The Effects of SARS-CoV-2 Infection on Female Fertility: A Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Effects of SARS-CoV-2 on Endometrium and Menstrual Cycle
3.2. The Effects of SARS-CoV-2 on Hormones and Ovarian Reserve
3.3. The Effects of SARS-CoV-2 on Follicular Fluid
3.4. The Effects of SARS-CoV-2 on Oocytes and Embryos
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharp, G.C.; Fraser, A.; Sawyer, G.; Kountourides, G.; Easey, K.E.; Ford, G.; Olszewska, Z.; Howe, L.D.; Lawlor, D.A.; Alvergne, A.; et al. The COVID-19 pandemic and the menstrual cycle: Research gaps and opportunities. Int. J. Epidemiol. 2021, 00, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, X.; Zhang, A.L.; Wang, Y.; Molina, M.J. Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 14857–14863. [Google Scholar] [CrossRef] [PubMed]
- Kutti-Sridharan, G.; Vegunta, R.; Mohan, B.P.; Rokkam, V.R.P. SARS-CoV2 in Different Body Fluids, Risks of Transmission, and Preventing COVID-19: A Comprehensive Evidence-Based Review. Int. J. Prev. Med. 2020, 11, 97. [Google Scholar]
- Tur-Kaspa, T.; Hildebrand, G.; Cohen, D.; Tur-Kaspa, I. IS COVID-19 A SEXUALLY TRANSMITTED DISEASE? A SYSTEMATIC REVIEW. Fertil. Steril. 2020, 114, E527–E528. [Google Scholar] [CrossRef]
- Albini, A.; McClain Noonan, D.; Pelosi, G.; Di Guardo, G.; Lombardo, M. The SARS-CoV-2 receptor, ACE-2, is expressed on many different cell types: Implications for ACE-inhibitor- and angiotensin II receptor blocker-based antihypertensive therapies—Reply. Intern. Emerg. Med. 2020, 14, 1–2. [Google Scholar]
- Wentao, N.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care 2020, 13, 422. [Google Scholar]
- Algarroba, G.N.; Rekawek, P.; Vahanian, S.A.; Khullar, P.; Palaia, T.; Peltier, M.R.; Chavez, M.R.; Vintzileos, A.M. Visualization of severe acute respiratory syndrome coronavirus 2 invading the human placenta using electron microscopy. Am. J. Obstet. Gynecol. 2020, 223, 275–278. [Google Scholar] [CrossRef]
- Bian, X.-W. The COVID-19 Pathology Team. Autopsy of COVID-19 patients in China. Natl. Sci. Rev. 2020, 7, 1414–1418. [Google Scholar] [CrossRef]
- Ferraiolo, A.; Barra, F.; Kratochwila, C.; Paudice, M.; Vellone, V.G.; Godano, E.; Varesano, S.; Noberasco, G.; Ferrero, S.; Arioni, C. Report of positive placental swabs for SARS-CoV-2 in an asymptomatic pregnant woman with COVID-19. Medicina 2020, 56, 306. [Google Scholar] [CrossRef] [PubMed]
- Hosier, H.; Farhadian, S.F.; Morotti, R.A.; Deshmukh, U.; Lu-Culligan, A.; Campbell, K.H.; Yasumoto, Y.; Vogels, C.B.F.; Casanovas-Massana, A.; Vijayakumar, P.; et al. SARS-CoV-2 infection of the placenta. J. Clin. Investig. 2020, 130, 4947–4953. [Google Scholar] [CrossRef]
- Stanley, K.E.; Thomas, E.; Leaver, M.; Wells, D. Coronavirus disease-19 and fertility: Viral host entry protein expression in male and female reproductive tissues. Fertil. Steril. 2020, 114, 33–43. [Google Scholar] [CrossRef]
- Reis, F.M.; Bouissou, D.R.; Pereira, V.M.; Camargos, A.F.; dos Reis, A.M.; Santos, R.A. Angiotensin-(1–7), its receptor mas, and the angiotensin-converting enzyme type 2 are expressed in the human ovary. Fertil. Steril. 2011, 95, 176–181. [Google Scholar] [CrossRef]
- Meng, W.; Lingwei, M.; Xue, L.; Zhu, Q.; Zhou, S.; Dai, J.; Yan, W.; Zhang, J.; Wang, S. Co-expression of the SARS-CoV-2 entry molecules ACE2 and TMPRSS2 in human ovaries: Identification of cell types and trends with age. Genomics 2021, 113, 3449–3460. [Google Scholar]
- Zang, R.; Castro, M.F.G.; McCune, B.T.; Zeng, Q.; Rothlauf, P.W.; Sonnek, N.M.; .Liu, Z.; Brulois, K.F.; Wang, X.; Greenberg, H.B.; et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol. 2020, 13, eabc3582. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Wang, Q.; Qiu, Y.; Li, J.Y.; Zhou, Z.J.; Liao, C.H.; Ge, X.Y. A unique protease cleavage site predicted in the spike protein of the novel pneumonia coronavirus (2019- nCoV) potentially related to viral transmissibility. Vir. Sin. 2020, 35, 337–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, B.P.; Zhong, M.; Gao, H.B.; Wu, K.B.; Liu, M.X.; Liu, C.; Wang, X.; Chen, J.; Lee, L.; Qi, C.; et al. Significant expression of FURIN and ACE2 on oral epithelial cells may facilitate the efficiency of 2019-nCov entry. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, C.; Das, C.; Ghosh, A.; Singh, A.K.; Mukherjee, S.; Majumder, P.P.; Basu, A.; Biswas, N.K. Global spread of SARS-CoV-2 subtype with spike protein mutation D614G is shaped by human genomic variations that regulate expression of TMPRSS2 and MX1 genes. bioRxiv 2020. [Google Scholar] [CrossRef]
- Vaz-Silva, J.; Carneiro, M.M.; Ferreira, M.C.; Pinheiro, S.V.B.; Silva, D.A.; Silva, A.L.; Witz, C.A.; Reis, A.M.; Santos, R.A.; Reis, F.M. The vasoactive peptide angiotensin-(1–7), its receptor Mas and the angiotensin-converting enzyme type 2 are expressed in the human endometrium. Reprod. Sci. 2009, 16, 247–256. [Google Scholar] [CrossRef]
- Li, X.-F.; Ahmed, A. Compartmentalization and cyclic variation of immunoreactivity of renin and angiotensin converting enzyme in human endometrium throughout the menstrual cycle. Hum. Reprod. 1997, 12, 2804–2809. [Google Scholar] [CrossRef] [Green Version]
- Whitacre, F.E.; Barrera, B.; Briones, T.N.; Suaco, P.S.; Paz, A. War amenorrhea: A clinical and laboratory study. J. Am. Med. Assoc. 1944, 124, 399–403. [Google Scholar] [CrossRef]
- Elias, S.G.; van Noord, P.A.H.; Peeters, P.H.M.; den Tonkelaar, I.; Kaaks, R.; Grobbee, D.E. Menstruation during and after caloric restriction: The 1944–1945 Dutch famine. Fertil. Steril. 2007, 88 (Suppl. 4), 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Shuttleworth, G.; Broughton Pipkin, F.; HunteIn, M.G. In vitro development of pig preantral follicles cultured in a serum-free medium and the effect of angiotensin II. Reproduction 2002, 123, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.J.; Shenoy, V.; Qi, Y.; Fraga-Silva, R.A.; Santos, R.A.S.; Katovich, M.J.; Raizada, M.K. Angiotensin-converting enzyme 2 activation protects against hypertension-induced cardiac fibrosis involving extracellular signal-regulated kinases. Exp. Phys. 2011, 96, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Stefanello, J.R.; Barreta, M.H.; Porciuncula, P.M.; Nelson Arruda, J.; Oliveira, J.F.; Oliveira, M.A.; Bayard Gonçalves, P. Effect of angiotensin II with follicle cells and insulin-like growth factor-I or insulin on bovine oocyte maturation and embryo development. Theriogenology 2006, 66, 2068–2076. [Google Scholar] [CrossRef]
- Ferreira, R.; Oliveira, J.F.; Fernandes, R.; Moraes, J.F.; Bayard, G.P. The role of angiotensin II in the early stages of bovine ovulation. Reproduction 2007, 134, 713–719. [Google Scholar] [CrossRef] [Green Version]
- Sugino, N.; Suzuki, T.; Sakata, A.; Miwa, I.; Asada, H.; Taketani, T.; Yamagata, Y.; Tamura, H. Angiogenesis in the human corpus luteum: Changes in expression of angiopoietins in the corpus luteum throughout the menstrual cycle and in early pregnancy. J. Clin. Endocrinol. Metab. 2005, 90, 6141–6148. [Google Scholar] [CrossRef] [Green Version]
- Virant-Klun, I.; Strle, F. Human Oocytes Express Both ACE2 and BSG Genes and Corresponding Proteins: Is SARS-CoV-2 Infection Possible? Stem Cell Rev. Rep. 2021, 17, 278–284. [Google Scholar] [CrossRef]
- Yang, M.; Wang, J.; Chen, Y.; Kong, S.; Qiao, J. Effects of SARS-CoV-2 infection on human reproduction. J. Mol. Cell Biol. 2021, 13, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Rajput, S.K.; Logsdon, D.M.; Kile, B.; Engelhorn, H.J.; Goheen, B.; Khan, S.; Swain, J.; McCormick, S.; Schoolcraft, W.B.; Yuan, Y.; et al. Human eggs, zygotes, and embryos express the receptor angiotensin 1-converting enzyme 2 and transmembrane serine protease 2 protein necessary for severe acute respiratory syndrome coronavirus 2 infection. Fertil. Steril. 2021, 2, 33–42. [Google Scholar] [CrossRef]
- Viotti, M.; Montano, M.; Victor, A.; Griffin, D.K.; Duong, T.; Bolduc, N.; Farmer, A.; Gonzalez, I.; Barnes, F.; Zouves, C.; et al. Human Pre-Implantation Embryos are Permissive to SARS-CoV-2 Entry. Fertil. Steril. 2020, 114 (Suppl. 3), e526. [Google Scholar] [CrossRef]
- Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Kampf, C.; Sjöstedt, E.; Asplund, A.; Olsson, I.; et al. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- Henarejos-Castillo, I.; Sebastian-Leon, P.; Devesa-Peiro, A.; Pellicer, A.; Diaz-Gimeno, P. SARS-CoV-2 infection risk assessment in the endometrium: Viral infection-related gene expression across the menstrual cycle. Fertil. Steril. 2020, 114, 223–232. [Google Scholar] [CrossRef]
- Miguel-Gómez, L.; Romeu, M.; Castells-Ballester, J.; Pellicer, N.; Faus, A.; Mullor, J.L.; Pellicer, A.; Cervelló, I. Undetectable viral RNA from SARS-CoV-2 in endometrial biopsies from women with COVID-19: A preliminary study. AJOG 2021, 21, S0002-9378(21)01120-0. [Google Scholar] [CrossRef] [PubMed]
- Bruinvels, G.; Lewis, N.A.; Blagrove, R.C.; Scott, D.; Simpson, R.J.; Baggish, A.L.; Rogers, J.P.; Ackerman, K.E.; Pedlar, K.R. COVID-19–Considerations for the Female Athlete. Front. Sports Act. Living 2021, 3, 606799. [Google Scholar] [CrossRef]
- Malloy, S.M.; Bradley, D.E. The relationship between perceived stress during the COVID-19 pandemic and menstrual cycles and symptoms. Fertil. Steril. 2021, 116, e72. [Google Scholar] [CrossRef]
- Phelan, N.; Behan, L.A.; Owens, L. The Impact of the COVID-19 Pandemic on Women’s Reproductive Health. Front. Endocrinol. 2021, 12, 642755. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.M.; Shilen, A.; Heslin, K.M.; Ishimwe, P.; Allen, A.M.; Jacobs, E.T.; Farland, L.V. SARS-CoV-2 infection and subsequent changes in the menstrual cycle among participants in the Arizona CoVHORT study. Am. J. Obs. Gynecol. 2021, S0002-9378(21)01044-9. [Google Scholar] [CrossRef]
- Takmaz, T.; Gundogmus, I.; Berkem Okten, S.; Gunduz, A. The impact of COVID-19-related mental health issues on menstrual cycle characteristics of female healthcare providers. J. Obstet. Gynaecol. Res. 2021, 47, 3241–3249. [Google Scholar] [CrossRef] [PubMed]
- Demir, O.; Sal, H.; Comba, C. Triangle of COVID, anxiety and menstrual cycle. J. Obstet. Gynaecol. 2021, 41, 1257–1261. [Google Scholar] [CrossRef]
- Ozimek, N.; Velez, K.; Anvari, H.; Butler, L.; Goldman, K.N.; Woitowich, N. Impact of Stress on Menstrual Cyclicity During the COVID-19 Pandemic: A Survey Study. J. Womens Health 2021, 31, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.T.; Pang, R.D.; Nelson, A.L.; Jack, T.; Noccioli, E.B.; Reissner, H.R.; Von Schwarzenfeld, K.; Acuna, J. Detecting variations in ovulation and menstruation during the COVID-19 pandemic, using real-world mobile app data. PLoS ONE 2021, 16, e0258314. [Google Scholar] [CrossRef] [PubMed]
- Yuksel, B.; Ozgor, F. Effect of the COVID-19 pandemic on female sexual behavior. Int. J. Gynaecol. Obstet. Off Organ. Int. Fed. Gynaecol. Obstet. 2020, 150, 98–102. [Google Scholar] [CrossRef]
- Li, K.; Chen, G.; Hou, H.; Liao, Q.; Chen, J.; Bai, H.; Lee, S.; Wang, C.; Li, H.; Cheng, L.; et al. Analysis of sex hormones and menstruation in COVID-19 women of child-bearing age. RBMO 2021, 42, 260–267. [Google Scholar] [CrossRef]
- Ding, T.; Wang, T.; Zhang, J.; Cui, P.; Chen, Z.; Zhou, S.; Yuan, S.; Ma, W.; Zhang, M.; Rong, Y.; et al. Analysis of Ovarian Injury Associated With COVID-19 Disease in Reproductive-Aged Women in Wuhan, China: An Observational Study. Front. Med. 2021, 8, 635255. [Google Scholar]
- Wang, M.; Yangb, Q.; Rena, X.; Hua, J.; Lia, Z.; Longa, R.; Xib, Q.; Zhua, L. Investigating the impact of asymptomatic or mild SARS-CoV-2 infection infection on female fertility and in vitro fertilization outcomes: A retrospective cohort study. EClinicalMedicine 2021, 38, 101013. [Google Scholar] [CrossRef]
- Kolanska, K.; Hours, A.; Jonquière, L.E.M.; d’Argent, E.M.; Dabi, Y.; Dupont, C.; Touboul, C.; Antoine, J.M.; Chabbert-Buffet, N.; Daraï, E. Mild COVID-19 infection does not alter the ovarian reserve in women treated with ART. Reprod. Biomed. Online 2021, 43, 1117–1121. [Google Scholar] [CrossRef]
- Bentov, Y.; Beharier, O.; Moav-Zafrir, A.; Kabessa, M.; Godin, M.; Greenfield, C.S.; Ketzinel-Gilad, M.; Ash Broder, E.; Holzer, H.E.G.; Wolf, D.; et al. Ovarian follicular function is not altered by SARS-CoV-2 infection or BNT162b2 mRNA COVID-19 vaccination. Hum. Reprod. 2021, 36, 2506–2513. [Google Scholar] [CrossRef] [PubMed]
- Martel, R.A.; Shaw, J.; Blakemore, J.K. Trends in FSH levels and cycle completion rates in women undergoing assisted reproductive technology (AST) before and during the COVID-19 pandemia. Fertil. Steril. 2021, 116 (Suppl. 1), e33. [Google Scholar] [CrossRef]
- Barragan, M.; Guillén, J.J.; Martin-Palomino, N.; Rodriguez, A.; Vassena, R. Undetectable viral RNA in oocytes from SARS-CoV-2 positive women. Hum. Reprod. 2020, 36, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Demirel, C.; Tulek, F.; Goksever Celik, H.; Donmez, E.; Tuysuz, G.; Gökcan, B. Failure to Detect Viral RNA in Follicular Fluid Aspirates from a SARS-CoV-2-Positive Woman. Reprod. Sci. 2021, 28, 2144–2146. [Google Scholar] [CrossRef]
- Herrero, Y.; Pascuali, N.; Vel´azquez, C.; Oubina, G.; Hauk, V.; de Zúniga, I.; Gomez Pena, M.; Martínez, G.; Lavolpe, M.; Veiga, F.; et al. SARS-CoV-2 infection negatively affects ovarian function in ART patients. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166295. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-T.; Zhang, J.-Y.; Hou, N.-N.; Liu, A.-X.; Pan, J.-X.; Lu, J.-Y.; Sheng, J.-Z.; Huang, H.-F. Preliminary proteomic analysis on the alterations in follicular fluid proteins from women undergoing natural cycles or controlled ovarian hyperstimulation. J. Assist. Reprod. Genet. 2015, 32, 417–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revelli, A.; Delle Piane, L.; Casano, S.; Molinari, E.; Massobrio, M.; Rinaudo, P. Follicular fluid content and oocyte quality: From single biochemical markers to metabolomics. Reprod. Biol. Endocrinol. 2009, 7, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonello, N.; McKie, K.; Jasper, M.; Andrew, L.; Ross, N.; Braybon, E.; Brännström, M.; Norman, R.J. Inhibition of nitric oxide: Effects on interleukin-lβ-enhanced ovulation rate, steroid hormones, and ovarian leukocyte distribution at ovulation in the rat. Biol. Reprod. 1996, 54, 436–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaipia, A.; Hsueh, A.J. Regulation of ovarian follicle atresia. Annu. Rev. Physiol. 1997, 59, 349–363. [Google Scholar] [CrossRef] [PubMed]
- Bayasula, I.A.; Kobayashi, H.; Goto, M.; Nakahara, T.; Nakamura, T.; Kondo, M.; Nagatomo, Y.; Kotani, T.; Kikkawa, F. A proteomic analysis of human follicular fluid: Comparison between fertilized oocytes and non-fertilized oocytes in the same patient. J. Assist. Reprod. Genet. 2013, 30, 1231–1238. [Google Scholar] [CrossRef] [Green Version]
- Orvieto, R.; Segev-Zahav, A.; Aizer, A. Does COVID-19 infection influence patients’ performance during IVF-ET cycle?: An observational study. Gynecol. Endocrinol. 2021, 37, 895–897. [Google Scholar] [CrossRef]
- Chamani, I.J.; McCulloh, D.H.; Grifo, J.A.; Licciardi, F.L. COVID-19 AND ART OUTCOMES. Fertil. Steril. 2020, 114, E556. [Google Scholar] [CrossRef]
- Veiga, A.; Gianaroli, L.; Ory, S.; Horton, M.; Feinberg, E.; Penzias, A. Assisted reproduction and COVID-19: A joint statement of ASRM, ESHRE and IFFS. Fertil. Steril. 2020, 114, P484–P485. [Google Scholar] [CrossRef] [PubMed]
- Lablanche, O.; Salle, B.; Perie, M.A.; Labrune, E.; Langlois-Jacques, C.; Fraison, E. Psychological effect of COVID-19 pandemic among women undergoing infertility care, a French cohort—PsyCovART Psychological effect of COVID-19: PsyCovART. J. Gynecol. Obs. Hum. Reprod. 2022, 51, 102251. [Google Scholar] [CrossRef]
- Iacobucci, G. COVID-19: Protection from two doses of vaccine wanes within six months, data suggest. BMJ 2021, 374, n2113. [Google Scholar] [CrossRef]
- Chen, F.; Lou, D. Rising Concern on Damaged Testis of COVID-19 Patients. Urology 2020, 142, 42. [Google Scholar] [CrossRef] [PubMed]
- Shan, T.; Shang, W.; Zhang, L.; Zhao, C.; Chen, W.; Zhang, Y.; Li, G. Effect of angiotensin-(1-7) and angiotensin II on the proliferation and activation of human endometrial stromal cells in vitro. Int. J. Clin. Exp. Pathol. 2015, 8, 8948–8957. [Google Scholar] [PubMed]
- Drew, F.L. The epidemiology of secondary amenorrhea. J. Chronic Dis. 1961, 14, 396–407. [Google Scholar] [CrossRef]
- Rehman, H.U.; Masson, E.A. Neuroendocrinology of Female Aging; Gender Medicine; Elsevier: Amsterdam, The Netherlands, 2005; Volume 2, pp. 41–56. [Google Scholar]
- Danesh, L.; Ali, A.; Aslam, I.; Mensah-Djan, A. The effects of SARS-CoV-2 on menstruation. RBMO 2021, 43, 769. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, C.; Cremades, N.; Ruiz-Requena, E.; Martinez, F.; Ortega, E.; Bernabeu, S.; Tesarik, J. Relationship between fertilization results after intracytoplasmic sperm injection, and intrafollicular steroid, pituitary hormone and cytokine concentrations. Hum. Reprod. 1999, 14, 628–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaczmarek, M.M.; Schams, D.; Ziecik, A.J. Role of vascular endothelial growth factor in ovarian physiology—An overview. Reprod. Biol. 2005, 5, 111–136. [Google Scholar]
- Suhail, S.; Zajac, J.; Fossum, C.; Lowater, H.; McCracken, C.; Severson, N.; Laatsch, B.; Narkiewicz-Jodko, A.; Johnson, B.; Liebau, J.; et al. Role of Oxidative Stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) Infection: A Review. Protein J. 2020, 39, 644–656. [Google Scholar] [CrossRef]
- Delgado-Roche, L.; Mesta, F. Oxidative Stress as Key Player in Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection. Arch. Med. Res. 2020, 51, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Menezo, Y.; Silvestris, E.; Dale, B.; Elder, K. Oxidative stress and alterations in DNA methylation: Two sides of the same coin in reproduction. Reprod. Biomed. Online 2016, 33, 668–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, A.; Gupta, S.; Sharma, R.K. Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2005, 3, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, S.; Tiwari, M.; Pandey, A.N.; Shrivastav, T.G.; Chaube, S.K. Impact of stress on oocyte quality and reproductive outcome. J. Biomed. Sci. 2016, 23, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author and Year | Study Design | Population Sample and Selection Criteria | Data Collection | Main Findings |
---|---|---|---|---|
Bruinvels et al. 2021 [35] | Cross-sectional online questionnaire | 749 women Inclusion criteria: ≥18 years Nulliparous Physically active With normal menstrual cycles before COVID-19 At least 9 menstruations or withdrawal bleedings before the pandemic | For a period of 21 days (27 May–17 June 2020) | 25%—an increased cycle length 20%—a decreased cycle length >50% had more psychosocial menstrual symptoms: mood changes, reduced focus time and lack of motivation 17% had felt stressed about their menstrual cycle alterations |
Malloy et al. 2021 [36] | Cross-sectional online questionnaire | 12,302 women | For a period of 13 months (March 2020–April 2021) Through the mobile application Ovia Health’s Fertility | 87%—disruptions in cycle pattern 29%—more symptoms during menstruation (abdominal pain, back pain, discharge changes) 27%—increased bleedings A higher level of stress was found in women with menstrual disturbances |
Phelan et al. 2021 [37] | Cross-sectional online questionnaire | 1031 women Women of child-bearing age Exclusion criteria: Pregnancy Amenorrhoea for any reason | Recruited via social media | No modification with regard to the average menstrual cycle length or total bleeding days 18% experienced heavier bleeding 30% experienced new pain 9% new absence of period (and had none before) 21% experienced more absence of period (and had occasional absence of period before) 53% had increased premenstrual symptoms (PMS) Anxiety and higher level of stress enhanced the incidence of menstrual symptoms |
Khan et al. 2021 [38] | Prospective cohort study | 127 women Inclusion criteria: - SARS-CoV-2 positive cases - 18–45 years old Exclusion criteria - current pregnancy - recent pregnancy (after 01.2020) | Data extracted from ARIZONA CoVHORT study | 16% reported alterations of menstrual pattern, had more COVID-19 symptoms and more likely to be of Hispanic background Out of these, 60% reported irregular periods, 45% increased PMS, 35% had increased cycle length |
Takmaz et al. 2021 [39] | Cross-sectional online questionnaire | 952 women Inclusion criteria: - women aged 18–40 - with regular periods >1 year before pandemic Exclusion criteria: - pregnancy, postpartum period, or lactation - on hormonal pills or other medication that could influence menstrual cycle - IUD - bleeding problems, thyroid disease, high prolactin, chronic renal insufficiency, cancer - surgical removal of the uterus ± ovaries - major psychiatric pathologies | November 2020– December 2020 Healthcare workers in Turkey | 28.7% experienced irregularities of menstrual cycle 10.7% had shorter or longer menstrual cycles 12.9% had the period length changed by more than 9 days 5.8% experienced longer menses 6.5% had intermenstrual spotting Women who experienced irregular periods had significantly higher levels of depression, anxiety, and stress |
Demir et al. 2021 [40] | Cross-sectional online questionnaire | 263 women Inclusion criteria: - aged 18–45 - with regular menses 6 months before the pandemic Exclusion criteria: - age <18 - with irregular menses - women at menopause - use of oral contraceptives | May 2020 Recruited via social media | Menstrual cycle length and volume decreased significantly No difference was found regarding: - the onset of the period - the grade of dysmenorrhea - the use of analgesics during menstruation Higher levels of stress were detected during the COVID-19 pandemic |
Ozimek et al. 2021 [41] | Online survey | 210 women Inclusion criteria: - biologically females - aged 18–45 - residents of the United States Exclusion criteria: - use of oral contraceptives - use of hormonal medication - history of gynecological disorders or surgeries - history of pregnancy or lactation in the last 12 months | July–August 2020 | 54% experienced changes in their periods. Out of these: 50% had prolonged menstrual cycle 34% had a change in the length of the period 50% had modifications of PMS Women with higher levels of stress, had an increased period length and flow |
Nguyen et al. 2021 [42] | Retrospective cohort study | 18.076 women Inclusion criteria - women who signed up for contraception reasons Exclusion criteria: - lactation - pregnancy in the last year - oral hormonal therapy - diseases that can influence menstrual cycle pattern | March–September 2019 (before pandemic) March–September 2020 (during pandemic) Recruited through Natural cycles mobile application | 61.1% felt tremendously stressed during pandemic (46.2% before pandemic) No significant change in the length of the period and the menstrual cycle Only women >45 years were more likely to experience alterations of menstrual cycle (anovulatory cycles, modified length) |
Yuksel et al. 2020 [43] | Observational study | 58 women Inclusion criteria: - >18 years old - married Exclusion criteria: - menopause - urinary incontinence - gynecological operations - heart or renal problems - hepatitis B, C or HIV - positive test for COVID-19/ living with a COVID-19 positive person | March–April 2020 Recruited via telephone | More women experienced menstrual modifications during the pandemic (27.6 vs. 12.1%) |
Li et al. 2021 [44] | Retrospective cross-sectional study | 177 women Inclusion criteria: Women of child-bearing age COVID-19 infection (PCR positive test) Exclusion criteria: - pregnancy - lactating women - gonadal disfunction - previous hysterectomy - previous oophorectomy | June 2019–March 2020 Women admitted in Wuhan hospital | 25% had modified menstrual flow (mainly decreased flow) 28% had changes in menstrual cycle pattern (mainly longer cycle) Menstrual abnormalities were mainly found in patients with systemic complications Severely ill patients experienced longer menstrual cycles Follow up showed every patient, except one, returned to their normal cycle |
Ding et al. 2021 [45] | Cross-sectional study | 78 women (61 mild cases, 17 severe cases) Inclusion criteria: - Positive infection with SARS-CoV-2 - aged <50 Exclusion criteria: - ovarian pathologies or operations - refusal of blood collection - pregnancy - hormonal therapy in the last 3 months | January–March 2020 | The more severe cases experienced: - increased dysmenorrhea - irregular menstruations - more frequent amenorrhea - higher flow |
Bentov et al. [48] | Cohort study | 9 women vaccinated 9 COVID-19 recovered 14 non-vaccinated | 2 January–3 October 2021 | No significant difference among the three groups regarding: - number of retrieved oocytes - oocyte yield - number of mature oocytes |
Wang et al. [46] | Retrospective cohort study | 195 women in case group - with SARS-CoV-2 IgG - negative for SARS-CoV-2 RNA 65 women in control group | May 2020–February 2021 Reproductive Medicine Center, Tongji Hospital, Wuhan | No significant difference in: - number of the retrieved oocytes - mature oocyte rate - fertilization rate Significantly lower blastocyst formation rate |
Herrero et al. [52] | Cohort study | 46 women who recovered from COVID-19 infection 34 women that never tested positive for COVID-19 | November 2020–April 2021 PREGNA Medicina Reproductiva IVI Buenos Aires InVitro | Significantly decreased in women with higher SARS-CoV-2 infection: - number of retrieved oocytes - oocyte maturity rate |
Orvieto et al. [58] | Observational study | 9 women undergoing IVF before and after COVID-19 infection and reached ovum pick-up stage | A tertiary, university-affiliated medical center | No significant difference in: - number of oocytes obtained - fertilization rate Significantly lower TQE (top-quality embryos) rate |
Chamani et al. [59] | Retrospective cohort study | 1881 women undergoing IVF procedures during the pandemic compared to women undergoing IVF procedures in the prior year | 6-month period January 2020–June 2020 January 2019–June 2019 NYU Fertility Center | No difference in: - oocyte retrieval rate - mature oocyte rate - fertilization rate Negatively impact on: - the rate of euploid embryos per patient in 05–06.2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carp-Veliscu, A.; Mehedintu, C.; Frincu, F.; Bratila, E.; Rasu, S.; Iordache, I.; Bordea, A.; Braga, M. The Effects of SARS-CoV-2 Infection on Female Fertility: A Review of the Literature. Int. J. Environ. Res. Public Health 2022, 19, 984. https://doi.org/10.3390/ijerph19020984
Carp-Veliscu A, Mehedintu C, Frincu F, Bratila E, Rasu S, Iordache I, Bordea A, Braga M. The Effects of SARS-CoV-2 Infection on Female Fertility: A Review of the Literature. International Journal of Environmental Research and Public Health. 2022; 19(2):984. https://doi.org/10.3390/ijerph19020984
Chicago/Turabian StyleCarp-Veliscu, Andreea, Claudia Mehedintu, Francesca Frincu, Elvira Bratila, Simona Rasu, Ioana Iordache, Alina Bordea, and Mihaela Braga. 2022. "The Effects of SARS-CoV-2 Infection on Female Fertility: A Review of the Literature" International Journal of Environmental Research and Public Health 19, no. 2: 984. https://doi.org/10.3390/ijerph19020984
APA StyleCarp-Veliscu, A., Mehedintu, C., Frincu, F., Bratila, E., Rasu, S., Iordache, I., Bordea, A., & Braga, M. (2022). The Effects of SARS-CoV-2 Infection on Female Fertility: A Review of the Literature. International Journal of Environmental Research and Public Health, 19(2), 984. https://doi.org/10.3390/ijerph19020984