Air Pollution (PM2.5) Negatively Affects Urban Livability in South Korea and China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Livability Measurement and Index
2.2.1. Livability Measurement Methods
2.2.2. Livability Index
2.3. Grey Relational Analysis (GRA)
- Suppose that the reference sequence and the sequences that are compared with the reference sequence after normalization are:
- 2.
- Data normalization
- 3.
- Grey relational calculation
- 4.
- The weight of the livability indicator
2.4. Panel Regression Analysis
3. Results
3.1. Grey Correlation between Concentration and the Livability Indicators
3.2. Spatial Analysis of the Livability Index of South Korea and China
3.3. Panel Regression Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- World Bank. The Global Health Cost of PM2. 5 Air Pollution: A Case for Action Beyond 2021; The World Bank: Wshington, DC, USA, 2022. [Google Scholar]
- Welsch, H. Environmental welfare analysis: A life satisfaction approach. Ecol. Econ. 2007, 62, 544–551. [Google Scholar] [CrossRef]
- Ferreira, S.; Akay, A.; Brereton, F.; Cunado, J.; Martinsson, P.; Moro, M.; Ningal, T. Life satisfaction and air quality in Europe. Ecol. Econ 2013, 88, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Levinson, A. Valuing public goods using happiness data: The case of air quality. J. Public Econ. 2012, 96, 869–880. [Google Scholar] [CrossRef]
- Kim, D.Y.; Jin, J.E. Does fine dust negatively affect the happiness of Gyeonggi-do residents? GRI Res. Pap. 2017, 19, 51–68. [Google Scholar]
- Li, J.; Yang, W.; Wang, Z.; Chen, H.; Hua, B.; Li, J.; Sun, Y. A modeling study of source–receptor relationships in atmospheric particulate matter over Northeast Asia. Atmos. Environ. 2014, 91, 40–51. [Google Scholar] [CrossRef]
- Kajino, M.; Sato, K.; Inomata, Y.; Ueda, H. Source–receptor relationships of nitrate in Northeast Asia and influence of sea salt on the long-range transport of nitrate. Atmos. Environ. 2013, 79, 67–78. [Google Scholar] [CrossRef]
- Liu, Q.; Dong, G.; Zhang, W.; Li, J. The Influence of air pollution on happiness and willingness to pay for clean air in the Bohai Rim Area of China. Int. J. Environ. Res. Public Health 2022, 19, 5534. [Google Scholar] [CrossRef]
- Kaal, H. A conceptual history of livability. City 2011, 15, 532–547. [Google Scholar] [CrossRef] [Green Version]
- Lihu, P.; Xiaowen, L.; Shipeng, Q.; Yingjun, Z.; Huimin, Y. A multi-agent model of changes in urban safety livability. Simulation 2020, 96, 519–535. [Google Scholar] [CrossRef]
- Veenhoven, R. The overall satisfaction with life: Subjective approaches (1). In Global Handbook of Quality of Life; Springer: Dordrecht, The Netherlands, 2015; pp. 207–238. [Google Scholar]
- Zanella, A.; Camanho, A.S.; Dias, T.G. The assessment of cities’ livability integrating human wellbeing and environmental impact. Ann. Oper. Res. 2015, 226, 695–726. [Google Scholar] [CrossRef]
- Liang, L.; Deng, X.; Wang, P.; Wang, Z.; Wang, L. Assessment of the impact of climate change on cities livability in China. Sci. Total Environ. 2020, 726, 138339. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.C.; Man, H.Y.; Wong, M.S.; Shi, Y.; Walker, B.B. Perceived differences in the (re)production of environmental deprivation between sub-populations: A study combining citizens’ perceptions with remote-sensed and administrative data. Build. Environ. 2020, 174, 106769. [Google Scholar] [CrossRef]
- Okulicz-Kozaryn, A.; Valente, R.R. Livability and subjective well-Being across European cities. App. Res. Qual. Life 2019, 14, 197–220. [Google Scholar] [CrossRef]
- Kim, D.Y.; Jin, J.E. The effects of air pollution (fine dust) on happiness and its monetary value. J. Korea Plan. Assoc. 2018, 53, 205–219. [Google Scholar] [CrossRef]
- Kovacs-Gyori, A.; Cabrera-Barona, P. Assessing urban livability through residential preference—An international survey. Data 2019, 4, 134. [Google Scholar] [CrossRef] [Green Version]
- Veenhoven, R. Livability theory. In Encyclopedia of Quality of Life and Well-Being Research; Springer: Berlin/Heidelberg, Germany, 2014; pp. 3645–3647. ISBN 978-9 4-007-0752-8. [Google Scholar] [CrossRef] [Green Version]
- Paul, A.; Sen, J. A critical review of livability approaches and their dimensions. Geoforum 2020, 117, 90–92. [Google Scholar] [CrossRef]
- Valcarcel-Aguiar, B.; Murias, P. Evaluation and management of urban livability: A goal programming based composite indicator. Soc. Ind. Res. 2018, 142, 689–712. [Google Scholar] [CrossRef]
- Peacock, W.G.; Kunreuther, H.; Hooke, W.H.; Cutter, S.L.; Chang, S.E.; Berke, P.R. Toward a Resiliency and Vulnerability Observatory Network: RAVON. HRRC Reports. 2008. Available online: https://www.nehrp.gov/pdf/ravon.pdf (accessed on 15 March 2022).
- Klinenberg, E. Palaces for the People; The Crown Publishing Group: New York, NY, USA, 2018; Available online: https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6059582 (accessed on 15 March 2022).
- Cutter, S.L.; Emrich, C.T. Moral hazard, social catastrophe: The changing face of vulnerability along the hurricane coasts. Ann. Am. Acad. Polit. Soc. Sci. 2006, 604, 102–112. [Google Scholar] [CrossRef]
- Bae, K.; Park, H.; Jun, S. Assessment of Vulnerability to Climate Change in the Field of Social Health and Strengthening of Adaptive Capacity; Korea Institute for Health and Social Affairs: Sejong, Korea, 2011. [Google Scholar]
- Kong, S.; Bae, H.; Hong, S.; Park, H. A Study on the Health Impact Assessment and Management Policy of PM2.5 (II); Basic Research Report; National Academy of Environmental Sciences: Seoul, Korea, 2013; pp. 1158–1318. [Google Scholar]
- Zhang, G.; Rui, X.; Fan, Y. Critical review of methods to estimate PM2. 5 concentrations within specified research region. ISPRS Int. J. Geo-Inf. 2018, 7, 368. [Google Scholar] [CrossRef] [Green Version]
- NBSC, 2016–2020. China Statistical Yearbook; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- NBSC, 2016–2020. China Statistical Yearbook on Environment; China Statistics Press: Beijing, China, 2021.
- Veenhoven, R. Happiness in Nations: Subjective Appreciation of Life in 56 nations 1946–1992; Erasmus University Rotterdam: Rotterdam, The Netherlands, 1993; Volume 56, pp. 1946–1992.
- Veenhoven, R. Quality of life and happiness: Concepts and measures. In Handbook of Research Methods and Applications in Happiness and Quality of Life; Edward Elgar Publishing: Cheltenham, UK, 2016; pp. 309–333. [Google Scholar]
- ESRI. ArcGIS Desktop: Release 10.3.1.; Environmental Systems Research Institute: Redlands, CA, USA, 2015. [Google Scholar]
- StataCorp. Stata Statistical Software: Release 16; StataCorp LLC: College Station, TX, USA, 2019. [Google Scholar]
- Jun, S.M.; Yoon, J.W.; Park, J.Y.; Jung, J.C. A Scoping Review of Urban Livability Indicators. Proc. Korean Soc. Disaster Prev. 2021, 21, 281–292. [Google Scholar] [CrossRef]
- Yang, S.; Chen, B.; Wakeel, M.; Hayat, T.; Alsaedi, A.; Ahmad, B. PM2.5 footprint of household energy consumption. Appl. Energ. 2018, 227, 375–383. [Google Scholar] [CrossRef]
- Kuo, Y.; Yang, T.; Huang, G.W. The use of grey relational analysis in solving multiple attribute decision-making problems. Comp. Ind. Eng. 2008, 55, 80–93. [Google Scholar] [CrossRef]
- Deng, J.L. Introduction to grey system theory. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Xue, J.; Van Gelder, P.H.A.J.M.; Papadimitriou, E.; Chen, Z.; Wu, C. Grey Relational Analysis of Environmental Influencing Factors of Autonomous Ships’ Maneuvering Decision-Making. In 2019 5th International Conference on Transportation Information and Safety (ICTIS); Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2019; pp. 1447–1452. [Google Scholar]
- Cai, Z.; Cvetkovic, V.; Page, J. How does ICT expansion drive “smart” urban growth? A case study of Nanjing, China. Urban Planning 2020, 5, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef]
- Yoon, D.K. Assessment of social vulnerability to natural disasters: A comparative study. Nat. Hazards 2012, 63, 823–843. [Google Scholar] [CrossRef]
- Sang-hyeok, L.; Jeong-eun, K.; Hyeon-joo, B.; Dong-geun, Y. Assessment of air pollution vulnerability using entropy weight: Focusing on ozone. J. Korean Reg. Geogr. Soc. 2015, 21, 751–763. [Google Scholar]
- Liu, Y.; Wu, J.; Yu, D. Characterizing spatiotemporal patterns of air pollution in China: A multiscale landscape approach. Ecol. Indic. 2017, 76, 344–356. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Chen, H.; Li, X.; Ma, X. Air pollution and its influential factors in China’s hot spots. J. Clean. Prod. 2018, 185, 619–627. [Google Scholar] [CrossRef]
- Zhou, C.; Shi, C.; Wang, S.; Zhang, G. Estimation of eco-efficiency and its influencing factors in Guangdong province based on Super-SBM and panel regression models. Ecol. Ind. 2018, 86, 67–80. [Google Scholar] [CrossRef]
- Han, R.; Feng, C.C.; Xu, N.; Guo, L. Spatial heterogeneous relationship between ecosystem services and human disturbances: A case study in Chuandong, China. Sci. Total Environ. 2020, 721, 137818. [Google Scholar] [CrossRef] [PubMed]
- Gujarati, D.N.; Porter, D.C. Basic Econometrics, 5th ed.; McGraw-Hill Education: Boston, MA, USA, 2009. [Google Scholar]
- Lee, H.Y.; Noh, S.C. Advanced Statistical Analysis, 2nd ed.; Shadow Finch Media LLC: Saginaw, MI, USA, 2013. [Google Scholar]
- Liu, X.; Zou, B.; Feng, H.; Liu, N.; Zhang, H. Anthropogenic factors of PM2.5 distributions in China’s major urban agglomerations: A spatial-temporal analysis. J. Clean. Prod. 2020, 264, 121709. [Google Scholar] [CrossRef]
- Cohen, A.; Anderson, H.; Ostra, B.; Pandey, D.; Krzyzanowski, M.; Künzli, N.; Gutschmidt, K.; Pope, C.A., III; Romieu, I.; Samet, J.; et al. Chapter 17: Urban air pollution. In Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors; Ezzati, M., Lopez, A.D., Rodgers, A., Murray, C.J.L., Eds.; World Health Organization: Geneva, Switzerland, 2004; Volume 1, pp. 1353–1434. [Google Scholar]
- Pope, C.A., III; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Pizza, D.M.; Villada-Canela, M.; Rivera-Castaneda, P.; Reyna-Carranza, M.A.; Osornio-Vargas, A.; Martínez-Cruz, A.L. Stated benefits from air quality improvement through urban afforestation in an arid city—A contingent valuation in Mexicali, Baja California, Mexico. Urban For. Urban Gree. 2020, 55, 126854. [Google Scholar] [CrossRef]
- Xing, Y.; Brimblecombe, P. Trees and parks as “the lungs of cities”. Urban For. Urban Gree. 2020, 48, 126552. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, Y.; Ma, K. Evaluation of PM2. 5 Retention Capacity and Structural Optimization of Urban Park Green Spaces in Beijing. Forests 2022, 13, 415. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Nowak, D.J. Spatial heterogeneity and air pollution removal by an urban forest. Landsc. Urban Plan. 2009, 90, 102–110. [Google Scholar] [CrossRef]
- Li, M.; Jung, J. A study on the effect of urbanization development level on air quality improvement: Targeting 31 provinces and municipalities in China. Environ. Policy 2021, 29, 77–111. [Google Scholar]
- Jenks, G.F. The Data Model Concept in Statistical Mapping. In International Yearbook of Cartography, 7; Bertelsmann: Gütersloh, Germany, 1967; pp. 186–190. [Google Scholar]
- Lee, J.Y.; Lee, S.S. Analysis of the current state of fine dust and pollution sources in Chungcheongbuk-do. J. Inst. Constr. Technol. 2021, 40, 35–43. [Google Scholar]
- Fang, C.; Guan, X.; Lu, S.; Zhou, M.; Deng, Y. Input-output efficiency of urban agglomerations in China: An application of data envelopment analysis (DEA). Urban Stud. 2015, 50, 2766–2790. [Google Scholar] [CrossRef]
- Jiang, L.; Bai, L. Spatio-temporal characteristics of urban air pollutions an d their causal relationships: Evidence from Beijing and its neighboring cities. Sci. Rep. 2018, 8, 1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badland, H.; Whitzman, C.; Lowe, M.; Davern, M.; Aye, L.; Butterworth, I.; Hes, D.; Giles-Corti, B. Urban livability: Emerging lessons from Australia for exploring the potential for indicators to measure the social determinants of health. Soc. Sci. Med. 1982, 111, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Jianxiao, L.; Han, B.; Wang, M. Using multi-source data to assess livability in Hong Kong at the community based level: A combined subjective-objective approach. Geogr. Sustain. 2020, 1, 284–294. [Google Scholar]
- Yoo, D.G.; Kim, I.T.; Song, M.H. The causality between public finance and economic growth in China. J. Korean Natl. Econ. 2011, 29, 97–113. [Google Scholar]
- Jun, S.M. A Study on the Derivation and Measurement of livability Indicators Considering the Vulnerability of Urban Climate Change. Ph.D. Thesis, Pusan National University, Busan, Korea, 2022; pp. 1–134. [Google Scholar]
- Geng, G.; Zheng, Y.; Zhang, Q.; Xue, T.; Zhao, H.; Tong, D.; Zheng, B.; Li, M.; Liu, F.; Hong, C.; et al. Drivers of PM2. 5 air pollution deaths in China 2002–2017. Nat. Geosci. 2021, 14, 645–650. [Google Scholar] [CrossRef]
- Joint Research Project for Long-range Transboundary Air Pollutants in Northeast Asia. In Summary Report of the 4th Stage (2013–2017) LTP Project; Research Report to National Institute of Environmental Research; National Institute of Environmental Research: Incheon, Korea, 2019.
Domain | Indicators | Sub-Indicators |
---|---|---|
Vulnerability | Sensitivity | X1: Percentage of the population over 65 years X2: Percentage of the population under 13 years X3: Ratio of recipients of basic living support X4: Mortality rate per 100,000 population X5: Aging index |
Urban living infrastructure | Culture and leisure | X6: Urban Park area per 1000 population |
Education | X7: Number of students per teacher X8: Number of childcare facilities per 1000 children | |
Health and healthcare | X9: Number of employees in medical institutions per 1000 population X10: Hospital beds per 1000 population | |
Urban plan | Urban growth | X11: Urban area per capita X12: Green area rate |
Transportation | Convenience of movement | X13: Road pavement rate X14: Number of vehicle registrations per person |
Economic development | Economic vitality | X15: GDP per capita X16: Income per capita X17: Economic participation rate X18: Number of employees per 1000 population |
Social development | Social inclusion | X19: Public administration budget in general accounting X20: Social welfare budget in general accounting X21: Population |
Safety | Traffic safety | X22: Number of traffic accidents per 1000 vehicles |
Natural disaster | X23: Natural disaster damage | |
Environment | Environmental consumption | X24: Final energy consumption |
Water management system | X25: Water supply rate | |
Climate | X26: Annual average precipitation X27: Annual average temperature |
Domain | Grey Correlation Degree | Indicators | Grey Correlation Degree | Sub Indicators | Grey Correlation Degree | |||
---|---|---|---|---|---|---|---|---|
Korea | China | Korea | China | Korea | China | |||
Vulnerability | 0.565 | 0.673 | Sensitivity | 0.565 | 0.673 | X1: Percentage of the population over 65 years | 0.497 | 0.530 |
X2: Percentage of the population under 13 | 0.870 | 0.512 | ||||||
X3: Ratio of recipients of basic living support | 0.470 | 0.874 | ||||||
X4: Mortality rate per 100,000 population | 0.493 | 0.518 | ||||||
X5: Aging index | 0.496 | 0.931 | ||||||
Urban living infrastructure | 0.665 | 0.773 | Culture and leisure | 0.825 | 0.856 | X6: Urban park area per 1000 population | 0.825 | 0.856 |
Education | 0.687 | 0.561 | X7: Number of students per teacher | 0.870 | 0.512 | |||
X8: Number of childcare facilities per 1000 children | 0.504 | 0.610 | ||||||
Health and healthcare | 0.483 | 0.932 | X9: Number of employees in medical institutions per 1000 | 0.481 | 0.934 | |||
X10: Hospital beds per 1000 population | 0.485 | 0.931 | ||||||
Urban plan | 0.504 | 0.737 | Urban growth | 0.504 | 0.737 | X11: Urban area per capita | 0.526 | 0.584 |
X12: Green area rate | 0.482 | 0.890 | ||||||
Transportation | 0.505 | 0.523 | Convenience of movement | 0.505 | 0.523 | X13: Road pavement rate | 0.483 | 0.518 |
X14: Number of vehicle registrations per person | 0.527 | 0.527 | ||||||
Economic development | 0.495 | 0.590 | Economic vitality | 0.495 | 0.590 | X15: GDP per capita | 0.504 | 0.474 |
X16: Income per capita | 0.483 | 0.526 | ||||||
X17: Economic participation rate | 0.461 | 0.514 | ||||||
X18: Number of employees per 1000 population | 0.531 | 0.844 | ||||||
Social development | 0.556 | 0.475 | Social inclusion | 0.556 | 0.475 | X19: Public administration budget in general accounting | 0.746 | 0.467 |
X20: Social welfare budget in general accounting | 0.462 | 0.452 | ||||||
X21: Population | 0.460 | 0.507 | ||||||
Safety | 0.672 | 0.502 | Traffic safety | 0.840 | 0.429 | X22: Number of traffic accidents per 1000 vehicles | 0.840 | 0.429 |
Natural disaster | 0.504 | 0.574 | X23: Natural disaster damage | 0.504 | 0.574 | |||
Environment | 0.580 | 0.541 | Environmental consumption | 0.624 | 0.512 | X24: Final energy consumption | 0.624 | 0.512 |
Water management | 0.459 | 0.475 | X25: Water supply rate | 0.459 | 0.475 | |||
Climate | 0.658 | 0.540 | X26: Annual average precipitation | 0.677 | 0.462 | |||
X27: Annual average temperature | 0.640 | 0.616 |
Domain | Indicators | Sub Indicators | South Korea | China | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |||
Vulnerability | Sensitivity | X3: Ratio of recipients of basic living support | 0.013 | 0.099 | 0.053 | 0.001 | ||||
Urban living infrastructure | Culture and leisure | X6: Urban park area per 1000 population | 0.004 | −0.170 * | −0.085 | 0.004 | −0.142 | 0.080 | −0.049 | 0.080 * |
Education | X7: Number of students per teacher | 0.587 *** | 1.819 *** | 0.787 *** | 0.627 *** | |||||
X8: Number of childcare facilities per 1000 children | −0.146 | −0.267 | −0.158 | −0.158 * | −0.161 | −0.478 ** | −0.182 | −0.478 *** | ||
Health and healthcare | X9: Number of employees in medical institutions per 1000 | −0.346 *** | 0.644 | −0.358 * | −0.335 *** | 0.164 | 0.8317 | 0.273 | 0.832 *** | |
X10: Hospital beds per 1000 population | 0.104 * | −0.047 | 0.156 | 0.127 *** | 0.515 * | 0.197 | 0.761 ** | 0.197 *** | ||
Urban plan | Urban growth | X12: Green area rate | −0.118 | 0.013 | −0.015 | −0.121 | 0.047 | −0.044 | −0.499 | −0.044 |
Economic development | Economic vitality | X18: Number of employees per 1000 population | −0.086 | 0.462 | 0.061 | −0.034 | 0.637 | 1.992 * | 0.980 * | 1.992 * |
Social development | Social inclusion | X19: Public administration budget in general accounting | 0.081 | 0.225 ** | 0.113 | 0.107 *** | −0.344 | −0.821 ** | −0.457** | −0.821 *** |
Safety | Traffic safety | X22: Number of traffic accidents per 1000 vehicles | 0.210 *** | 0.063 | 0.116 | 0.191 *** | 0.083 | −0.057 | −0.001 | −0.057 |
Environment | Environmental consumption | X24: Final energy consumption | 0.228 | −0.057 | −0.046 | 0.045 | 0.057 | 0.142 | 0.135 | 0.142 |
Climate | X26: Annual average precipitation | −0.061 * | −0.054 | −0.075 ** | −0.059 *** | −0.354 *** | −0.197 | −0.241 *** | −0.197 *** | |
X27: Annual average temperature | −0.315 ** | −0.029 | −0.264 | −0.442 *** | ||||||
_cons | 3.014 | −1.579 | 2.292 | 3.252 *** | 1.064 | −7.163 | −0.476 | −7.163 | ||
R-squared | 0.597 | 0.679 | 0.630 | 0.606 | 0.522 | 0.461 | 0.522 | |||
Modified Wald test | chi2 (16) | 1268.80 | 2010.10 | |||||||
Prob > chi2 | 0.000 | 0.000 | ||||||||
Wooldridge test | F(1, 15) | 16.450 | 10.456 | |||||||
Prob > F | 0.001 | 0.005 | ||||||||
Hausman test | chi2 (13) = (b-B)’[(V_b-V_B)^(−1)](b-B) | 12.320 | 202.410 | |||||||
Prob > chi2 | 0.501 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jun, S.; Li, M.; Jung, J. Air Pollution (PM2.5) Negatively Affects Urban Livability in South Korea and China. Int. J. Environ. Res. Public Health 2022, 19, 13049. https://doi.org/10.3390/ijerph192013049
Jun S, Li M, Jung J. Air Pollution (PM2.5) Negatively Affects Urban Livability in South Korea and China. International Journal of Environmental Research and Public Health. 2022; 19(20):13049. https://doi.org/10.3390/ijerph192013049
Chicago/Turabian StyleJun, Sunmin, Mengying Li, and Juchul Jung. 2022. "Air Pollution (PM2.5) Negatively Affects Urban Livability in South Korea and China" International Journal of Environmental Research and Public Health 19, no. 20: 13049. https://doi.org/10.3390/ijerph192013049
APA StyleJun, S., Li, M., & Jung, J. (2022). Air Pollution (PM2.5) Negatively Affects Urban Livability in South Korea and China. International Journal of Environmental Research and Public Health, 19(20), 13049. https://doi.org/10.3390/ijerph192013049