A New Story on the Multidimensionality of the MSPSS: Validity of the Internal Structure through Bifactor ESEM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrument
2.3. Ethical Considerations
2.4. Procedure
2.4.1. Data Collection
2.4.2. Data Analysis
3. Results
3.1. Response Bias Analysis
3.2. Descriptive and Correlational Analysis
3.2.1. Item Analysis
3.2.2. Meta-Analytic Interfactor Correlations
3.3. Internal Structure
3.3.1. Model Fits
3.3.2. CFA Modeling
3.3.3. ESEM Modeling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sawyer, S.M.; Azzopardi, P.S.; Wickremarathne, D.; Patton, G.C. The age of adolescence. Lancet Child Adolesc. Health 2018, 2, 223–228. [Google Scholar] [CrossRef]
- Gaete, V. Desarrollo psicosocial del adolescente. Rev. Chil. Pediatr. 2015, 86, 436–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations Children’s Fund. An Approach to the Situation of Adolescents and Young People in Latin America and the Caribbean. 2015. Available online: https://www.unicef.org/lac/sites/unicef.org.lac/files/2018-04/UNICEF_Situacion_de_Adolescentes__y_Jovenes_en_LAC_junio2105.pdf (accessed on 12 February 2021).
- United Nations Children’s Fund. Peace, Dignity and Equality on a Healthy Planet. 2019. Available online: https://www.un.org/es/sections/issues-depth/youth-0/index.html (accessed on 12 February 2021).
- Jessor, R. Contextual Content in Problem Behavior Theory. In Problem Behavior Theory and the Social Context, 1st ed.; Springer International Publishing: Cham, Switzerland, 2017; Volume 3, pp. 177–209. [Google Scholar]
- World Health Organization. Informe de Estado Global sobre Alcohol y Salud 2018; Organización Mundial de la Salud: Geneva, Switzerland, 2018. [Google Scholar]
- United Nations Office on Drugs and Crime. World Drug Report 2018 Methodology Report. Research and Trend Analysis Branch UNODC. Available online: https://www.unodc.org/wdr2018 (accessed on 15 October 2021).
- Pan American Health Organization; United Nations Population Fund; United Nations Children’s Fund. Accelerating Progress toward the Reduction of Adolescent Pregnancy in Latin America and the Caribbean; Report of a Technical Consultation; Pan American Health Organization: Washington, DC, USA, 2018. [Google Scholar]
- World Health Organization. Suicide. 2021. Available online: https://www.who.int/es/news-room/fact-sheets/detail/suicide%0A (accessed on 15 October 2021).
- Huberty, T. Differential diagnosis of depression and mood disorders. In Anxiety and Depression in Children and Adolescents: Assessment, Intervention, and Prevention; Huberty, T.J., Ed.; Springer: New York, NY, USA, 2012; pp. 139–166. [Google Scholar]
- Vaux, A. An ecological approach to understanding and facilitating social support. J. Soc. Pers. Relatsh. 1990, 7, 507–518. [Google Scholar] [CrossRef]
- Toledano-Toledano, F.; Moral, J.; McCubbin, L.D.; Cauley, B.; Luna, D. Brief version of the coping health inventory for parents (CHIP) among family caregivers of children with chronic diseases. Health Qual. Life Outcomes 2020, 18, 104. [Google Scholar] [CrossRef] [Green Version]
- Simoni, Z.R.; Bauldry, S. Moving during adolescence and depressive symptoms. Youth Soc. 2018, 52, 639–660. [Google Scholar] [CrossRef]
- Kerres, M.C.; Kilpatrick, D.M. Measuring perceived social support: Development of the child and adolescent social support scale (CASSS). Psychol. Sch. 2002, 39, 1–18. [Google Scholar] [CrossRef]
- Cho, H.; Yi Tan, H.; Lee, E. Importance of perceived teammate support as a predictor of student-athletes’ positive emotions and subjective well-being. Int. J. Sports Sci. Coach. 2020, 15, 364–374. [Google Scholar] [CrossRef]
- Malinauskas, R.; Malinauskiene, V. The Relationship between emotional intelligence and psychological well-being among male university students: The mediating role of perceived social support and perceived stress. Int. J. Environ. Res. Public Health 2020, 17, 1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, J.; Yeung, D.Y.; Liu, E.S.C.; Rochelle, T.L. Sequential mediating effects of provided and received social support on trait emotional intelligence and subjective happiness: A longitudinal examination in Hong Kong Chinese university students. Int. J. Psychol. 2018, 54, 478–486. [Google Scholar] [CrossRef]
- Durá, E.; Garcés, J. La teoría del apoyo social y sus implicaciones para el ajuste psicosocial de los enfermos oncológicos. (The theory of social support and its implications for the psychosocial adjustment of the oncological patients). Rev. Psicol. Soc. 1991, 6, 257–271. [Google Scholar] [CrossRef]
- Toledano-Toledano, F.; Moral, J.; Nabors, L.A.; Domínguez-Guedea, M.T.; Escudero, G.S.; Pérez, E.R.; Luna, D.; López, A.L. Predictors of quality of life among parents of children with chronic diseases: A cross-sectional study. Healthcare 2020, 8, 456. [Google Scholar] [CrossRef] [PubMed]
- House, J.S. Work Stress and Social Support; Addison-Wesley: Reading, MA, USA, 1981. [Google Scholar]
- Fachado, A.; Menéndez, M.; Gonzáles, L. Apoyo social: Mecanismos y modelos de influencia sobre la enfermedad crónica (Social support: Mechanisms and models of influence on chronic disease). Cad. Aten. Primaria 2010, 19, 118–123. [Google Scholar]
- Díaz, A.M.; Parra, S.M.; Aravena, V.J.; Barriga, O.A. Validez y confiabilidad de una escala de apoyo social percibido en población adolescente. (Validity and reliability of a perceived social support scale on adolescent population). Enferm. Glob. 2015, 14, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Sherbourne, C.D.; Stewart, A.L. The MOS social support survey. Soc. Sci. Med. 1991, 32, 705–714. [Google Scholar] [CrossRef]
- Ramírez, M.T.G.; Hernández, R.L. Propiedades psicométricas de la escala de apoyo social familiar y de amigos (AFA-R) en una muestra de estudiantes. Acta Investig. Psicol. 2014, 4, 1469–1480. [Google Scholar] [CrossRef] [Green Version]
- Malecki, C.K.; Demaray, M.K.; Elliott, S.N. The Child and Adolescent Social Support Scale; Northern Illinois University: DeKalb, IL, USA, 2000. [Google Scholar]
- Toledano-Toledano, F.; Moral, J.; Frometa, R.R.; Betanzos, F.G.; Guzmán, L.V.; García, M.S. The social support networks scale (SSNS) for family caregivers of children with cancer: A psychometric evaluation. Int. J. Environ. Res. Public Health 2020, 17, 7820. [Google Scholar] [CrossRef] [PubMed]
- Zimet, G.D.; Dahlem, N.W.; Zimet, S.G.; Farley, G.K. The Multidimensional Scale of Perceived Social Support. J. Personal. Assess. 1988, 52, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Chou, K.-L. Assessing Chinese adolescents’ social support: The Multidimensional Scale of Perceived Social Support. Personal. Individ. Differ. 2000, 28, 299–307. [Google Scholar] [CrossRef]
- Laksmita, O.D.; Chung, M.H.; Liao, Y.M.; Chang, P.C. Multidimensional Scale of Perceived Social Support in Indonesian adolescent disaster survivors: A psychometric evaluation. PLoS ONE 2020, 15, e0229958. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Loli, J.S.; Merino-Soto, C.; Dominguez-Lara, S.; Lourenço, A. Estructura interna de la Multidimensional Scale of Perceived Social Support (MSPSS) en adolescentes peruanos (Internal structure of the Multidimensional Scale of Perceived Social Support (MSPSS) in Peruvian adolescents). Rev. Arg. Cs. Comp. 2019, 11, 38–47. [Google Scholar] [CrossRef]
- Edwards, L.M. Measuring perceived social support in Mexican American youth: Psychometric properties of the Multidimensional Scale of Perceived Social Support. Hisp. J. Behav. Sci. 2004, 26, 187–194. [Google Scholar] [CrossRef]
- Sabogal, F.; Marín, G.; Otero-Sabogal, R. Hispanic familisim and acculturation: What changes and what doesn´t? Hispanic J. Behav. Sci. 1987, 9, 397–412. [Google Scholar] [CrossRef]
- Huebner, E.S. Preliminary development and validation of a Multidimensional Life Satisfaction Scale for children. Psychol. Assess. 1994, 6, 149–158. [Google Scholar] [CrossRef]
- Canty-Mitchell, J.; Zimet, G.D. Psychometric properties of the Multidimensional Scale of Perceived Social Support in Chilean university students. Am. J. Community Psychol. 2000, 28, 391–400. [Google Scholar] [CrossRef]
- Bruwer, B.; Emsley, R.; Kidd, M.; Lochner, C.; Seedat, S. Psychometric properties of the Multidimensional Scale of Perceived Social Support in youth. Compr. Psychiatry 2008, 49, 195–201. [Google Scholar] [CrossRef]
- Alsubaie, M.M.; Stain, H.J.; Webster, L.A.D.; Wadman, R. The role of sources of social support on depression and quality of life for university students. Int. J. Adolesc. Youth 2019, 24, 484–496. [Google Scholar] [CrossRef] [Green Version]
- Ramaswamy, V.; Aroian, K.J.; Templin, T. Adaptation and psychometric evaluation of the Multidimensional Scale of Perceived Social Support for Arab American adolescents. Am. J. Community Psychol. 2009, 43, 49–56. [Google Scholar] [CrossRef]
- Brodzinsky, D.M.; Elias, M.J.; Steiger, C.; Simon, J.; Gill, M.; Hitt, J.C. Coping Scale for Children and Youth: Scale development and validation. J. Appl. Dev. Psychol. 1992, 13, 195–214. [Google Scholar] [CrossRef]
- Crijnen, A.A.; Achenbach, T.M.; Verhulst, F.C. Problems reported by parents of children in multiple cultures: The Child Behavior Checklist syndrome constructs. Am. J. Psychiatry 1999, 156, 569–574. [Google Scholar] [CrossRef]
- Seidman, E.; Allen, L.; Aber, J.L.; Mitchell, C.; Feinman, J.; Yoshikawa, H.; Comtois, K.A.; Golz, J.; Miller, R.L.; Ortiz-Torres, B.; et al. Development and validation of adolescent-perceived microsystem scales: Social support, daily hassles, and involvement. Am. J. Community Psychol. 1995, 23, 355–388. [Google Scholar] [CrossRef]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Khangura, S.; Konnyu, K.; Cushman, R.; Grimshaw, J.; Moher, D. Evidence summaries: The evolution of a rapid review approach. Syst. Rev. 2012, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Dambi, J.M.; Corten, L.; Chiwaridzo, M.; Jack, H.; Mlambo, T.; Jelsma, J. A systematic review of the psychometric properties of the cross-cultural translations and adaptations of the Multidimensional Perceived Social Support Scale (MSPSS). Health Qual. Life Outcomes 2018, 16, 80. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.T.; Chan, A.C.M. The Multidimensional Scale of Perceived Social Support: Dimensionality and age and gender differences in adolescents. Personal. Individ. Differ. 2004, 37, 1359–1369. [Google Scholar] [CrossRef]
- Wilson, A.; Yendork, J.S.; Somhlaba, N.Z. Psychometric properties of Multidimensional Scale of Perceived Social Support among Ghanaian adolescents. Child Indic. Res. 2016, 10, 101–115. [Google Scholar] [CrossRef]
- Trejos-Herrera, A.M.; Bahamón, M.J.; Alarcón-vásquez, Y.; Vélez, J.I.; Vinaccia, S. Psychosocial intervention validity and reliability of the Multidimensional Scale. Psychosoc. Interv. 2018, 27, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Aloba, O.; Opakunle, T.; Ogunrinu, O. Psychometric characteristics and measurement invariance across genders of the Multidimensional Scale of Perceived Social Support (MSPSS) among Nigerian adolescents. Health Psychol. Rep. 2019, 7, 69–80. [Google Scholar] [CrossRef]
- Reise, S.P. The rediscovery of bifactor measurement models. Multivar. Behav. Res. 2012, 47, 667–696. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Reise, S.P.; Haviland, M.G. Applying bifactor statistical indices in the evaluation of psychological measures. J. Personal. Assess. 2016, 98, 223–237. [Google Scholar] [CrossRef]
- Rodriguez, A.; Reise, S.P.; Haviland, M.G. Evaluating bifactor models: Calculating and interpreting statistical indices. Psychol. Methods 2016, 21, 137–150. [Google Scholar] [CrossRef]
- Li, C.H. Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diagonally weighted least squares. Behav. Res. Methods 2016, 48, 936–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.H. The performance of ML, DWLS, and ULS estimation with robust corrections in structural equation models with ordinal variables. Psychol. Methods 2016, 21, 369–387. [Google Scholar] [CrossRef] [PubMed]
- Green, S.B.; Yang, Y. Evaluation of dimensionality in the assessment of internal consistency reliability: Coefficient alpha and omega coefficients. Educ. Meas. Issues Pract. 2015, 34, 14–20. [Google Scholar] [CrossRef]
- Asparouhov, T.; Muthén, B. Exploratory structural equation modeling. Struct. Equ. Model. Multidiscip. J. 2009, 16, 397–438. [Google Scholar] [CrossRef]
- Morin, A.J.S.; Arens, A.K.; Marsh, H.W. A Bifactor exploratory structural equation modeling framework for the identification of distinct sources of construct-relevant psychometric multidimensionality. Struct. Equ. Model. Multidiscip. J. 2015, 23, 116–139. [Google Scholar] [CrossRef]
- Mansolf, M.; Reise, S.P. Exploratory bifactor analysis: The Schmid-Leiman orthogonalization and Jennrich-Bentler analytic rotations. Multivar. Behav. Res. 2016, 51, 698–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gignac, G.E. The higher-order model imposes a proportionality constraint: That is why the bifactor model tends to fit better. Intelligence 2016, 55, 57–68. [Google Scholar] [CrossRef]
- Reise, S.P.; Bonifay, W.E.; Haviland, M.G. Scoring and modeling psychological measures in the presence of multidimensionality. J. Personal. Assess. 2013, 95, 129–140. [Google Scholar] [CrossRef] [PubMed]
- American Educational Research Association; American Psychological Association; National Council on Measurement in Education. Standards for Educational and Psychological Testing; American Educational Research Association: Washington, DC, USA, 2014. [Google Scholar]
- Instituto Nacional de Estadística e Informática. Situación Demográfica, Económica y Social Provincia Constitucional del Callao: Focalización de los Grupos Vulnerables. (Demographic, Economic and Social Situation Constitutional Province of Callao: Targeting of Vulnerable Groups). Available online: https://www.inei.gob.pe/media/MenuRecursivo/boletines/presentacion_callao.pdf (accessed on 11 January 2021).
- Ministry of Education. Ministerial Resolution N° 665: Norm that Regulates School Enrollment and Transfer in Educational Institutions and Basic Education Programs. Available online: https://www.gob.pe/institucion/minedu/normas-legales/223235-665-2018-minedu (accessed on 10 January 2021).
- Arechabala, M.; Miranda, C. Validación de una escala de apoyo social percibido en un grupo de adultos mayores adscritos a un programa de hipertensión de la región metropolitana (Validation of a perceived social support scale in a group of elderly affiliated to a hypertension program of the metropolitan region). Cienc. Enferm. 2002, 8, 49–55. [Google Scholar] [CrossRef]
- Sociedad Mexicana de Psicología. Código Ético del Psicólogo (Ethical Code of the Psychologist); Trillas: Mexico City, Mexico, 2010. [Google Scholar]
- American Psychological Association. Ethical Principles of Psychologists and Code of Conduct. With the 2016 Amendment to Standard 3.04; American Psychological Association Press: Washington, DC, USA, 2017. [Google Scholar]
- World Medical Association. World medical association declaration of Helsinki. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Meade, A.W.; Craig, S.B. Identifying careless responses in survey data. Psychol. Methods 2012, 17, 437–455. [Google Scholar] [CrossRef] [Green Version]
- Mahalanobis, P.C. On the generalized distance in statistics. Proc. Natl. Inst. Sci. India 1936, 12, 49–55. [Google Scholar]
- Penny, K.I. Appropriate critical values when testing for a single multivariate outlier by using the Mahalanobis Distance. J. R. Stat. Soc. Ser. C Appl. Stat. 1996, 45, 73–81. [Google Scholar] [CrossRef]
- Yentes, R.D.; Wilhelm, F. Careless: Procedures for Computing Indices of Careless Responding. R Package Version 1.1.3. Available online: https://cran.r-project.org/web/packages/careless/index.html (accessed on 31 July 2020).
- Tomczak, M.; Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014, 21, 19–25. [Google Scholar]
- Mizumoto, A. Langtest (Version 1.0). Available online: http://langtest.jp (accessed on 15 July 2020).
- Korkmaz, S.; Goksuluk, D.; Zararsiz, G. MVN: An R package for assessing multivariate normality. R J. 2014, 6, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Muthén, B.O.; du Toit, S.; Spisic, D. Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes. 1997; Unpublished Manuscript. [Google Scholar]
- Yu, C. Evaluating Cutoff Criteria of Model Fit Indices for Latent Variable Models with Binary and Continuous Outcomes. Unpublished. Doctoral Dissertation, University of California, California, CA, USA, 2002. [Google Scholar]
- Hancock, G.R.; Mueller, R.O. Rethinking construct reliability within latent variable systems. In Structural Equation Modeling: Present und Future—A Festschrift in Honor of Karl Joreskog; Cudeck, R., Du Toit, S., Sorbom, D., Eds.; Scientific Software International: Lincolnwood, IL, USA, 2001; pp. 195–216. [Google Scholar]
- Stucky, B.D.; Edelen, M.O. Using hierarchical IRT models to create unidimensional measures from multidimensional data. In Handbook of Item Response Theory Modeling: Applications to Typical Performance Assessment; Reise, S.P., Revicki, D.A., Eds.; Routledge/Taylor & Francis Group: New York, NY, USA, 2015; pp. 183–206. [Google Scholar]
- Gorsuch, R.L. Factor Analysis; Lawrence Erlbraum Associates: Hillsdale, NJ, USA, 1983. [Google Scholar]
- Quinn, H.O.C. Bifactor Models, Explained Common Variance (ECV), and the Usefulness of Scores from Unidimensional Item Response Theory Analyses. Ph.D. Thesis, The University of North Carolina, Chapel Hill, NC, USA, 2014. [Google Scholar]
- Saris, W.E.; Satorra, A.; van der Veld, W.M. Testing structural equation models or detection of misspecifications? Struct. Equ. Model. Multidiscip. J. 2009, 16, 561–582. [Google Scholar] [CrossRef]
- Rosseel, Y. Lavaan: An R package for structural equation modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, T.D. semTools: Useful Tools for Structural Equation Modeling. R Package Version 0.5-3. Available online: https://CRAN.R-project.org/package=semTools (accessed on 15 October 2021).
- Veroniki, A.A.; Jackson, D.; Viechtbauer, W.; Bender, R.; Bowden, J.; Knapp, G.; Kuss, O.; Higgins, J.P.T.; Langan, D.; Salanti, G. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res. Synth. Methods 2016, 7, 55–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IntHout, J.; Ioannidis, J.P.; Borm, G.F. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med. Res. Methodol. 2014, 14, 25. [Google Scholar] [CrossRef] [Green Version]
- Henze, N.; Zirkler, B. A class of invariant consistent tests for multivariate normality. Commun. Stat. Theory Methods 1990, 19, 3595–3617. [Google Scholar] [CrossRef]
- Stucky, B.D.; Edelen, M.O.; Vaughan, C.A.; Tucker, J.S.; Butler, J. The psychometric development and initial validation of the DCI-A short form for adolescent therapeutic community treatment process. J. Subst. Abuse Treat. 2014, 46, 516–521. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.F.; Hayes, A.; Carver, C.S.; Laurenceau, J.P.; Zhang, Z. Modeling general and specific variance in multifaceted constructs: A comparison of the bifactor model to other approaches. J. Personal. 2012, 80, 219–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; van de Vijver, F.J.R. A general response style factor: Evidence from a multi-ethnic study in the Netherlands. Personal. Individ. Differ. 2013, 55, 794–800. [Google Scholar] [CrossRef]
- He, J.; Van de Vijver, F.J.R. Assessment of the general response style: A cross-cultural validation. Acta Investig. Psicol. 2019, 9, 14–24. [Google Scholar] [CrossRef]
- Dahlem, N.W.; Zimet, G.D.; Walker, R.R. The Multidimensional Scale of Perceived Social Support: A confirmation study. J. Clin. Psychol. 1991, 47, 756–761. [Google Scholar] [CrossRef]
Version and Country | Participants | Factor Analysis Design | Factorial Configuration | Method | Factor Relationship | Internal Consistency | Invariance |
---|---|---|---|---|---|---|---|
1. Chou [28] Hong Kong | N = 475 Age: 17–18 | 1° PCA | 2 factors: FAM: 9, 10, 11, 12 FRI: 1, 2, 3, 4, 5, 6, 7, 8 | Estimator: NR Rotation: Varimax | FRI and others = NR FRI and FAM: 0.23 FAM and SO: NR | α: FRI: 0.94 FAM: 0.86 SO: NR | NR |
2. Canty-Mitchell et al. [34] EEUU | N = 196 Age: M = 15.8 SD = 0.97 | 1° EFA | 3 factors: FAM: 3, 4, 8, 11 FRI: 6, 7, 9, 12 SO: 1, 2, 5, 10 | Estimator: Principal axis Rotation: Oblique | FRI and SO = 0.66 FRI and FAM: 0.53 FAM and SO: NR | α: FRI: 0.89 FAM: 0.91 SO: 0.91 | NR |
3. Cheng and Chan [44] Hong Kong | N = 2105 Age: M = 14.8 SD = 1.58 | 1° CFA | 3 factors: FAM: 3, 4, 8, 11 FRI: 6, 7, 9, 12 SO: 1, 2, 5, 10 2 factors: F1: 6, 7, 9, 12, 1, 2, 5, 10 F2: 3, 4, 8, 11 | Estimator: ML Model: 3 and 2 factors | FRI and SO = 0.85 FRI and FAM: 0.35 FAM and SO: 0.42 | α: FRI: 0.76 FAM: 0.78 SO: 0.69 | Age and sex Configuration |
4. Bruwer et al. [35] South Africa | N = 502 Age: 11–23 | 1° CFA | 3 factors: FAM: 3, 4, 8, 11 FRI: 6, 7, 9, 12 SO: 1, 2, 5, 10 | Estimator: WLSMV Model: 3 factors | FRI and SO = 0.676 FRI and FAM: 0.616 FAM and SO: 0.747 | α: FRI: 0.86 FAM: 0.86 SO: 0.88 | NR |
5. Ramaswamy et al. [37] EEUU | N = 635 Age: 11–15 | 1° CFA | 3 factors: FAM: 3, 4, 8, 11 FRI: 6, 7, 9, 12 SO: 1, 2, 5, 10 | Estimator: ML Model: 3 factors | FRI and SO = 0.30 FRI and FAM: 0.27 FAM and SO: 0.35 | α: FRI: 0.75 FAM: 0.63 SO: 0.72 | NR |
6. Edwards [31] EEUU | N = 290 Age: 11–18 | 1° PCA | 3 factors: FAM: 3, 4, 8, 11 FRI: 6, 7, 9, 12 SO: 1, 2, 5, 10 | Estimator: NR Rotation: Varimax | NR | α: FAM: 0.88 FRI: 0.90 SO: 0.86 | NR |
7. Mosqueda et al. [22] Chile | N = 247 Age: 14–19 | 1° PCA | 3 factors: FAM: 3, 4, 8, 11 FRI: 6, 7, 9, 12 SO: 1, 2, 5, 10 | Estimator: NR Rotation: Varimax | NR | α: FAM: 0.850 FRI: 0.887 SO: 0.786 | NR |
8. Wilson et al. [45] Ghana | N = 717 Age: 15–18 | 1° CFA; 2° EFA | 3 factors: FAM: 3, 4, 8, 11 FRI: 6, 7, 9, 12, 10 SO: 1, 2, 5 | CFA Estimator: MLR Model: 3 factors EFA Estimator: ML Rotation: NR | FRI and SO: 0.35 FRI and FAM: 0.37 FAM and SO: 0.50 | α: FAM: 0.73 FRI: 0.61 SO: 0.74 | Sex: Metric |
9. Trejos-Herrera et al. [46] Colombia | N = 763 Age: 14–18 | 1° CFA; 2° EFA | 3 factors: FAM: 3, 4, 8, 11 FRI: 6, 7, 9, 12 SO: 1, 2, 5, 10 | CFA Estimator: ML Model: 7 models EFA Estimator: ML Rotation: NR | FRI and SO: 0.46 FRI and FAM: 0.33 FAM and SO: 0.42 | α: FAM: 0.82 FRI: 0.84 SO: 0.75 | NR |
10. Navarro-Loli et al. [30] Perú | N = 242 Age: 12–16 | CFA | 3 factors: FAM: 3, 4, 8, 11 FRI: 6, 7, 9, 12 SO: 1, 2, 5, 10 | Estimator: Robust ML Model: 3 factors Bifactor | FRI and SO = 0.69 FRI and FAM: 0.37 FAM and SO: 0.62 | α: FAM: 0.814 FRI: 0.874 SO: 0.824 Omega: (>0.85) FAM: NR FRI: NR SO: NR | NR |
11. Aloba et al. [47] Nigeria | N = 1335 Age: 13–18 | CFA | 3 factors: FAM: 5, 6, 7, 8 FRI: 9, 10, 11, 12 SO: 1, 2, 3, 4 2 factors: FAM and SO: 1, 2, 3, 4, 5, 6, 7, 8 Am.: 9, 10, 11, 12 | Estimator: ML Model: 3 factors and Hierarchical | FRI and SO = 0.65 FRI and FAM. = 0.67 FAM and SO = 0.82 | α: FAM = 0.82 SO = 0.80 FRI = 0.78 | Sex scalar |
12. Okki et al. [29] Indonesia | N = 299 Age: 12–18 | CFA | 3 factors: FAM.: 3, 4, 8, 11 FRI.: 6, 7, 9, 12 SO: 1, 2, 5 | Estimator: ML Model: 3 factors | FRI. and SO = 0.79 FRI. and FAM = 0.62 FAM. and SO = 0.71 | α: FAM. = 0.81 FRI. = 0.78 SO = 0.79 | Sex: scalar |
M | SD | Sk | Ku | CVM a | Spearman’s Correlation b | ||
---|---|---|---|---|---|---|---|
Sex | Age | ||||||
mps1 | 3.461 | 1.150 | −0.302 | −0.823 | 2.754 | 0.058 | −0.115 * |
mps2 | 3.407 | 1.297 | −0.341 | −1.006 | 2.538 | 0.081 | −0.068 |
mps5 | 3.431 | 1.259 | −0.313 | −0.984 | 2.550 | 0.007 | −0.082 |
mps10 | 3.424 | 1.269 | −0.320 | −0.975 | 2.515 | 0.042 | −0.058 |
mps3 | 3.827 | 1.052 | −0.617 | −0.339 | 3.675 | −0.100 * | −0.174 ** |
mps4 | 3.662 | 1.167 | −0.495 | −0.772 | 3.256 | −0.071 | −0.193 ** |
mps8 | 3.063 | 1.256 | −0.079 | −1.023 | 2.239 | −0.077 | −0.142 ** |
mps11 | 3.355 | 1.282 | −0.260 | −1.053 | 2.460 | −0.055 | −0.141 ** |
mps6 | 3.363 | 1.173 | −0.085 | −1.000 | 2.634 | 0.129 ** | −0.025 |
mps7 | 3.392 | 1.233 | −0.162 | −1.040 | 2.590 | 0.073 | −0.018 |
mps9 | 3.342 | 1.353 | −0.181 | −1.222 | 2.671 | 0.110 * | −0.035 |
mps12 | 3.159 | 1.379 | −0.096 | −1.232 | 2.236 | 0.092 * | 0.004 |
CFA | ESEM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
3 Factors | One Factor | Bifactor | 3 Factors | Bifactor | ||||||
WLSMV-χ2 | 67.399 | 942.207 | 51.571 | 19.800 | 11.605 | |||||
df | 51 | 54 | 45 | 60 | 56 | |||||
CFI | 1.00 | 0.979 | 1.00 | 1.00 | 1.00 | |||||
WRMR | 0.769 | 2.875 | 0.672 | 0.417 | 0.319 | |||||
RMSEA | 0.026 | 0.189 | 0.018 | 0.00 | 0.00 | |||||
IC 90% | (0.00) | (0.042) | (0.179) | (0.200) | (0.00) | (0.03) | (0.00) | (0.00) | (0.00) | (0.00) |
GamaHat | 0.994 | 0.759 | 0.997 | 1.0 | 1.0 |
3 Factors | 1 Factor | Bifactor—CFA a | ||||||||
SO | FAM | FRI | Fg | SO | FAM | FRI | ICEV | ARPB | ||
mps1 | 0.838 | 0.780 | 0.826 | 0.145 | 0.970 | 0.056 | ||||
mps2 | 0.861 | 0.804 | 0.848 | 0.136 | 0.975 | 0.052 | ||||
mps5 | 0.836 | 0.780 | 0.823 | 0.146 | 0.969 | 0.052 | ||||
mps10 | 0.834 | 0.775 | 0.821 | 0.146 | 0.969 | 0.056 | ||||
mps3 | 0.890 | 0.807 | 0.728 | 0.463 | 0.712 | 0.109 | ||||
mps4 | 0.928 | 0.847 | 0.727 | 0.627 | 0.573 | 0.165 | ||||
mps8 | 0.747 | 0.674 | 0.582 | 0.483 | 0.592 | 0.158 | ||||
mps11 | 0.784 | 0.710 | 0.627 | 0.461 | 0.649 | 0.132 | ||||
mps6 | 0.880 | 0.832 | 0.740 | 0.453 | 0.727 | 0.124 | ||||
mps7 | 0.894 | 0.853 | 0.736 | 0.506 | 0.679 | 0.159 | ||||
mps9 | 0.935 | 0.894 | 0.765 | 0.530 | 0.676 | 0.169 | ||||
mps12 | 0.888 | 0.854 | 0.698 | 0.583 | 0.589 | 0.223 | ||||
Correlations | ||||||||||
SO | 1 | - | - | - | ||||||
FAM | 0.785 | 1 | - | - | - | |||||
FRI | 0.805 | 0.652 | 1 | - | - | - | ||||
Bifactor indicators | ||||||||||
ECV | - | - | - | - | 0.751 | 0.029 | 0.370 | 0.334 | - | - |
FD | - | - | - | - | 0.956 | 0.284 | 0.880 | 0.859 | - | - |
ωh | - | - | - | - | 0.871 | 0.026 | 0.334 | 0.314 | - | - |
H | - | - | - | - | 0.945 | 0.077 | 0.599 | 0.601 | - | - |
3 Factors | Bifactor—ESEM | ||||||||
---|---|---|---|---|---|---|---|---|---|
SO | FAM | FRI | Fg | SO | FAM | FRI | I-ECV | I-ARPB | |
mps1 | 0.703 | 0.099 | 0.058 | 0.611 | 0.472 | 0.084 | 0.078 | 0.613 | 0.277 |
mps2 | 0.894 | 0.023 | 0.042 | 0.600 | 0.623 | 0.022 | 0.057 | 0.479 | 0.340 |
mps5 | 0.816 | 0.012 | 0.045 | 0.674 | 0.546 | 0.019 | 0.066 | 0.600 | 0.157 |
mps10 | 0.725 | 0.021 | 0.147 | 0.703 | 0.483 | 0.035 | 0.040 | 0.677 | 0.102 |
mps3 | 0.051 | 0.816 | 0.141 | 0.602 | 0.028 | 0.624 | 0.070 | 0.478 | 0.341 |
mps4 | 0.013 | 0.985 | 0.036 | 0.552 | 0.002 | 0.777 | 0.052 | 0.334 | 0.534 |
mps8 | 0.230 | 0.727 | 0.234 | 0.396 | 0.168 | 0.576 | 0.048 | 0.302 | 0.702 |
mps11 | 0.127 | 0.800 | 0.129 | 0.604 | 0.111 | 0.622 | 0.102 | 0.471 | 0.175 |
mps6 | 0.135 | 0.019 | 0.750 | 0.767 | 0.075 | 0.002 | 0.372 | 0.803 | 0.085 |
mps7 | 0.044 | 0.051 | 0.826 | 0.750 | 0.006 | 0.033 | 0.537 | 0.660 | 0.137 |
mps9 | 0.019 | 0.071 | 0.871 | 0.889 | 0.019 | 0.019 | 0.296 | 0.899 | 0.006 |
mps12 | 0.015 | 0.050 | 0.930 | 0.858 | 0.020 | 0.079 | 0.324 | 0.868 | 0.005 |
Correlations | |||||||||
SO | 1 | 1 | |||||||
FAM | 0.767 | 1 | 0.574 | 1 | |||||
FRI | 0.748 | 0.601 | 1 | 0.384 | 0.209 | 1 | |||
Bifactor indicators | |||||||||
ECV | - | - | - | 0.608 | 0.177 | 0.238 | 0.106 | ||
FD | - | - | - | 0.936 | 0.840 | 0.924 | 0.712 | ||
ωh | - | - | - | 0.795 | 0.059 | 0.085 | 0.029 | ||
H | - | - | - | 0.933 | 0.629 | 0.768 | 0.449 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merino-Soto, C.; Boluarte Carbajal, A.; Toledano-Toledano, F.; Nabors, L.A.; Núñez-Benítez, M.Á. A New Story on the Multidimensionality of the MSPSS: Validity of the Internal Structure through Bifactor ESEM. Int. J. Environ. Res. Public Health 2022, 19, 935. https://doi.org/10.3390/ijerph19020935
Merino-Soto C, Boluarte Carbajal A, Toledano-Toledano F, Nabors LA, Núñez-Benítez MÁ. A New Story on the Multidimensionality of the MSPSS: Validity of the Internal Structure through Bifactor ESEM. International Journal of Environmental Research and Public Health. 2022; 19(2):935. https://doi.org/10.3390/ijerph19020935
Chicago/Turabian StyleMerino-Soto, César, Alicia Boluarte Carbajal, Filiberto Toledano-Toledano, Laura A. Nabors, and Miguel Ángel Núñez-Benítez. 2022. "A New Story on the Multidimensionality of the MSPSS: Validity of the Internal Structure through Bifactor ESEM" International Journal of Environmental Research and Public Health 19, no. 2: 935. https://doi.org/10.3390/ijerph19020935
APA StyleMerino-Soto, C., Boluarte Carbajal, A., Toledano-Toledano, F., Nabors, L. A., & Núñez-Benítez, M. Á. (2022). A New Story on the Multidimensionality of the MSPSS: Validity of the Internal Structure through Bifactor ESEM. International Journal of Environmental Research and Public Health, 19(2), 935. https://doi.org/10.3390/ijerph19020935