. Environ. Med. 2011, 18, 79–84. [Google Scholar] [PubMed]
- Wahlström, J. Ergonomics, musculoskeletal disorders and computer work. Occup. Med. 2005, 55, 168–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Chablat, D.; Bennis, F.; Zhang, W. A new simple dynamic muscle fatigue model and its validation. Int. J. Ind. Ergon. 2009, 39, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Thamsuwan, O.; Johnson, P.W. Machine learning methods for electromyography error detection in field research: An application in full-shift field assessment of shoulder muscle activity in apple harvesting workers. Appl. Ergon. 2022, 98, 103607. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lavender, S.A.; Sommerich, C.M.; Rayo, M.F. The effects of using a footrest during computer tasks varying in complexity and temporal demands: A postural and electromyographic analysis. Appl. Ergon. 2022, 98, 103550. [Google Scholar] [CrossRef] [PubMed]
- Rohmert, W. Problems in determining rest allowances: Part 1: Use of modern methods to evaluate stress and strain in static muscular work. Appl. Ergon. 1973, 4, 91–95. [Google Scholar] [CrossRef]
- El ahrache, K.; Imbeau, D.; Farbos, B. Percentile values for determining maximum endurance times for static muscular work. Int. J. Ind. Ergon. 2006, 36, 99–108. [Google Scholar] [CrossRef]
- Liu, B.; Ma, L.; Zhang, W.; Zhang, Z. Subject-specific hand grip fatigability indicator determined using parameter identification technique. Hum. Factors Man. 2019, 29, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Li, K.W.; Wang, C.W.; Yu, R. Modeling of predictive muscular strength for sustained one-handed carrying task. Work 2015, 52, 911–919. [Google Scholar] [CrossRef]
- Yi, C.; Hu, H.; Li, K.W.; Tang, F.; Zuo, H. Progress in study on muscular fatigue caused by pulling task and prospects. China Saf. Sci. J. 2018, 28, 78–84. [Google Scholar] [CrossRef]
- Wexler, A.S.; Ding, J.; Binder-Macleod, S.A. A mathematical model that predicts skeletal muscle force. IEEE Trans. Biomed. Eng. 1997, 44, 337–348. [Google Scholar] [CrossRef]
- Foulis, S.A.; Jones, S.L.; van Emmerik, R.E.; Kent, J.A. Post-fatigue recovery of power, postural control and physical function in older women. PLoS ONE 2017, 12, e0183483. [Google Scholar] [CrossRef] [Green Version]
- Wood, D.D.; Fisher, D.L.; Andres, R.O. Minimizing fatigue during repetitive jobs: Optimal work-rest schedules. Hum. Factors J. Hum. Factors Ergon. Soc. 1997, 39, 83–101. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, W.; Wu, S.; Zhang, Z. A new simple local muscle recovery model and its theoretical and experimental validation. Int. J. Occup. Saf. Ergon. 2015, 21, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Duong, B.; Low, M.; Moseley, A.M.; Lee, R.Y.W.; Herbert, R.D. Time course of stress relaxation and recovery in human ankles. Clin. Biomech. 2001, 16, 601–607. [Google Scholar] [CrossRef]
- Nelson, M.J.; Bellenger, C.R.; Thomson, R.L.; Robertson, E.Y.; Davison, K.; Olstad, D.S.; Buckley, J.D. Maximal rate of heart rate increase correlates with fatigue/recovery status in female cyclists. Eur. J. Appl. Physiol. 2017, 117, 2425–2431. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.J.; Kim, J.Y. Measurement of trunk muscle fatigue during dynamic lifting and lowering as recovery time changes. Int. J. Ind. Ergon. 2007, 37, 545–551. [Google Scholar] [CrossRef]
- Wang-Price, S.; Almadan, M.; Stoddard, C.; Moore, D. Recovery of hip and back muscle fatigue following a back extension endurance test. Int. J. Exerc. Sci. 2017, 10, 213–224. [Google Scholar]
- Tang, X. Study on aerobic exercise fatigue based on bioelectrical signals. Master’s Thesis, Lanzhou University, Lanzhou, China, 2020. [Google Scholar]
- Xu, X.; Yuan, Z.; Gong, M.; He, L.; Wang, R.; Wang, J.; Yang, Q.; Wang, S. Occupational hazards survey among coal workers using hand-held vibrating tools in a northern China coal mine. Int. J. Ind. Ergon. 2017, 62, 21–26. [Google Scholar] [CrossRef]
- Yu, A.; Sukigara, S. Evaluation of the design and materials of anti-vibration gloves: Impact on hand dexterity and forearm muscle activity. Appl. Ergon. 2022, 98, 103572. [Google Scholar] [CrossRef] [PubMed]
- Wigley, R.D.; de Groot, J.A.; Walls, C. Contribution of vibration to musculoskeletal disorders in New Zealand. Intern. Med. J. 2007, 37, 822–825. [Google Scholar] [CrossRef]
- Maeda, S.; Taylor, M.D.; Anderson, L.C.; McLaughlin, J. Determination of hand-transmitted vibration risk on the human. Int. J. Ind. Ergon. 2019, 70, 28–37. [Google Scholar] [CrossRef]
- Li, K.W.; Li, W.; Yi, C. Muscular fatigue measurements for push-down tasks in ground demolitions. Hum. Factors Man. 2021, 31, 76–85. [Google Scholar] [CrossRef]
- Borg, G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand. J. Work. Environ. Health 1990, 16, 55–58. [Google Scholar] [CrossRef]
- ISO/TC 159/SC 3 Anthropometry and Biomechanics ISO 7250-1:2017 Basic Human Body Measurements for Technological Design — Part 1: Body Measurement Definitions and Landmarks. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/52/65246.html (accessed on 17 December 2021).
- Soo, Y.; Sugi, M.; Yokoi, H.; Arai, T.; Kato, R.; Ota, J. Quantitative estimation of muscle fatigue on cyclic handgrip tasks. Int. J. Ind. Ergon. 2012, 42, 103–112. [Google Scholar] [CrossRef]
- Rose, L.M.; Neumann, W.P.; Hägg, G.M.; Kenttä, G. Fatigue and recovery during and after static loading. Ergonomics 2014, 57, 1696–1710. [Google Scholar] [CrossRef]
- Duan, T.; Huang, B.; Li, X.; Pei, J.; Li, Y.; Ding, C.; Wang, L. Real-time indicators and influence factors of muscle fatigue in push-type work. Int. J. Ind. Ergon. 2020, 80, 103046. [Google Scholar] [CrossRef]
- The State Bureau of Quality and Technical Supervision. Human dimensions of Chinese adults (GB/T 10000-1988); Standards Press of China: Beijing, China, 1989; ISBN 15506616720. [Google Scholar]
- Liu, B.; Ma, L.; Chen, C.; Zhang, Z. Experimental validation of a subject-specific maximum endurance time model. Ergonomics 2018, 61, 806–817. [Google Scholar] [CrossRef] [PubMed]
- POPSUGAR Fitness 40 Minute Full Body Workout|Beginner Strength Training|Class FitSugar. Available online: https://www.youtube.com/watch?v=istOU9nxhm8 (accessed on 17 December 2021).
- Zhang, Z.; Li, K.W.; Zhang, W.; Ma, L.; Chen, Z. Muscular fatigue and maximum endurance time assessment for male and female industrial workers. Int. J. Ind. Ergon. 2014, 44, 292–297. [Google Scholar] [CrossRef]
- Sjogaard, G. Intramuscular changes during long-term contraction. In The Ergonomics of Working Postures—Models, Methods and Cases; Taylor & Francis: London, UK, 1986; pp. 136–143. [Google Scholar]
- Rose, L.; Ericsson, M.; Glimskar, B.; Nordgren, B.; Ortengren, R. Development of a model to determine pause needs after fatigue and pain reactions during work. In Computer Applications in Ergonomics, Occupational Safety and Health; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1992; pp. 461–468. [Google Scholar]
- Sato, H.; Ohashi, J.; Iwanaga, K.; Yoshitake, R. Endurance time and fatigue in static contractions. J. Human Ergol. 1984, 13, 147–154. [Google Scholar]
- Erik Mathiassen, S.; Åhsberg, E. Prediction of shoulder flexion endurance from personal factors. Int. J. Ind. Ergon. 1999, 24, 315–329. [Google Scholar] [CrossRef]
- Manenica, I. A technique for postural load assessment. In The Ergonomics of Working Postures; Taylor & Francis: London, UK, 1986; pp. 270–277. [Google Scholar]
- Ma, L.; Chablat, D.; Bennis, F.; Zhang, W.; Hu, B.; Guillaume, F. A novel approach for determining fatigue resistances of different muscle groups in static cases. Int. J. Ind. Ergon. 2011, 41, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Martin Bland, J.; Altman, DouglasG. Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Yassierli; Nussbaum, M.A.; Iridiastadi, H.; Wojcik, L.A. The influence of age on isometric endurance and fatigue is muscle dependent: A study of shoulder abduction and torso extension. Ergonomics 2007, 50, 26–45. [Google Scholar] [CrossRef] [PubMed]
- Fulco, C.; Rock, M.; Lammi, F.; Cymerman, A.; Butterfield, G.; Moore, L.G.; Braun, G.; Lewis, S. Slower fatigue and faster recovery of the adductor pollicis muscle in women matched for strength with men. Acta Physiol. Scand. 1999, 167, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhou, A. Study on the effect of different muscle fatigue recovery methods on muscle stiffness recovery; Atlantic Press: Paris, France, 2017; pp. 497–500. [Google Scholar]
- He, J.; Yi, C.; Zhou, S.; Tang, F.; Zuo, H.; Peng, H. Research on musculoskeletal diseases of demolition workers based on questionnaire survey. Chin. J. Ergon. 2021, 27, 1–7. [Google Scholar] [CrossRef]
- Wang, R. Kinematic Physiology; Peoples Sports Publishing House: Beijing, China, 2002; ISBN 978-7-5009-2309-1. [Google Scholar]
- Lu, L.; Megahed, F.M.; Cavuoto, L.A. Interventions to mitigate fatigue induced by physical work: A systematic review of research quality and levels of evidence for intervention efficacy. Hum. Factors J. Hum. Factors Ergon. Soc. 2021, 63, 151–191. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.G.; Laubli, T.; Martin, B.J. Muscular and vascular issues induced by prolonged standing with different work-rest cycles with active or passive Breaks. Hum. Factors 2018, 60, 806–821. [Google Scholar] [CrossRef]
Push Force (N) | Hammer | MET (min) |
---|---|---|
20 | small | 6.93 (±3.11) |
big | 7.93 (±3.70) | |
40 | small | 2.45 (±0.63) |
big | 2.41 (±0.95) |
Function Form | Regression Equation | R2 | p | |
---|---|---|---|---|
Exponential functions | y = −4.813x + 2.879 | (a) | 0.69 | p < 0.0001 |
y = 3.392x | (b) | 0.56 | p < 0.0001 | |
Power functions | y = −1.548x − 0.516 | (c) | 0.72 | p < 0.0001 |
y = −1.15x | (d) | 0.94 | p < 0.0001 |
Models | AD (min) | RD (%) | |
---|---|---|---|
General Model | Sjogaard [43] | 2.04 (±2.22) | 48.01 (±47.70) |
Rose et al. [44] | 2.93 (±2.94) | 48.65 (±18.30) | |
Upper limb model | Sato et al. [45] | 3.06 (±3.02) | 50.72 (±19.95) |
Mathiassen and Ahsberg [46] | 2.51 (±1.88) | 55.70 (±27.19) | |
Back/hip model | Manenica [47] | 2.85 (±2.73) | 82.19 (±91.30) |
Current study | Group A data | 1.32 (±1.69) | 30.49 (±27.22) |
Group B data | 1.83 (±1.94) | 34.80 (±31.48) |
Time (min) | MS (N) | CR-10 Score |
---|---|---|
0 | 56.06 (±14.97) A | 7.93 (±0.55) A |
1 | 63.13 (±14.54) AB | 4.62 (±1.44) B |
2 | 66.84 (±14.95) BC | 3.65 (±1.28) C |
3 | 70.42 (±15.61) BCD | 2.93 (±1.10) D |
4 | 73.00 (±15.96) CD | 2.32 (±0.85) E |
5 | 74.79 (±16.59) CD | 1.84 (±0.84) EF |
6 | 78.27 (±17.23) D | 1.43 (±0.72) F |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, C.; Tang, F.; Li, K.-W.; Hu, H.; Zuo, H.; Zhao, C. Modeling and Validation of Fatigue and Recovery of Muscles for Manual Demolition Tasks. Int. J. Environ. Res. Public Health 2022, 19, 930. https://doi.org/10.3390/ijerph19020930
Yi C, Tang F, Li K-W, Hu H, Zuo H, Zhao C. Modeling and Validation of Fatigue and Recovery of Muscles for Manual Demolition Tasks. International Journal of Environmental Research and Public Health. 2022; 19(2):930. https://doi.org/10.3390/ijerph19020930
Chicago/Turabian StyleYi, Cannan, Fan Tang, Kai-Way Li, Hong Hu, Huali Zuo, and Caijun Zhao. 2022. "Modeling and Validation of Fatigue and Recovery of Muscles for Manual Demolition Tasks" International Journal of Environmental Research and Public Health 19, no. 2: 930. https://doi.org/10.3390/ijerph19020930
APA StyleYi, C., Tang, F., Li, K. -W., Hu, H., Zuo, H., & Zhao, C. (2022). Modeling and Validation of Fatigue and Recovery of Muscles for Manual Demolition Tasks. International Journal of Environmental Research and Public Health, 19(2), 930. https://doi.org/10.3390/ijerph19020930