Rapid Eye Movement Sleep during Early Life: A Comprehensive Narrative Review
Abstract
:1. Introduction
2. REM Sleep in Early Development of Humans
2.1. REM Sleep Amount across Early Development
2.2. Polysomnographic, Behavioral and Physiological Characteristics of REM Sleep in Early Development
2.2.1. Polysomnographic Features
2.2.2. Behavioral and Physiological Features
2.3. REM Sleep Timing in Developmental Sleep-Wake Cycle
3. Neurodevelopmental Disorders Associated with REM Sleep Disturbances during Early Development of Humans
3.1. Sudden Unexpected Infant Death (SUID), Sudden Infant Death Syndrome (SIDS)
3.2. Narcolepsy
3.3. Developmental Disabilities
3.4. REM Sleep Behavior Disorder (RBD)
4. REM Sleep in Early Development of Mammalia
Regulatory Mechanisms of Early REM Sleep Development
5. Underlying Mechanisms Involved in Neurodevelopmental Disorders Associated with Early REM Sleep Disturbances in Mammalian Models
5.1. CNS Development
5.2. Social Behaviors
5.3. SUID/SIDS
5.4. Narcolepsy
Animal Models | Phenotypes | Underlying Mechanisms | Ref. | |
---|---|---|---|---|
SIDS | c | Frequent and severe apnea, high mortality during development. | Selectively lack of 5-HT neurons induces abnormality of cardiorespiratory control. | [200] |
TPH2-/- rat pups | Increased apnea only in REM sleep. Arousal responses in hypoxia condition were selectively delayed in REM sleep. | Deficient in central 5-HT leads to a loss of inhibitory effect on LDT/PPT activation, and a failure in breathing. | [201] | |
Perinatal nicotine-exposed 5-HT deficient rat pups | Autoresuscitation failure in response to hypoxia. | 5-HT deficiency and perinatal nicotine exposure increase the vulnerability to environmental stressors and exacerbate defects in cardiorespiratory protective reflexes to repetitive anoxia during the development period. | [202] | |
Narcolepsy | Prepro-orexin gene KO mice | Hypersomnolence during the active phase, fragmented wakefulness, SOREMS, cataplexy. | Orexin deficiency fails to regulate the physiologic sleep-wake cycle. | [203,204] |
Orexin/ataxin-3 mice | Behavioral arrests, premature entry into REM sleep, poorly consolidated sleep patterns and obesity. | Postnatal loss of orexin fails to regulate vigilance states and energy homeostasis. | [205] | |
Orexin/ataxin-3 rats | Fragmented vigilance states, decreased latency to REM sleep, and increased REM sleep time during the active phase, SOREMS and cataplexy. | The presence of orexin impacts vigilance state control through acting as a circadian arousal signal and inhibiting the SOREMS. | [206] | |
ASD | RSD in infant prairie voles | Impair pair bond formation and alter object preference in adulthood. | Early REM sleep is crucial for tuning inhibitory neural circuits and developing species-typical affiliative social behaviors. | [192] |
SD in infant mice from P5-P52 | Long-lasting hypoactivity and impaired social behavior in adolescent. | Early sleep deprivation increases downstream signaling products of the mammalian target of rapamycin pathway. | [193] | |
ADHD | RSD in infant rats for 2 weeks | Reduced brain size, hyperactivity, anxiety, attention and learning difficulties. | Early REM deprivation damages brain maturation and cause ADHD-like behaviors. | [28,82] |
RED in infant rats | Memory deficit. | Reduction of stability of hippocampal neuronal circuits. | [189] | |
Depression | RSD in neonatal rats | Reduction of male sexual behaviors, pleasure-seeking, shock-induced aggression, REM sleep latency. | REM sleep promotes early emotional and mental development. | [197,198,199] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aserinsky, E.; Kleitman, N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 1953, 118, 273–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dement, W.; Kleitman, N. Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroencephalogr. Clin. Neurophysiol. 1957, 9, 673–690. [Google Scholar] [CrossRef]
- Dement, W.; Kleitman, N. The relation of eye movements during sleep to dream activity: An objective method for the study of dreaming. J. Exp. Psychol. 1957, 53, 339–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dement, W.C.; Pelayo, R. Reminiscences of Michel Jouvet. Sleep Med. 2018, 49, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Perogamvros, L.; Dang-Vu, T.T.; Desseilles, M.; Schwartz, S. Sleep and dreaming are for important matters. Front Psychol. 2013, 4, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.Q.; Liu, W.Y.; Li, L.; Qu, W.M.; Huang, Z.L. Neural circuitry underlying REM sleep: A review of the literature and current concepts. Prog. Neurobiol. 2021, 204, 102106. [Google Scholar] [CrossRef]
- Monti, A.; Medigue, C.; Nedelcoux, H.; Escourrou, P. Autonomic control of the cardiovascular system during sleep in normal subjects. Eur. J. Appl. Physiol. 2002, 87, 174–181. [Google Scholar] [CrossRef]
- Negoescu, R.M.; Csiki, I.E. Autonomic control of the heart in some vagal maneuvers and normal sleep. Physiologie 1989, 26, 39–49. [Google Scholar]
- Challamel, M.J. Functions of paradoxical sleep and ontogenesis. Neurophysiol. Clin. 1992, 22, 117–132. [Google Scholar] [CrossRef]
- Dos Santos, A.; Khan, R.L.; Rocha, G.; Nunes, M.L. Behavior and EEG concordance of active and quiet sleep in preterm very low birth weight and full-term neonates at matched conceptional age. Early Hum. Dev. 2014, 90, 507–510. [Google Scholar] [CrossRef]
- Kohyama, J. Sleep as a window on the developing brain. Curr. Probl. Pediatr. 1998, 28, 69–92. [Google Scholar] [CrossRef]
- Roffwarg, H.P.; Muzio, J.N.; Dement, W.C. Ontogenetic development of the human sleep-dream cycle. Science 1966, 152, 604–619. [Google Scholar] [CrossRef] [PubMed]
- Werth, J.; Atallah, L.; Andriessen, P.; Long, X.; Zwartkruis-Pelgrim, E.; Aarts, R.M. Unobtrusive sleep state measurements in preterm infants-A review. Sleep Med. Rev. 2017, 32, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Balzamo, E.; Bradley, R.J.; Rhodes, J.M. Sleep ontogeny in the chimpanzee: From two months to forty-one months. Electroencephalogr. Clin. Neurophysiol. 1972, 33, 47–60. [Google Scholar] [CrossRef]
- Blumberg, M.S. Developing sensorimotor systems in our sleep. Curr. Dir. Psychol. Sci. 2015, 24, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.F.; Hou, M.; Shao, Y.F.; Chen, H.L.; Gao, J.X.; Xie, J.F.; Chen, Y.N.; Cong, C.Y.; Dai, F.Q.; Hou, Y.P. A novel continuously recording approach for unraveling ontogenetic development of sleep-wake cycle in rats. Front. Neurol. 2019, 10, 873. [Google Scholar] [CrossRef] [Green Version]
- Frank, M.G. Sleep and synaptic plasticity in the developing and adult brain. Curr. Top Behav. Neurosci. 2015, 25, 123–149. [Google Scholar] [CrossRef]
- Jouvet-Mounier, D.; Astic, L.; Lacote, D. Ontogenesis of the states of sleep in rat, cat, and guinea pig during the first postnatal month. Dev. Psychobiol. 1970, 2, 216–239. [Google Scholar] [CrossRef]
- Li, W.; Ma, L.; Yang, G.; Gan, W.B. REM sleep selectively prunes and maintains new synapses in development and learning. Nat. Neurosci. 2017, 20, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Reite, M.; Stynes, A.J.; Vaughn, L.; Pauley, J.D.; Short, R.A. Sleep in infant monkeys: Normal values and behavioral correlates. Physiol. Behav. 1976, 16, 245–251. [Google Scholar] [CrossRef]
- Rensing, N.; Moy, B.; Friedman, J.L.; Galindo, R.; Wong, M. Longitudinal analysis of developmental changes in electroencephalography patterns and sleep-wake states of the neonatal mouse. PLoS ONE 2018, 13, e0207031. [Google Scholar] [CrossRef] [PubMed]
- Ruckebusch, Y.; Gaujoux, M.; Eghbali, B. Sleep cycles and kinesis in the foetal lamb. Electroencephalogr. Clin. Neurophysiol. 1977, 42, 226–237. [Google Scholar] [CrossRef]
- Szeto, H.H.; Hinman, D.J. Prenatal development of sleep-wake patterns in sheep. Sleep 1985, 8, 347–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thurber, A.; Jha, S.K.; Coleman, T.; Frank, M.G. A preliminary study of sleep ontogenesis in the ferret (Mustela putorius furo). Behav. Brain Res. 2008, 189, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Kirischuk, S.; Sinning, A.; Blanquie, O.; Yang, J.W.; Luhmann, H.J.; Kilb, W. Modulation of Neocortical Development by Early Neuronal Activity: Physiology and Pathophysiology. Front. Cell. Neurosci. 2017, 11, 379. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, R.; Toda, H.; Libourel, P.A.; Hayashi, Y.; Vogt, K.E.; Sakurai, T. Evolutionary Origin of Distinct NREM and REM Sleep. Front. Psychol. 2020, 11, 567618. [Google Scholar] [CrossRef]
- Blumberg, M.S.; Lesku, J.A.; Libourel, P.A.; Schmidt, M.H.; Rattenborg, N.C. What is REM sleep? Curr. Biol. 2020, 30, R38–R49. [Google Scholar] [CrossRef]
- Frank, M.G. The ontogenesis of mammalian sleep: Form and function. Curr. Sleep Med. Rep. 2020, 6, 267–279. [Google Scholar] [CrossRef]
- Blumberg, M.S.; Coleman, C.M.; Gerth, A.I.; McMurray, B. Spatiotemporal structure of REM sleep twitching reveals developmental origins of motor synergies. Curr. Biol. 2013, 23, 2100–2109. [Google Scholar] [CrossRef] [Green Version]
- Blumberg, M.S.; Dooley, J.C.; Sokoloff, G. The developing brain revealed during sleep. Curr. Opin. Physiol. 2020, 15, 14–22. [Google Scholar] [CrossRef]
- Graven, S.N.; Browne, J.V. Sleep and brain development: The critical role of sleep in fetal and early neonatal brain development. Newborn Infant. Nurs. Rev. 2008, 8, 173–179. [Google Scholar] [CrossRef]
- Mizrahi, E.M.; Hrachovy, R.A.; Kellaway, P. Atlas of Neonatal Electroencephalography, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2004. [Google Scholar]
- Anders, T.; Ende, R.; Parmelee, A. A Manual of Standardized Terminology, Techniques, and Criteria for Scoring of States of Sleep and Wakefulness in Newborn Infants; UCLA Brain Information Service/BRI Publications Office: Los Angeles, CA, USA, 1971. [Google Scholar]
- Dereymaeker, A.; Pillay, K.; Vervisch, J.; De Vos, M.; Van Huffel, S.; Jansen, K.; Naulaers, G. Review of sleep-EEG in preterm and term neonates. Early Hum. Dev. 2017, 113, 87–103. [Google Scholar] [CrossRef]
- Dreyfus-Brisac, C. Ontogenesis of sleep in human prematures after 32 weeks of conceptional age. Dev. Psychobiol. 1970, 3, 91–121. [Google Scholar] [CrossRef] [PubMed]
- Harper, R.M.; Leake, B.; Hoffman, H.; Walter, D.O.; Hoppenbrouwers, T.; Hodgman, J.; Sterman, M.B. Periodicity of sleep states is altered in infants at risk for the sudden infant death syndrome. Science 1981, 213, 1030–1032. [Google Scholar] [CrossRef] [PubMed]
- Palmu, K.; Kirjavainen, T.; Stjerna, S.; Salokivi, T.; Vanhatalo, S. Sleep wake cycling in early preterm infants: Comparison of polysomnographic recordings with a novel EEG-based index. Clin. Neurophysiol. 2013, 124, 1807–1814. [Google Scholar] [CrossRef]
- Parmelee, A.H., Jr.; Wenner, W.H.; Akiyama, Y.; Schultz, M.; Stern, E. Sleep states in premature infants. Dev. Med. Child. Neurol. 1967, 9, 70–77. [Google Scholar] [CrossRef]
- Cortese, S.; Ivanenko, A.; Ramtekkar, U.; Angriman, M. Sleep disorders in children and adolescents: A practical guide. In IACAPAP Textbook of Child and Adolescent Mental Health; Rey, J., Ed.; International Association for Child and Adolescent Psychiatry and Allied Professions: Geneva, Switzerland, 2014. [Google Scholar]
- Peplow, M. Structure: The anatomy of sleep. Nature 2013, 497, S2–S3. [Google Scholar] [CrossRef] [Green Version]
- Ohayon, M.M.; Carskadon, M.A.; Guilleminault, C.G.; Vitiello, M.V. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: Developing normative sleep values across the human lifespan. Sleep 2004, 27, 1255–1273. [Google Scholar] [CrossRef]
- Davis, F.C.; Frank, M.G.; Heller, H.C. Ontogeny of sleep and circadian rhythms. In Regulation of Sleep and Circadian Rhythms; Fred, W., Turek, P.C.Z., Eds.; CRC Press: New York, NY, USA, 1999; pp. 19–79. [Google Scholar]
- Corsi-Cabrera, M.; Cubero-Rego, L.; Ricardo-Garcell, J.; Harmony, T. Week-by-week changes in sleep EEG in healthy full-term newborns. Sleep 2020, 43. [Google Scholar] [CrossRef]
- Korotchikova, I.; Connolly, S.; Ryan, C.A.; Murray, D.M.; Temko, A.; Greene, B.R.; Boylan, G.B. EEG in the healthy term newborn within 12 hours of birth. Clin. Neurophysiol. 2009, 120, 1046–1053. [Google Scholar] [CrossRef]
- Aserinsky, E.; Kleitman, N. Two types of ocular motility occurring in sleep. J. Appl. Physiol. 1955, 8, 1–10. [Google Scholar] [CrossRef]
- Coons, S.; Guilleminault, C. Development of consolidated sleep and wakeful periods in relation to the day/night cycle in infancy. Dev. Med. Child. Neurol. 1984, 26, 169–176. [Google Scholar] [CrossRef]
- Antelmi, E.; Pizza, F.; Vandi, S.; Neccia, G.; Ferri, R.; Bruni, O.; Filardi, M.; Cantalupo, G.; Liguori, R.; Plazzi, G. The spectrum of REM sleep-related episodes in children with type 1 narcolepsy. Brain 2017, 140, 1669–1679. [Google Scholar] [CrossRef] [Green Version]
- Diniz Behn, C.G.; Klerman, E.B.; Mochizuki, T.; Lin, S.C.; Scammell, T.E. Abnormal sleep/wake dynamics in orexin knockout mice. Sleep 2010, 33, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Dittrichová, J.; Paul, K.; Pavliková, E. Rapid eye movements in paradoxical sleep in infants. Neuropadiatrie 1972, 3, 248–257. [Google Scholar] [CrossRef]
- Coons, S.; Guilleminault, C. Development of sleep-wake patterns and non-rapid eye movement sleep stages during the first six months of life in normal infants. Pediatrics 1982, 69, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Miano, S.; PiaVilla, M.; Blanco, D.; Zamora, E.; Rodriguez, R.; Ferri, R.; Bruni, O.; Peraita-Adrados, R. Development of NREM sleep instability-continuity (cyclic alternating pattern) in healthy term infants aged 1 to 4 months. Sleep 2009, 32, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cecchini, M.; Baroni, E.; Di Vito, C.; Lai, C. Smiling in newborns during communicative wake and active sleep. Infant Behav Dev 2011, 34, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Groome, L.J.; Swiber, M.J.; Holland, S.B.; Bentz, L.S.; Atterbury, J.L.; Trimm, R.F., 3rd. Spontaneous motor activity in the perinatal infant before and after birth: Stability in individual differences. Dev. Psychobiol. 1999, 35, 15–24. [Google Scholar] [CrossRef]
- Arditi-Babchuk, H.; Feldman, R.; Eidelman, A.I. Rapid eye movement (REM) in premature neonates and developmental outcome at 6 months. Infant. Behav. Dev. 2009, 32, 27–32. [Google Scholar] [CrossRef]
- Ktonas, P.Y.; Bes, F.W.; Rigoard, M.T.; Wong, C.; Mallart, R.; Salzarulo, P. Developmental changes in the clustering pattern of sleep rapid eye movement activity during the first year of life: A Markov-process approach. Electroencephalogr. Clin. Neurophysiol. 1990, 75, 136–140. [Google Scholar] [CrossRef]
- Kohyama, J.; Tachibana, N.; Taniguchi, M. Development of REM sleep atonia. Acta Neurol. Scand. 1999, 99, 368–373. [Google Scholar] [CrossRef]
- Dondi, M.; Messinger, D.; Colle, M.; Tabasso, A.; Simion, F.; Barba, B.D.; Fogel, A. A new perspective on neonatal smiling: Differences between the judgments of expert coders and naive observers. Infancy 2007, 12, 235–255. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, K.; Takai-Kawakami, K.; Tomonaga, M.; Suzuki, J.; Kusaka, T.; Okai, T. Origins of smile and laughter: A preliminary study. Early Hum. Dev. 2006, 82, 61–66. [Google Scholar] [CrossRef]
- Messinger, D.; Dondi, M.; Nelson-Goens, G.C.; Beghi, A.; Fogel, A.; Simion, F. How sleeping neonates smile. Dev. Sci. 2002, 5, 48–54. [Google Scholar] [CrossRef]
- Messinger, D.; Fogel, A. The interactive development of social smiling. Adv. Child. Dev. Behav. 2007, 35, 327–366. [Google Scholar] [CrossRef]
- Ambrose, J.A. The development of the smiling response in early infancy. In Determinants of Infant Behavior; Foss, B.M., Ed.; Methuen: London, UK, 1961; pp. 179–201. [Google Scholar]
- Kagan, J.; Fox, N.A. Biology, culture, and temperamental biases. In Handbook of Child Psychology, 6th ed.; Eisenberg, N., Ed.; Wiley: New York, NY, USA, 2007; Volume 3. [Google Scholar]
- Spitz, R.A.; Emde, R.N.; Metcalf, D.R. Further prototypes of ego formation: A working paper from a research project on early development. Psychoanal. Study Child. 1970, 25, 417–441. [Google Scholar] [CrossRef] [PubMed]
- Sroufe, L.A.; Waters, E. The ontogenesis of smiling and laughter: A perspective on the organization of development in infancy. Psychol. Rev. 1976, 83, 173–189. [Google Scholar] [CrossRef]
- Kawakami, F.; Kawakami, K.; Tomonaga, M.; Takai-Kawakami, K. Can we observe spontaneous smiles in 1-year-olds? Infant. Behav. Dev. 2009, 32, 416–421. [Google Scholar] [CrossRef]
- Elder, D.E.; Campbell, A.J.; Larsen, P.D.; Galletly, D. Respiratory variability in preterm and term infants: Effect of sleep state, position and age. Respir. Physiol. Neurobiol. 2011, 175, 234–238. [Google Scholar] [CrossRef]
- Prechtl, H. Polygraphic studies of the full-term newborn. II. Computer analysis of recorded data. Stud. Infancy 1968, 22–40. [Google Scholar]
- Heimann, K.; Heussen, N.; Vaeßen, P.; Wallmeier, C.; Orlikowsky, T.; Wenzl, T.G. Basic values for heart and respiratory rates during different sleep stages in healthy infants. Biomed. Tech. (Berl.) 2013, 58, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Scher, M.S.; Johnson, M.W.; Holditch-Davis, D. Cyclicity of neonatal sleep behaviors at 25 to 30 weeks’ postconceptional age. Pediatr. Res. 2005, 57, 879–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borghese, I.F.; Minard, K.L.; Thoman, E.B. Sleep rhythmicity in premature infants: Implications for development status. Sleep 1995, 18, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Bes, F.; Fagioli, I.; Peirano, P.; Schulz, H.; Salzarulo, P. Trends in electroencephalographic synchronization across nonrapid eye movement sleep in infants. Sleep 1994, 17, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Parmelee, A.H., Jr.; Wenner, W.H.; Schulz, H.R. Infant sleep patterns:from birth to 16 weeks of age. J. Pediatr. 1964, 65, 576–582. [Google Scholar] [CrossRef]
- Peirano, P.; Algarín, C.; Uauy, R. Sleep-wake states and their regulatory mechanisms throughout early human development. J. Pediatr. 2003, 143, S70–S79. [Google Scholar] [CrossRef]
- Fagioli, I.; Salzarulo, P. Sleep states development in the first year of life assessed through 24-h recordings. Early Hum. Dev. 1982, 6, 215–228. [Google Scholar] [CrossRef]
- Navelet, Y.; Benoit, O.; Bouard, G. Nocturnal sleep organization during the first months of life. Electroencephalogr. Clin. Neurophysiol. 1982, 54, 71–78. [Google Scholar] [CrossRef]
- Ficca, G.; Fagioli, I.; Salzarulo, P. Sleep organization in the first year of life: Developmental trends in the quiet sleep-paradoxical sleep cycle. J. Sleep Res. 2000, 9, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Galland, B.C.; Taylor, B.J.; Elder, D.E.; Herbison, P. Normal sleep patterns in infants and children: A systematic review of observational studies. Sleep Med. Rev. 2012, 16, 213–222. [Google Scholar] [CrossRef]
- Shapiro-Mendoza, C.K.; Palusci, V.J.; Hoffman, B.; Batra, E.; Yester, M.; Corey, T.S.; Sens, M.A. Half century since SIDS: A reappraisal of terminology. Pediatrics 2021, 148, e202153746. [Google Scholar] [CrossRef]
- Naeye, R.L. Hypoxemia and the sudden infant death syndrome. Science 1974, 186, 837–838. [Google Scholar] [CrossRef]
- Blumberg, M.S.; Gall, A.J.; Todd, W.D. The development of sleep-wake rhythms and the search for elemental circuits in the infant brain. Behav. Neurosci. 2014, 128, 250–263. [Google Scholar] [CrossRef] [Green Version]
- Franco, P.; Kugener, B.; Dijoud, F.; Scaillet, S.; Groswasser, J.; Kato, I.; Montemitro, E.; Lin, J.S.; Kahn, A. Sudden infant death syndrome from epidemiology to pathophysiology. Curr. Pediatr. Rev. 2007, 3, 177–189. [Google Scholar] [CrossRef]
- Mirmiran, M.; Maas, Y.G.; Ariagno, R.L. Development of fetal and neonatal sleep and circadian rhythms. Sleep Med. Rev. 2003, 7, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Montemitro, E.; Franco, P.; Scaillet, S.; Kato, I.; Groswasser, J.; Villa, M.P.; Kahn, A.; Sastre, J.P.; Ecochard, R.; Thiriez, G.; et al. Maturation of spontaneous arousals in healthy infants. Sleep 2008, 31, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Cornwell, A.C.; Feigenbaum, P. Sleep biological rhythms in normal infants and those at high risk for SIDS. Chronobiol. Int. 2006, 23, 935–961. [Google Scholar] [CrossRef]
- Filiano, J.J.; Kinney, H.C. A perspective on neuropathologic findings in victims of the sudden infant death syndrome: The triple-risk model. Biol. Neonate 1994, 65, 194–197. [Google Scholar] [CrossRef]
- Mage, D.T.; Donner, M. A unifying theory for SIDS. Int. J. Pediatr. 2009, 368270. [Google Scholar] [CrossRef]
- Elhaik, E. A “wear and tear” hypothesis to explain sudden infant death syndrome. Front. Neurol. 2016, 7, 180. [Google Scholar] [CrossRef] [Green Version]
- Harrington, C.T.; Hafid, N.A.; Waters, K.A. Butyrylcholinesterase is a potential biomarker for sudden infant death syndrome. EBioMedicine 2002, 80, 104041. [Google Scholar] [CrossRef] [PubMed]
- Broughton, R.; Valley, V.; Aguirre, M.; Roberts, J.; Suwalski, W.; Dunham, W. Excessive daytime sleepiness and the pathophysiology of narcolepsy-cataplexy: A laboratory perspective. Sleep 1986, 9, 205–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dauvilliers, Y.; Arnulf, I.; Mignot, E. Narcolepsy with cataplexy. Lancet 2007, 369, 499–511. [Google Scholar] [CrossRef]
- Spruyt, K. Narcolepsy presentation in diverse populations: An update. Curr. Sleep. Med. Rep. 2020, 6, 239–250. [Google Scholar] [CrossRef]
- de Lecea, L.; Kilduff, T.S.; Peyron, C.; Gao, X.; Foye, P.E.; Danielson, P.E.; Fukuhara, C.; Battenberg, E.L.; Gautvik, V.T.; Bartlett, F.S., 2nd; et al. The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA 1998, 95, 322–327. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.M.; Tanaka, H.; Williams, S.C.; Richardson, J.A.; Kozlowski, G.P.; Wilson, S.; et al. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998, 92, 573–585. [Google Scholar] [CrossRef] [Green Version]
- Partinen, M.; Kornum, B.R.; Plazzi, G.; Jennum, P.; Julkunen, I.; Vaarala, O. Does autoreactivity have a role in narcolepsy? Lancet Neurol. 2014, 13, 1072–1073. [Google Scholar] [CrossRef]
- Thorpy, M.J.; Krieger, A.C. Delayed diagnosis of narcolepsy: Characterization and impact. Sleep Med. 2014, 15, 502–507. [Google Scholar] [CrossRef]
- Bertrand, S.J.; Zhang, Z.; Patel, R.; O’Ferrell, C.; Punjabi, N.M.; Kudchadkar, S.R.; Kannan, S. Transient neonatal sleep fragmentation results in long-term neuroinflammation and cognitive impairment in a rabbit model. Exp. Neurol. 2020, 327, 113212. [Google Scholar] [CrossRef]
- Bernier, A.; Beauchamp, M.H.; Bouvette-Turcot, A.A.; Carlson, S.M.; Carrier, J. Sleep and cognition in preschool years: Specific links to executive functioning. Child. Dev. 2013, 84, 1542–1553. [Google Scholar] [CrossRef]
- Dionne, G.; Touchette, E.; Forget-Dubois, N.; Petit, D.; Tremblay, R.E.; Montplaisir, J.Y.; Boivin, M. Associations between sleep-wake consolidation and language development in early childhood: A longitudinal twin study. Sleep 2011, 34, 987–995. [Google Scholar] [CrossRef] [Green Version]
- Hoyniak, C.P.; Petersen, I.T.; McQuillan, M.E.; Staples, A.D.; Bates, J.E. Less efficient neural processing related to irregular sleep and less sustained attention in toddlers. Dev. Neuropsychol. 2015, 40, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Harvey, M.T.; Kennedy, C.H. Polysomnographic phenotypes in developmental disabilities. Int. J. Dev. Neurosci. 2002, 20, 443–448. [Google Scholar] [CrossRef]
- Daoust, A.M.; Limoges, E.; Bolduc, C.; Mottron, L.; Godbout, R. EEG spectral analysis of wakefulness and REM sleep in high functioning autistic spectrum disorders. Clin. Neurophysiol. 2004, 115, 1368–1373. [Google Scholar] [CrossRef]
- Caravale, B.; Tozzi, C.; Albino, G.; Vicari, S. Cognitive development in low risk preterm infants at 3–4 years of life. Arch. Dis. Child. Fetal. Neonatal. Ed. 2005, 90, F474–F479. [Google Scholar] [CrossRef] [Green Version]
- Holditch-Davis, D. The development of sleeping and waking states in high-risk preterm infants. Infant. Behav. Dev. 1990, 13, 513–531. [Google Scholar] [CrossRef]
- Holditch-Davis, D.; Edwards, L.J. Modeling development of sleep-wake behaviors. II. Results of two cohorts of preterms. Physiol. Behav. 1998, 63, 319–328. [Google Scholar] [CrossRef]
- Shibagaki, M.; Sawata, T.; Tachibana, T. Relation between polysomnographic measures during nocturnal sleep and a quotient of behavioral development in infants with developmental disabilities. Percept. Mot. Ski. 2004, 99, 429–434. [Google Scholar] [CrossRef]
- Jouvet, M.; Petre-Quadens, O. Paradoxical sleep and dreaming in the mentally deficient. Acta Neurol. Et Psychiatr. Belg. 1966, 66, 116–122. [Google Scholar] [CrossRef]
- Watt, J.E.; Strongman, K.T. The organization and stability of sleep states in in fullterm, preterm, and small-for-gestational-age infants: A comparative study. Dev. Psychobiol. 1985, 18, 151–162. [Google Scholar] [CrossRef]
- Polanczyk, G.V.; Salum, G.A.; Sugaya, L.S.; Caye, A.; Rohde, L.A. Annual research review: A meta-analysis of the worldwide prevalence of mental disorders in children and adolescents. J. Child. Psychol. Psychiatry 2015, 56, 345–365. [Google Scholar] [CrossRef] [PubMed]
- Corkum, P.; Tannock, R.; Moldofsky, H. Sleep disturbances in children with attention-deficit/hyperactivity disorder. J. Am. Acad. Child. Adolesc. Psychiatry 1998, 37, 637–646. [Google Scholar] [CrossRef]
- Sung, V.; Hiscock, H.; Sciberras, E.; Efron, D. Sleep problems in children with attention-deficit/hyperactivity disorder: Prevalence and the effect on the child and family. Arch. Pediatr. Adolesc. Med. 2008, 162, 336–342. [Google Scholar] [CrossRef]
- Swanson, J.M.; Sergeant, J.A.; Taylor, E.; Sonuga-Barke, E.J.; Jensen, P.S.; Cantwell, D.P. Attention-deficit hyperactivity disorder and hyperkinetic disorder. Lancet 1998, 351, 429–433. [Google Scholar] [CrossRef]
- Lambez, B.; Harwood-Gross, A.; Golumbic, E.Z.; Rassovsky, Y. Non-pharmacological interventions for cognitive difficulties in ADHD: A systematic review and meta-analysis. J. Psychiatr. Res. 2020, 120, 40–55. [Google Scholar] [CrossRef]
- Shaw, P.; Eckstrand, K.; Sharp, W.; Blumenthal, J.; Lerch, J.P.; Greenstein, D.; Clasen, L.; Evans, A.; Giedd, J.; Rapoport, J.L. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc. Natl. Acad. Sci. USA 2007, 104, 19649–19654. [Google Scholar] [CrossRef] [Green Version]
- Gruber, R.; Xi, T.; Frenette, S.; Robert, M.; Vannasinh, P.; Carrier, J. Sleep disturbances in prepubertal children with attention deficit hyperactivity disorder: A home polysomnography study. Sleep 2009, 32, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Kiov, R.; Kinkelbru, J.; Heipke, S.; Kostanecka-Endress, T.; Westhoff, M.; Cohrs, S.; Ruther, E.; Hajak, G.; Banaschewski, T.; Rothenberger, A. Is there a specific polysomnographic sleep pattern in children with attention deficit/hyperactivity disorder? J. Sleep Res. 2004, 13, 87–93. [Google Scholar] [CrossRef]
- Prehn-Kristensen, A.; Göder, R.; Fischer, J.; Wilhelm, I.; Seeck-Hirschner, M.; Aldenhoff, J.; Baving, L. Reduced sleep-associated consolidation of declarative memory in attention-deficit/hyperactivity disorder. Sleep Med. 2011, 12, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Kirov, R.; Uebel, H.; Albrecht, B.; Banaschewski, T.; Yordanova, J.; Rothenberger, A. Attention-deficit/hyperactivity disorder (ADHD) and adaptation night as determinants of sleep patterns in children. Eur. Child. Adolesc. Psychiatry 2012, 21, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Akinci, G.; Oztura, I.; Hiz, S.; Akdogan, O.; Karaarslan, D.; Ozek, H.; Akay, A. Sleep structure in children with attention-deficit/hyperactivity disorder. J. Child. Neurol. 2015, 30, 1520–1525. [Google Scholar] [CrossRef]
- Díaz-Román, A.; Buela-Casal, G. Shorter REM latency in children with attention-deficit/hyperactivity disorder. Psychiatry. Res. 2019, 278, 188–193. [Google Scholar] [CrossRef]
- Kirov, R.; Banaschewski, T.; Uebel, H.; Kinkelbur, J.; Rothenberger, A. REM-sleep alterations in children with co-existence of tic disorders and attention-deficit/hyperactivity disorder: Impact of hypermotor symptoms. Eur. Child. Adolesc. Psychiatry 2007, 16 (Suppl. S1), 45–50. [Google Scholar] [CrossRef] [PubMed]
- Schenck, C.H.; Mahowald, M.W. REM sleep behavior disorder: Clinical, developmental, and neuroscience perspectives 16 years after its formal identification in SLEEP. Sleep 2002, 25, 120–138. [Google Scholar] [CrossRef] [Green Version]
- Sheldon, S.H.; Jacobsen, J. REM-sleep motor disorder in children. J. Child. Neurol. 1998, 13, 257–260. [Google Scholar] [CrossRef]
- Yeh, S.B.; Schenck, C.H. A case of marital discord and secondary depression with attempted suicide resulting from REM sleep behavior disorder in a 35-year-old woman. Sleep Med. 2004, 5, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Corner, M.A.; Schenck, C.H. Perchance to dream? Primordial motor activity patterns in vertebrates from fish to mammals: Their prenatal origin, postnatal persistence during sleep, and pathological reemergence during REM sleep behavior disorder. Neurosci. Bull. 2015, 31, 649–662. [Google Scholar] [CrossRef] [Green Version]
- Kotagal, S. Rapid eye movement sleep behavior disorder during childhood. Sleep Med. Clin. 2015, 10, 163–167. [Google Scholar] [CrossRef]
- Antelmi, E.; Filardi, M.; Pizza, F.; Vandi, S.; Moresco, M.; Franceschini, C.; Tinazzi, M.; Ferri, R.; Plazzi, G. REM sleep behavior disorder in children with type 1 narcolepsy treated with sodium oxybate. Neurology 2021, 96, e250–e254. [Google Scholar] [CrossRef]
- Haba-Rubio, J.; Frauscher, B.; Marques-Vidal, P.; Toriel, J.; Tobback, N.; Andries, D.; Preisig, M.; Vollenweider, P.; Postuma, R.; Heinzer, R. Prevalence and determinants of rapid eye movement sleep behavior disorder in the general population. Sleep 2018, 41, zsx197. [Google Scholar] [CrossRef] [Green Version]
- Kayser, M.S.; Yue, Z.; Sehgal, A. A critical period of sleep for development of courtship circuitry and behavior in Drosophila. Science 2014, 344, 269–274. [Google Scholar] [CrossRef]
- Siegel, J.M. Do all animals sleep? Trends Neurosci. 2008, 31, 208–213. [Google Scholar] [CrossRef]
- Cirelli, C.; Tononi, G. Cortical development, electroencephalogram rhythms, and the sleep/wake cycle. Biol. Psychiatry 2015, 77, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Frank, M.G.; Heller, H.C. Development of REM and slow wave sleep in the rat. Am. J. Physiol. 1997, 272, R1792–R1799. [Google Scholar] [CrossRef]
- Frank, M.G.; Heller, H.C. The ontogeny of mammalian sleep: A reappraisal of alternative hypotheses. J. Sleep Res. 2003, 12, 25–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seelke, A.M.; Blumberg, M.S. The microstructure of active and quiet sleep as cortical delta activity emerges in infant rats. Sleep 2008, 31, 691–699. [Google Scholar] [CrossRef] [Green Version]
- Seelke, A.M.; Karlsson, K.A.; Gall, A.J.; Blumberg, M.S. Extraocular muscle activity, rapid eye movements and the development of active and quiet sleep. Eur. J. Neurosci. 2005, 22, 911–920. [Google Scholar] [CrossRef]
- Balzamo, E.; Bradley, R.J.; Bradley, D.M.; Pegram, G.V.; Rhodes, J.M. Sleep ontogeny in the chimpanzee: From birth to two months. Electroencephalogr. Clin. Neurophysiol. 1972, 33, 41–46. [Google Scholar] [CrossRef]
- Hsieh, K.C.; Robinson, E.L.; Fuller, C.A. Sleep architecture in unrestrained rhesus monkeys (Macaca mulatta) synchronized to 24-hour light-dark cycles. Sleep 2008, 31, 1239–1250. [Google Scholar] [CrossRef] [Green Version]
- Kripke, D.F.; Reite, M.L.; Pegram, G.V.; Stephens, L.M.; Lewis, O.F. Clinical and laboratory notes. Nocturnal sleep in rhesus monkeys. Electroencephalogr. Clin. Neurophysiol. 1968, 24, 582–586. [Google Scholar] [CrossRef]
- Meier, G.W.; Berger, R.J. Development of sleep and wakefulness patterns in the infant rhesus monkey. Exp. Neurol. 1965, 12, 257–277. [Google Scholar] [CrossRef]
- Weitzman, E.D.; Kripke, D.F.; Pollak, C.; Dominguez, J. Cyclic activity in sleep of macaca mulatta. Arch. Neurol. 1965, 12, 463–467. [Google Scholar] [CrossRef]
- Yu, S.; Liu, N.; Zeng, T.; Tian, S.; Chen, N.; Zhou, Y.; Ma, Y. Age-related effects of bilateral frontal eye fields lesions on rapid eye movements during REM sleep in rhesus monkeys. Neurosci. Lett. 2004, 366, 58–62. [Google Scholar] [CrossRef]
- Ruckebusch, Y. The relevance of drowsiness in the circadian cycle of farm animals. Anim. Behav. 1972, 20, 637–643. [Google Scholar] [CrossRef]
- Adrien, J. Neonatal sleep, a genetically-driven rehearsal before the show: An endless encounter with Michel Jouvet. Sleep Med. 2018, 49, 20–23. [Google Scholar] [CrossRef]
- Bowe-Anders, C.; Adrien, J.; Roffwarg, H.P. Ontogenesis of ponto-geniculo-occipital activity in the lateral geniculate nucleus of the kitten. Exp. Neurol. 1974, 43, 242–260. [Google Scholar] [CrossRef]
- Jouvet, M. Neurophysiology of the states of sleep. Physiol. Rev. 1967, 47, 117–177. [Google Scholar] [CrossRef]
- Jouvet, M. Sleep study. Arch. Ital. De Biol. 1973, 111, 564–576. [Google Scholar]
- Laguzzi, R.F.; Adrien, J.; Bourgoin, S.; Hamon, M. Effects of intraventricular injection of 6-hydroxydopamine in the developing kitten. 1. On the sleepwaking cycles. Brain Res. 1979, 160, 445–459. [Google Scholar] [CrossRef]
- Villablanca, J.R.; de Andrés, I.; Olmstead, C.E. Sleep-waking states develop independently in the isolated forebrain and brain stem following early postnatal midbrain transection in cats. Neuroscience 2001, 106, 717–731. [Google Scholar] [CrossRef]
- Daszuta, A.; Gambarelli, F. Early postnatal development of EEG and sleep-waking cycle in two inbred mouse strains. Brain Res. 1985, 354, 39–47. [Google Scholar] [CrossRef]
- Shimizu, A.; Himwich, H.E. The ontogeny of sleep in kittens and young rabbits. Electroencephalogr. Clin. Neurophysiol. 1968, 24, 307–318. [Google Scholar] [CrossRef]
- Fuller, P.M.; Saper, C.B.; Lu, J. The pontine REM switch: Past and present. J. Physiol. 2007, 584, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Jouvet, M. How sleep was dissociated into two states: Telencephalic and rhombencephalic sleep? Arch. Ital. Biol. 2004, 142, 317–326. [Google Scholar]
- Valatx, J.L.; Jouvet, D.; Jouvet, M. Electroencephalographic evolution of differents states of sleep in the kitten. Electroencephalogr. Clin. Neurophysiol. 1964, 17, 218–233. [Google Scholar] [CrossRef]
- Valatx, J.L. The ontogeny and physiology confirms the dual nature of sleep states. Arch. Ital. Biol. 2004, 142, 569–580. [Google Scholar]
- Liu, D.; Dan, Y. A motor theory of sleep-wake control: Arousal-action circuit. Annu. Rev. Neurosci. 2019, 42, 27–46. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Sherman, D.; Devor, M.; Saper, C.B. A putative flip-flop switch for control of REM sleep. Nature 2006, 441, 589–594. [Google Scholar] [CrossRef]
- Luppi, P.H. Jouvet’s animal model of RBD, clinical RBD, and their relationships to REM sleep mechanisms. Sleep Med. 2018, 49, 28–30. [Google Scholar] [CrossRef]
- Peever, J.; Fuller, P.M. The biology of REM sleep. Curr. Biol. 2017, 27, R1237–R1248. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; el Mansari, M.; Jouvet, M. Inhibition by carbachol microinjections of presumptive cholinergic PGO-on neurons in freely moving cats. Brain Res. 1990, 527, 213–223. [Google Scholar] [CrossRef]
- Saper, C.B.; Fuller, P.M.; Pedersen, N.P.; Lu, J.; Scammell, T.E. Sleep state switching. Neuron 2010, 68, 1023–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sastre, J.P.; Buda, C.; Lin, J.S.; Jouvet, M. Differential c-fos expression in the rhinencephalon and striatum after enhanced sleep-wake states in the cat. Eur. J. Neurosci. 2000, 12, 1397–1410. [Google Scholar] [CrossRef] [PubMed]
- Ruckebusch, Y. Development of sleep and wakefulness in the foetal lamb. Electroencephalogr. Clin. Neurophysiol. 1972, 32, 119–128. [Google Scholar] [CrossRef]
- Szeto, H.H. Effects of narcotic drugs on fetal behavioral activity: Acute methadone exposure. Am. J. Obstet. Gynecol. 1983, 146, 211–216. [Google Scholar] [CrossRef]
- Thoman, E.B.; Waite, S.P.; Desantis, D.T.; Denenberg, V.H. Ontogeny of sleep and wake states in the rabbit. Anim. Behav. 1979, 27 Pt 1, 95–106. [Google Scholar] [CrossRef]
- Blumberg, M.S.; Seelke, A. The form and function of infant sleep: From muscle to neocortex. In Oxford Handbook of Developmental Behavioral Neuroscience; Blumberg, M.S., Freeman, J.H., Robinson, S.R., Eds.; Oxford Uneversity Press: New York, NY, USA, 2010; pp. 391–423. [Google Scholar]
- Karlsson, K.A.; Blumberg, M.S. Active medullary control of atonia in week-old rats. Neuroscience 2005, 130, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, K.A.; Gall, A.J.; Mohns, E.J.; Seelke, A.M.; Blumberg, M.S. The neural substrates of infant sleep in rats. PLoS Biol. 2005, 3, e143. [Google Scholar] [CrossRef] [Green Version]
- Kreider, J.C.; Blumberg, M.S. Mesopontine contribution to the expression of active ‘twitch’ sleep in decerebrate week-old rats. Brain Res. 2000, 872, 149–159. [Google Scholar] [CrossRef]
- Noback, C.R.; Purpura, D.P. Postnatal ontogenesis of neurons in cat neocortex. J. Comp. Neurol. 1961, 117, 291–307. [Google Scholar] [CrossRef] [PubMed]
- Huttenlocher, P.R. Development of cortical neuronal activity in the neonatal cat. Exp. Neurol. 1967, 17, 247–262. [Google Scholar] [CrossRef]
- Caley, D.W.; Maxwell, D.S. An electron microscopic study of neurons during postnatal development of the rat cerebral cortex. J. Comp. Neurol. 1968, 133, 17–44. [Google Scholar] [CrossRef] [PubMed]
- Eayrs, J.T.; Goodhead, B. Postnatal development of the cerebral cortex in the rat. J. Anat. 1959, 93, 385–402. [Google Scholar] [PubMed]
- Kobayashi, T.; Homma, Y.; Good, C.; Skinner, R.D.; Garcia-Rill, E. Developmental changes in the effects of serotonin on neurons in the region of the pedunculopontine nucleus. Brain Res. Dev. Brain Res. 2003, 140, 57–66. [Google Scholar] [CrossRef]
- Kobayashi, T.; Skinner, R.D.; Garcia-Rill, E. Developmental decrease in REM sleep: The shift to kainate receptor regulation. Thalamus Relat. Syst. 2004, 2, 315–324. [Google Scholar] [CrossRef]
- Bay, K.D.; Mamiya, K.; Good, C.H.; Skinner, R.D.; Garcia-Rill, E. Alpha-2 adrenergic regulation of pedunculopontine nucleus neurons during development. Neuroscience 2006, 141, 769–779. [Google Scholar] [CrossRef]
- Good, C.H.; Bay, K.D.; Buchanan, R.; Skinner, R.D.; Garcia-Rill, E. Muscarinic and nicotinic responses in the developing pedunculopontine nucleus (PPN). Brain Res. 2007, 1129, 147–155. [Google Scholar] [CrossRef]
- Bay, K.D.; Beck, P.; Skinner, R.D.; Garcia-Rill, E. GABAergic modulation of developing pedunculopontine nucleus. Neuroreport 2007, 18, 249–253. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Rill, E.; Charlesworth, A.; Heister, D.; Ye, M.; Hayar, A. The developmental decrease in REM sleep: The role of transmitters and electrical coupling. Sleep 2008, 31, 673–690. [Google Scholar] [CrossRef] [Green Version]
- Sakai, K. Executive mechanisms of paradoxical sleep. Arch. Ital. Biol. 1988, 126, 239–257. [Google Scholar]
- Kawakami, F.; Tomonaga, M.; Suzuki, J. The first smile: Spontaneous smiles in newborn Japanese macaques (Macaca fuscata). Primates 2017, 58, 93–101. [Google Scholar] [CrossRef]
- Mizuno, Y.; Takeshita, H.; Matsuzawa, T. Behavior of infant chimpanzees during the night in the first 4 months of life: Smiling and suckling in relation to behavioral state. Infancy 2006, 9, 221–240. [Google Scholar] [CrossRef]
- Chase, M.H.; Morales, F.R. The atonia and myoclonia of active (REM) sleep. Annu. Rev. Psychol. 1990, 41, 557–584. [Google Scholar] [CrossRef] [PubMed]
- Anaclet, C.; Pedersen, N.P.; Fuller, P.M.; Lu, J. Brainstem circuitry regulating phasic activation of trigeminal motoneurons during REM sleep. PLoS ONE 2010, 5, e8788. [Google Scholar] [CrossRef]
- Kohyama, J.; Shimohira, M.; Iwakawa, Y. Brainstem control of phasic muscle activity during REM sleep: A review and hypothesis. Brain Dev. 1994, 16, 81–91. [Google Scholar] [CrossRef]
- Márquez-Ruiz, J.; Escudero, M. Tonic and phasic phenomena underlying eye movements during sleep in the cat. J. Physiol. 2008, 586, 3461–3477. [Google Scholar] [CrossRef] [PubMed]
- Jouvet, M. Paradoxical sleep: Is it the guardian of psychological individualism. Can. J. Psychol. 1991, 45, 148–168. [Google Scholar] [CrossRef] [PubMed]
- Jouvet, M. Paradoxical sleep as a programming system. J. Sleep Res. 1998, 7 (Suppl. S1), 1–5. [Google Scholar] [CrossRef] [PubMed]
- Hogan, D.; Roffwarg, H.P.; Shaffery, J.P. The effects of 1 week of REM sleep deprivation on parvalbumin and calbindin immunoreactive neurons in central visual pathways of kittens. J. Sleep Res. 2001, 10, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Yaoita, F.; Namura, K.; Shibata, K.; Sugawara, S.; Tsuchiya, M.; Tadano, T.; Tan-No, K. Involvement of the Hippocampal Alpha2A-Adrenoceptors in Anxiety-Related Behaviors Elicited by Intermittent REM Sleep Deprivation-Induced Stress in Mice. Biol. Pharm. Bull. 2020, 43, 1226–1234. [Google Scholar] [CrossRef]
- Lopez, J.; Roffwarg, H.P.; Dreher, A.; Bissette, G.; Karolewicz, B.; Shaffery, J.P. Rapid eye movement sleep deprivation decreases long-term potentiation stability and affects some glutamatergic signaling proteins during hippocampal development. Neuroscience 2008, 153, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Mirmiran, M.; van den Dungen, H.; Uylings, H.B. Sleep patterns during rearing under different environmental conditions in juvenile rats. Brain Res. 1982, 233, 287–298. [Google Scholar] [CrossRef]
- Benington, J.H.; Frank, M.G. Cellular and molecular connections between sleep and synaptic plasticity. Prog. Neurobiol. 2003, 69, 71–101. [Google Scholar] [CrossRef]
- Jones, C.E.; Opel, R.A.; Kaiser, M.E.; Chau, A.Q.; Quintana, J.R.; Nipper, M.A.; Finn, D.A.; Hammock, E.A.D.; Lim, M.M. Early-life sleep disruption increases parvalbumin in primary somatosensory cortex and impairs social bonding in prairie voles. Sci. Adv. 2019, 5, eaav5188. [Google Scholar] [CrossRef] [Green Version]
- Saré, R.M.; Song, A.; Levine, M.; Lemons, A.; Loutaev, I.; Sheeler, C.; Hildreth, C.; Mfon, A.; Cooke, S.; Smith, C.B. Chronic Sleep Restriction in Developing Male Mice Results in Long Lasting Behavior Impairments. Front Behav. Neurosci. 2019, 13, 90. [Google Scholar] [CrossRef] [PubMed]
- Hilakivi, L.A.; Hilakivi, I. Increased adult behavioral ‘despair’ in rats neonatally exposed to desipramine or zimeldine: An animal model of depression? Pharmacol. Biochem. Behav. 1987, 28, 367–369. [Google Scholar] [CrossRef]
- Hilakivi, L.A.; Sinclair, J.D.; Hilakivi, I.T. Effects of neonatal treatment with clomipramine on adult ethanol related behavior in the rat. Brain Res. 1984, 317, 129–132. [Google Scholar] [CrossRef]
- Neill, D.; Vogel, G.; Hagler, M.; Kors, D.; Hennessey, A. Diminished sexual activity in a new animal model of endogenous depression. Neurosci. Biobehav. Rev. 1990, 14, 73–76. [Google Scholar] [CrossRef]
- Vogel, G.; Neill, D.; Hagler, M.; Kors, D. A new animal model of endogenous depression: A summary of present findings. Neurosci. Biobehav. Rev. 1990, 14, 85–91. [Google Scholar] [CrossRef]
- Vogel, G.; Neill, D.; Hagler, M.; Kors, D.; Hartley, P. Decreased intracranial self-stimulation in a new animal model of endogenous depression. Neurosci. Biobehav. Rev. 1990, 14, 65–68. [Google Scholar] [CrossRef]
- Vogel, G.W.; Feng, P.; Kinney, G.G. Ontogeny of REM sleep in rats: Possible implications for endogenous depression. Physiol. Behav. 2000, 68, 453–461. [Google Scholar] [CrossRef]
- Hodges, M.R.; Wehner, M.; Aungst, J.; Smith, J.C.; Richerson, G.B. Transgenic mice lacking serotonin neurons have severe apnea and high mortality during development. J. Neurosci. 2009, 29, 10341–10349. [Google Scholar] [CrossRef] [Green Version]
- Young, J.O.; Geurts, A.; Hodges, M.R.; Cummings, K.J. Active sleep unmasks apnea and delayed arousal in infant rat pups lacking central serotonin. J. Appl. Physiol. (1985) 2017, 123, 825–834. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Sirieix, C.M.; Nattie, E.; Li, A. Pre- and early postnatal nicotine exposure exacerbates autoresuscitation failure in serotonin-deficient rat neonates. J. Physiol. 2018, 596, 5977–5991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemelli, R.M.; Willie, J.T.; Sinton, C.M.; Elmquist, J.K.; Scammell, T.; Lee, C.; Richardson, J.A.; Williams, S.C.; Xiong, Y.; Kisanuki, Y.; et al. Narcolepsy in orexin knockout mice: Molecular genetics of sleep regulation. Cell 1999, 98, 437–451. [Google Scholar] [CrossRef]
- Scammell, T.E.; Willie, J.T.; Guilleminault, C.; Siegel, J.M. A consensus definition of cataplexy in mouse models of narcolepsy. Sleep 2009, 32, 111–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hara, J.; Beuckmann, C.T.; Nambu, T.; Willie, J.T.; Chemelli, R.M.; Sinton, C.M.; Sugiyama, F.; Yagami, K.; Goto, K.; Yanagisawa, M.; et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 2001, 30, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Beuckmann, C.T.; Sinton, C.M.; Williams, S.C.; Richardson, J.A.; Hammer, R.E.; Sakurai, T.; Yanagisawa, M. Expression of a poly-glutamine-ataxin-3 transgene in orexin neurons induces narcolepsy-cataplexy in the rat. J. Neurosci. 2004, 24, 4469–4477. [Google Scholar] [CrossRef] [Green Version]
Parameters | REM Sleep | References | |
---|---|---|---|
Amount | Preterm | 80% of TST at 30 GW, 67% between 33 and 35 GW, 58% between 36 and 38 GW. | [13,31,32] |
Full-term | 50% of TST in full-term newborns. | [9,10,11,12,38] | |
Postnatal | Progressive reduction with age, reaching 20% of TST at about three years of age and remaining constant throughout childhood, adolescence, and adulthood. | [9,11,12,39,40] | |
EEG | Preterm | Inconstant EEG of REM sleep is surveyed <30 GW, a constant pattern is observed during 36–38 GW. EEG remains atypical. | [13,31,34,37,42] |
Full-term | Easy identification with low-voltage, relatively fast activities, frequent occurrence of REM sleep directly succeeds waking episodes at sleep onset. | [12,35,43,44] | |
Postnatal | EEG patterns progressively increase in frequency and amplitude. The occurrence of sleep beginning with REM sleep declines with age, from 60% at 3 weeks to 20% at 6 months. | [49] | |
Rapid eye movements (REMS) | Preterm | Eye movements are very rare <28 GW. number of REMS remains lower. | [35,54] |
Full-term | More REMS, EOG invariably appears as single or clustered high-amplitude bursting waves. | [43,44] | |
Postnatal | REMS starts to increase after birth, reaching a plateau at about 4 months. | [55] | |
Spontaneous body movements | Preterm | A large number between 38 and 40 GW, but the amount is lesser than that in full-term newborns. | [53] |
Full-term | Atonia becomes obvious. Grimaces, small weak cries, smiles, and twitches of the face and extremities are frequently observed. EMG shows phasic muscular contractions in the background of the absence of resting muscle activity. | [12,13] | |
Postnatal | Spontaneous smiles generally diminish and disappear at 2–3 months and are replaced by social smiles. Spontaneous body movements decline with age. | [62,64] | |
Breathing | Preterm | Irregular, frequent apnea, periodic breathing <38 GW. | [13,66] |
Full-term | The respiratory rate during REM sleep is 18% greater than that during NREM sleep. Frequent apnea. | [12] | |
Postnatal | For infants from 1 month to >9 months of age, the mean respiratory rate during REM sleep decreases from 35.8 to 22.3 breath/min | [68] | |
Heart rate | Preterm | Irregular, 130 beats/min at 37 GW. | [13,35] |
Full-term | 115–120 beats/min, the mean heart rate is 3.4% higher during REM sleep than during NREM sleep. | [12,67] | |
Postnatal | For infants from 1 month to >9 months of age, REM sleep decreases from 134.7 to 110.8 beats/min | [68] | |
Sleep-wake cycle | Preterm | Approximately 60 min. | [34,69] |
Full-term | The mean duration of sleep cycles and mean length of REM sleep in newborns are respectively 52.9 and 25.4 min. The amount of REM sleep in the 1st cycle is approximately 1/2 of that in subsequent individual cycles. The mean duration of REM sleep prolongs almost threefold in the 2nd cycle and tends to diminish slightly in the 3rd cycle. | [12] | |
Postnatal | Length of sleep cycles across the first year of age is progressively increasing with age. REM sleep periods become longer towards the morning hours. After the age of 10, the sleep cycle lasts about 90–110 min as in an adult. | [12,39,76] |
Diseases | Onset Period | Disordered REM Sleep | References |
---|---|---|---|
SUID/SIDS | Infant (1–6 months) | Longer intervals between REM sleep epochs during the sleep cycle and a decreased tendency for short waking periods. Failure to arouse from sleep during a critical transient event, such as apnea. An increased nighttime REM sleep coincides with an early morning time period. | [36,84] |
Narcolepsy | Childhood | Intrusions of REM sleep into the other ongoing states. Narcolepsy Type 1 has more severe motor instability during REM sleep. | [47,48,90] |
ASD | Childhood | Fewer and briefer episodes of REM sleep. Lower EEG beta activity during REM sleep over cortical visual areas. | [100,101] |
Prematurity | Infant | REM sleep with less or without REMS. Less REM sleep. | [54,106] |
ADHD | Childhood | Shorter REM sleep latency and more daytime sleepiness. ADHD coexists with tic disorder showing not only shorter REM sleep latency but also an increased duration of REM sleep. Microarousals and short motor-related arousal during REM sleep. | [119,120] |
RBD | Adulthood | Neuromotor system dysfunction during REM sleep in early development. | [124] |
Animals | REM Sleep | References | |
---|---|---|---|
Animals born with advanced maturation | Chimpanzee | 22.4% of TST < 1 year, 16.0% between 1 and 2 years, and 13.1% above 2 years old. | [135] |
Rhesus monkey | 31% of TST at birth, a brief increase to 43% at day 7, then, gradually decreases to 35% at day 30, to 27% between 9 and 13 months, and 19% (15% to 23%) at 2 years old. | [136,137,138,139,140] | |
Sheep | 60% of TST at 120 days of gestation, 45% at birth, 18% at day 7, and 14.71% at day 15. | [23,141] | |
Animals born with immaturity | Kitten | In its first days, 50% in REM sleep (100% of TST) and 50% in wakefulness. 50% of total recording time (TRT) on day 7, and 20% on day 35. | [18,142,143,144,145,146,147] |
Rat | 72% of TRT in the first week, 58% at day 11, 8% at day 30. | [16,18] | |
Mouse | 40% of TRT in the first week, 6% at day 19. | [148] | |
Rabbit | 75% of TST at birth, 33% on day 14, and 10% on day 23. | [149] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-L.; Gao, J.-X.; Chen, Y.-N.; Xie, J.-F.; Xie, Y.-P.; Spruyt, K.; Lin, J.-S.; Shao, Y.-F.; Hou, Y.-P. Rapid Eye Movement Sleep during Early Life: A Comprehensive Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 13101. https://doi.org/10.3390/ijerph192013101
Chen H-L, Gao J-X, Chen Y-N, Xie J-F, Xie Y-P, Spruyt K, Lin J-S, Shao Y-F, Hou Y-P. Rapid Eye Movement Sleep during Early Life: A Comprehensive Narrative Review. International Journal of Environmental Research and Public Health. 2022; 19(20):13101. https://doi.org/10.3390/ijerph192013101
Chicago/Turabian StyleChen, Hai-Lin, Jin-Xian Gao, Yu-Nong Chen, Jun-Fan Xie, Yu-Ping Xie, Karen Spruyt, Jian-Sheng Lin, Yu-Feng Shao, and Yi-Ping Hou. 2022. "Rapid Eye Movement Sleep during Early Life: A Comprehensive Narrative Review" International Journal of Environmental Research and Public Health 19, no. 20: 13101. https://doi.org/10.3390/ijerph192013101
APA StyleChen, H.-L., Gao, J.-X., Chen, Y.-N., Xie, J.-F., Xie, Y.-P., Spruyt, K., Lin, J.-S., Shao, Y.-F., & Hou, Y.-P. (2022). Rapid Eye Movement Sleep during Early Life: A Comprehensive Narrative Review. International Journal of Environmental Research and Public Health, 19(20), 13101. https://doi.org/10.3390/ijerph192013101