Age Estimation Using Maxillary Central Incisor Analysis on Cone Beam Computed Tomography Human Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Inclusion and Exclusion Criteria
2.3. Ethics Statement
2.4. Image Evaluation
2.5. Standardized Incisor Measurement Protocol
2.5.1. Sagittal Slice
- Sagittal measurements at cementoenamel junction level. Linear measurements were obtained in the “incisor neutral position” which was achieved by placing the horizontal red line of the CBCT program at the level of cementoenamel junction of the upper central incisor (Figure 1a): (a) tooth width: from the most palatine point to the most vestibular point of the incisor (sce_TW, Figure 1b); (b) pulp width: from the most palatine point to the most vestibular point of the pulp (sce_PW, Figure 1b).
- Sagittal measurement at pulp horn level. In order to locate this level, the red horizontal line was moved from the cementoenamel junction to the pulp horn. After the pulp horn level was located, the incisor crown width was measured (sph_CW, Figure 1c).
- Sagittal vertical measurements: (a) root length: from the apex to the cementoenamel junction fooling the curvature of the tooth (s_RL, Figure 1d); (b) pulp chamber length: from the cementoenamel junction to the end of the pulp at crown level (s_PCL) (c) incisal length: from the incisal edge to the beginning of the pulp chamber (s_IL); (d) total tooth length: the sum of (a), (b) and (c) (s_TTL, sum of values 4 to 8, Figure 1d).
2.5.2. Coronal Slice
- Coronal measurements at cementoenamel junction level: (a) mesiodistal tooth length: from the most mesial point to the most distal point of the incisor (cce_MDTL, sum of the values 1+2+3); (b) mesiodistal pulp length: from the most mesial point to the most distal point of the pulp (cce_MDPL, Figure 2a).
- Coronal measurements at pulp horn level: (a) mesiodistal tooth length: from the most mesial point to the most distal point of the incisor (cph_MDTL, sum of the values 1+2+3, Figure 2c); (b) mesiodistal pulp length: from the most mesial point to the most distal point of the pulp (cph_MDPL, Figure 2c).
2.5.3. Axial Slice
- Axial measurements at cementoenamel junction level: (a) mesiodistal tooth length: from the most mesial and central point to the most distal and central point (ace_MDTL, sum of the values 1+2+3, Figure 2b); (b) mesiodistal pulp length: from the most mesial point to the most distal point of the pulp (ace_MDPL, Figure 2b); (c) palatovestibular tooth length: from the most vestibular-central point of the tooth to the most palatine-central point of the incisor (ace_PVTL, sum of the values 4+5+6, Figure 2b); (d) palatovestibular pulp length: from the most vestibular point to the most palatine point of the pulp (ace_PVPL, Figure 2b).
- Axial measurements at pulp horn level: (a) mesiodistal tooth length: from the most mesial point to the most distal point of the incisor (aph_MDTL sum of the values 1+2+3, Figure 2d); (b) mesiodistal pulp length: from the most mesial point to the most distal point of the pulp (aph_MDPL, Figure 2d); (c) palatovestibular tooth length; from the most palatine point to the most vestibular point of the incisor (aph_PVTL, Figure 2d).
2.6. Intraobserver and Interobserver Variability
2.7. Statistical Analysis
3. Results
3.1. Sagittal Linear Measurements and Ratios
3.2. Coronal Linear Measurements and Ratios
3.3. Axial Linear Measurements and Ratios
3.4. Age Estimation Based on Multiplanar Measurements and Ratios
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Erbudak, H.O.; Ozbek, M.; Uysal, S.; Karabulut, E. Application of Kvaal et al’s age estimation method to panoramic radiographs from Turkish individuals. Forensic Sci. Int. 2012, 219, 141–146. [Google Scholar] [CrossRef]
- Kvaal, S.I.; Kolltveit, K.M.; Thomsen, I.O.; Solheim, T. Age estimation of adults from dental radiographs. Forensic Sci. Int. 1995, 74, 175–185. [Google Scholar] [CrossRef]
- Altini, M. Age determination from the teeth—A review. J. Dent. Assoc. S. Afr. 1983, 38, 275–279. [Google Scholar] [PubMed]
- Bodecker, C.F. A consideration of some of the changes in the teeth from young to old age. Dent. Cosm. 1925, 67, 543–549. [Google Scholar]
- Alkass, K.; Buchholz, B.A.; Ohtani, S.; Yamamoto, T.; Druid, H.; Spalding, K.L. Age estimation in forensic sciences: Application of combined aspartic acid racemization and radiocarbon analysis. Mol. Cell. Proteom. 2010, 9, 1022–1030. [Google Scholar] [CrossRef] [Green Version]
- Paewinsky, E.; Pfeiffer, H.; Brinkmann, B. Quantification of secondary dentine formation from orthopantomograms—A contribution to forensic age estimation methods in adults. Int. J. Leg. Med. 2005, 119, 27–30. [Google Scholar] [CrossRef]
- Tomaru, Y.; Uchiyama, Y.; Kobayashi, K.; Kudo, Y.; Mikami, H.; Tsukamoto, T. Age estimation from tooth attritions of lower incisors—Discussion on the “Amano’s method”. Nihon Hoigaku Zasshi 1993, 47, 13–17. [Google Scholar]
- Lamendin, H.; Baccino, E.; Humbert, J.F.; Tavernier, J.C.; Nossintchouk, R.M.; Zerilli, A. A simple technique for age estimation in adult corpses: The two criteria dental method. J. Forensic Sci. 1992, 37, 1373–1379. [Google Scholar] [CrossRef]
- Kvaal, S.I.; Solheim, T. Incremental lines in human dental cementum in relation to age. Eur. J. Oral Sci. 1995, 103, 225–230. [Google Scholar] [CrossRef]
- Huda, T.F.; Bowman, J.E. Age determination from dental microstructure in juveniles. Am. J. Phys. Anthropol. 1995, 97, 135–150. [Google Scholar] [CrossRef]
- Kazmi, S.; Manica, S.; Revie, G.; Shepherd, S.; Hector, M. Age estimation using canine pulp volumes in adults: A CBCT image analysis. Int. J. Leg. Med. 2019, 133, 1967–1976. [Google Scholar] [CrossRef] [Green Version]
- Thevissen, P.W.; Alquerban, A.; Asaumi, J.; Kahveci, K.; Kaur, J.; Kim, Y.K.; Pittayapat, P.; Van Vlierberghe, M.; Zhang, Y.; Fieuws, S.; et al. Human dental age estimation using third molar developmental stages: Accuracy of age predictions not using country specific information. Forensic Sci. Int. 2010, 201, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Issrani, R.; Prabhu, N.; Sghaireen, M.G.; Ganji, K.K.; Alqahtani, A.M.A.; ALjamaan, T.S.; Alanazi, A.M.; Alanazi, S.H.; Munisekhar, M.S. Cone-Beam Computed Tomography: A New Tool on the Horizon for Forensic Dentistry. Int. J. Environ. Res. Public Health 2022, 19, 5352. [Google Scholar] [CrossRef] [PubMed]
- Morse, D.R. Age-related changes of the dental pulp complex and their relationship to systemic aging. Oral Surg. Oral Med. Oral Pathol. 1991, 72, 721–745. [Google Scholar] [CrossRef]
- Cameriere, R.; Ferrante, L.; Belcastro, M.G.; Bonfiglioli, B.; Rastelli, E.; Cingolani, M. Age estimation by pulp/tooth ratio in canines by peri-apical X-rays. J. Forensic Sci. 2007, 52, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Solheim, T. Recession of periodontal ligament as an indicator of age. J. Forensic Odontostomatol. 1992, 10, 32–42. [Google Scholar] [PubMed]
- Ikeda, N.; Umetsu, K.; Kashimura, S.; Suzuki, T.; Oumi, M. Estimation of age from teeth with their soft X-ray findings. Nihon Hoigaku Zasshi 1985, 39, 244–250. [Google Scholar]
- Vandevoort, F.M.; Bergmans, L.; Van Cleynenbreugel, J.; Bielen, D.J.; Lambrechts, P.; Wevers, M.; Peirs, A.; Willems, G. Age calculation using X-ray microfocus computed tomographical scanning of teeth: A pilot study. J. Forensic Sci. 2004, 49, 787–790. [Google Scholar] [CrossRef]
- Farhadian, M.; Salemi, F.; Saati, S.; Nafisi, N. Dental age estimation using the pulp-to-tooth ratio in canines by neural networks. Imaging Sci. Dent. 2019, 49, 19–26. [Google Scholar] [CrossRef]
- Lee, S.M.; Oh, S.; Kim, J.; Kim, Y.M.; Choi, Y.K.; Kwak, H.; Kim, Y. Age estimation using the maxillary canine pulp/tooth ratio in Korean adults: A CBCT buccolingual and horizontal section image analysis. J. Forensic Radiol. Imaging 2017, 9, 1–5. [Google Scholar] [CrossRef]
- Rai, A.; Acharya, A.B.; Naikmasur, V.G. Age estimation by pulp-to-tooth area ratio using cone-beam computed tomography: A preliminary analysis. J. Forensic Dent. Sci. 2016, 8, 150–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agematsu, H.; Someda, H.; Hashimoto, M.; Matsunaga, S.; Abe, S.; Kim, H.J.; Koyama, T.; Naito, H.; Ishida, R.; Ide, Y. Three-dimensional observation of decrease in pulp cavity volume using micro-CT: Age-related change. Bull. Tokyo Dent. Coll. 2010, 51, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biuki, N.; Razi, T.; Faramarzi, M. Relationship between pulp-tooth volume ratios and chronological age in different anterior teeth on CBCT. J. Clin. Exp. Dent. 2017, 9, e688–e693. [Google Scholar] [CrossRef] [PubMed]
- Gulsahi, A.; Kulah, C.K.; Bakirarar, B.; Gulen, O.; Kamburoglu, K. Age estimation based on pulp/tooth volume ratio measured on cone-beam CT images. Dentomaxillofac. Radiol. 2018, 47, 20170239. [Google Scholar] [CrossRef]
- Jagannathan, N.; Neelakantan, P.; Thiruvengadam, C.; Ramami, P.; Premkumar, P.; Natesam, A.; Herald, J.S.; Luder, H.U. Age estimation in an Indian population using pulp/tooth volume ratio of mandibular canines obtained from cone beam computed tomography. J. Forensic Odontostomatol. 2011, 29, 1–6. [Google Scholar] [CrossRef]
- Sakuma, A.; Saitoh, H.; Suzuki, Y.; Makino, Y.; Inokucki, G.; Hayakawa, M.; Yajima, D.; Iwase, H. Age estimation based on pulp cavity to tooth volume ratio using postmortem computed tomography images. J. Forensic Sci. 2013, 58, 1531–1535. [Google Scholar] [CrossRef]
- Tardivo, D.; Sastre, J.; Ruquet, M.; Thollon, L.; Adalian, P.; Leonetti, G.; Foti, B. Three-dimensional modeling of the various volumes of canines to determine age and sex: A preliminary study. J. Forensic Sci. 2011, 56, 766–770. [Google Scholar] [CrossRef]
- Yang, F.; Jacobs, R.; Willems, G. Dental age estimation through volume matching of teeth imaged by cone-beam CT. Forensic Sci. Int. 2006, 159, S78–S83. [Google Scholar] [CrossRef]
- Ge, Z.P.; Ma, R.H.; Li, G.; Zhang, J.Z.; Ma, X.C. Age estimation based on pulp chamber volume of first molars from cone-beam computed tomography images. Forensic Sci. Int. 2015, 253, 133e1–133e7. [Google Scholar] [CrossRef]
- Ge, Z.P.; Yang, P.; Li, G.; Zhang, J.Z.; Ma, X.C. Age estimation based on pulp cavity/chamber volume of 13 types of tooth from cone beam computed tomography images. Int. J. Leg. Med. 2016, 130, 1159–1167. [Google Scholar] [CrossRef]
- Aboshi, H.; Takahashi, T.; Komuro, T. Age estimation using microfocus X-ray computed tomography of lower premolars. Forensic Sci. Int. 2010, 200, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Someda, H.; Saka, H.; Matsunaga, S.; Ide, Y.; Nakahara, K.; Hirata, S.; Hashimoto, M. Age estimation based on three-dimensional measurement of mandibular central incisors in Japanese. Forensic Sci. Int. 2009, 185, 110–114. [Google Scholar] [CrossRef]
- Ludlow, J.B.; Ivanovic, M. Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2008, 106, 106–114. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, D.; Gaudio, D.; Guercini, N.; Cipriani, F.; Gibelli, D.; Caputi, S.; Cattaneo, C. Age estimation from canine volumes. Radiol. Med. 2015, 120, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Pinchi, V.; Pradella, F.; Buti, J.; Baldinotti, C.; Forcadi, M.; Norelli, G.A. A new age estimation procedure based on the 3D CBCT study of the pulp cavity and hard tissues of the teeth for forensic purposes: A pilot study. J. Forensic Leg. Med. 2015, 36, 150–157. [Google Scholar] [CrossRef]
- Porto, L.V.; Celestino da Silva Neto, J.; Anjos Pontual, A.D.; Catunda, R.Q. Evaluation of volumetric changes of teeth in a Brazilian population by using cone beam computed tomography. J. Forensic Leg. Med. 2015, 36, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Haghanifar, S.; Ghobadi, F.; Vahdani, N.; Bijani, A. Age estimation by pulp/tooth area ratio in anterior teeth using cone-beam computed tomography: Comparison of four teeth. J. Appl. Oral Sci. 2019, 27, e20180722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, V.M.; Fontenele, R.C.; de Souza, A.C.; Almeida, C.A.; Vieira, A.C.; Groppo, F.C.; Freitas, D.Q.; Junior, E.D. Age and sex estimation based on pulp cavity volume using cone beam computed tomography: Development and validation of formulas in a Brazilian sample. Dentomaxillofac. Radiol. 2019, 48, 20190053. [Google Scholar] [CrossRef]
- Alsoleihat, F.; Al-Shayyab, N.H.; Kalbouneh, H.; Al-Zer, H.; Ryalat, S.; Alhadidi, A.; Saoud, H. Age Prediction in the Adult Based on the Pulp-to-Tooth Ratio in Lower Third Molars: A Cone-beam CT Study. Int. J. Morphol. 2017, 35, 488–493. [Google Scholar] [CrossRef] [Green Version]
- Al-Omoush, S.A.; Alhadidib, A.; Al-Kayed, A.; Saoud, H.; Alsoleihat, F. Do upper third molars provide more accurate age estimation in the adult based on the pulp-to-tooth ratio than lower third molars? A cone-beam CT study. Saudi Dent. J. 2021, 33, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Tardivo, D.; Sastre, J.; Catherine, J.H.; Leoneti, G.; Adalian, P.; Foti, B. Age determination of adult individuals by three-dimensional modelling of canines. Int. J. Leg. Med. 2014, 128, 161–169. [Google Scholar] [CrossRef]
- Afify, M.M.; Zayet, M.; Mahmoud, N.F.; Ragab, A.R. Age estimation from Pulp/Tooth area ratio in three mandibular teeth by panoramic radiographs: Study of an Egyptian sample. J. Forensic Res. 2014, 5, 231–235. [Google Scholar] [CrossRef]
- Salemi, F.; Farhadian, M.; Askari Sabzkouhi, B.; Saati, S.; Nafisi, M. Age estimation by pulp to tooth area ratio in canine teeth using cone-beam computed tomography. Egypt. J. Forensic Sci. 2020, 10, 2–9. [Google Scholar] [CrossRef]
- Elgazzar, F.M.; Elboraey, M.O.; El-Sarnagawy, G. The accuracy of age estimation from pulp chamber/crown volume ratio of canines obtained by cone beam computed tomography images: An Egyptian study. Egypt. J. Forensic Sci. 2020, 10, 40–49. [Google Scholar] [CrossRef]
- Akay, G.; Gungor, K.; Gurcan, S. The applicability of Kvaal methods and pulp/tooth volume ratio for age estimation of the Turkish adult population on cone beam computed tomography images. Aust. J. Forensic Sci. 2019, 51, 251–265. [Google Scholar] [CrossRef]
- Marroquin Penaloza, T.Y.; Karkhanis, S.; Kvaal, S.I.; Nurul, F.; Kanagasingam, S.; Franklin, D.; Vasudavan, S.; Kruger, E.; Tennant, M. Application of the Kvaal method for adult dental age estimation using Cone Beam Computed Tomography (CBCT). J. Forensic Leg. Med. 2016, 44, 178–182. [Google Scholar] [CrossRef]
- Kazmi, S.; Shepherd, S.; Revie, G.; Hector, M.; Mânica, S. Exploring the relationship between age and the pulp and tooth size in canines. A CBCT analysis.Aust. J. Forensic Sci. 2021, 53, 1–12. [Google Scholar] [CrossRef]
- Molina, A.; Bravo, M.; Fonseca, G.M.; Márquez-Grant, N.; Martín-de-las-Heras, S. Dental age estimation based on pulp chamber/crown volume ratio measured on CBCT images in a Spanish population. Int. J. Leg. Med. 2021, 135, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Zhan, M.; Chen, X.; Shi, L.; Lu, T.; Fan, F.; Zhang, K.; Chen, Y.; Deng, Z. Age estimation in Western Chinese adults by pulp–tooth volume ratios using cone-beam computed tomography. Aust. J. Forensic Sci. 2020, 53, 1–12. [Google Scholar] [CrossRef]
- Zheng, Q.; Ge, Z.; Du, H.; Li, G. Age estimation based on 3D pulp chamber segmentation of first molars from cone-beam-computed tomography by integrated deep learning and level set. Int. J. Leg. Med. 2021, 135, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Helmy, M.A.; Osama, M.; Elhindawy, M.M.; Mowafey, B.; Taalab, Y.M.; Abd ElRahman, H.A. Volume analysis of second molar pulp chamber using cone beam computed tomography for age estimation in Egyptian adults. J. Forensic Odontostomatol. 2020, 38, 25–34. [Google Scholar]
- Oscandar, F.; Rojiun, Z.A.; Ibrahim, N.; Supian, S.; Tharmalingam, D.; Malinda, Y. Preliminary research: Correlation between pulp chamber volume of mandibular first molar and chronological age on deuteromalay subrace. Int. J. Med. Toxicol. Leg. Med. 2018, 21, 34–36. [Google Scholar] [CrossRef]
- Sue, M.; Oda, T.; Sasaki, Y.; Ogura, I. Age-related changes in the pulp chamber of maxillary and mandibular molars on cone-beam computed tomography images. Oral Radiol. 2018, 34, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Asif, M.K.; Nambiar, P.; Mani, S.A.; Ibrahim, N.B.; Khan, I.M.; Lokman, N.B. Dental age estimation in Malaysian adults based on volumetric analysis of pulp/tooth ratio using CBCT data. Leg. Med. (Tokyo) 2019, 36, 50–58. [Google Scholar] [CrossRef]
- Asif, M.K.; Nambiar, P.; Mani, S.A.; Ibrahim, N.B.; Khan, I.M.; Sukumaran, P. Dental age estimation employing CBCT scans enhanced with Mimics software: Comparison of two different approaches using pulp/tooth volumetric analysis. J. Forensic Leg. Med. 2018, 54, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Soundarajan, S.; Dharman, S. Age estimation from root diameter and root canal diameter of maxillary central incisors in Chennai population using cone-beam computed tomography. PalArch’s J. Archaeol. Egypt/Egyptol. 2020, 17, 2074–2083. [Google Scholar]
- Star, H.; Thevissen, P.; Jacobs, R.; Fieuws, S.; Solheim, T.; Willems, G. Human dental age estimation by calculation of pulp-tooth volume ratios yielded on clinically acquired cone beam computed tomography images of monoradicular teeth. J. Forensic Sci. 2011, 56, S77–S82. [Google Scholar] [CrossRef] [PubMed]
- Kanchan-Talreja, P.; Acharya, A.; Naikmasur, V. An assessment of the versatility of Kvaal’s method of adult dental age estimation in Indians. Arch. Oral Biol. 2012, 57, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Prapanpoch, S.; Dove, S.B.; Cottone, J.A. Morphometric analysis of the dental pulp chamber as a method of age determination in humans. Am. J. Forensic Med. Pathol. 1992, 13, 50–55. [Google Scholar] [CrossRef]
- Drusini, A.G.; Toso, O.; Ranzato, C. The coronal pulp cavity index: A biomarker for age determination in human adults. Am. J. Phys. Anthropol. 1997, 103, 353–363. [Google Scholar] [CrossRef]
- Nemsi, H.; Haj Salem, N.; Bouanene, I.; Ben Jomaa, S.; Belhadj, M.; Mosrati, M.A.; Aissaoui, A.; Ben Amor, F.; Chadly, A. Age assessment in canine and premolar by cervical axial sections of cone-beam computed tomography. Leg. Med. (Tokyo) 2017, 28, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Molnar, S. Human tooth wear, tooth function and cultural variability. Am. J. Phys. Anthropol. 1971, 34, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Bang, G. Age changes in teeth: Developmental and regressive. In Age Markers in the Human Skeleton; Iscan, M.Y., Ed.; Springfield: Thomas, IL, USA, 1989; pp. 211–235. [Google Scholar]
- Li, M.J.; Chu, G.; Han, M.Q.; Chen, T.; Zhou, H.; Guo, Y.C. Application of the Kvaal method for age estimation using digital panoramic radiography of Chinese individuals. Forensic Sci. Int. 2019, 301, 76–81. [Google Scholar] [CrossRef]
- Patil, S.K.; Mohankumar, K.P.; Donoghue, M. Estimation of age by Kvaal’s technique in sample Indian population to establish the need for local Indian-based formulae. J. Forensic Dent. Sci. 2014, 6, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Babshet, M.; Acharya, A.B.; Naikmasur, V.G. Age estimation in Indians from pulp/tooth area ratio of mandibular canines. Forensic Sci. Int. 2010, 197, 125e1–125e4. [Google Scholar] [CrossRef] [PubMed]
- Cunha, E.; Baccino, E.; Martrille, L.; Ramsthaler, F.; Prieto, J.; Schuliar, Y.; Lynnerup, N.; Cattaneo, C. The problem of aging human remains and living individuals: A review. Forensic Sci. Int. 2009, 193, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cameriere, R.; Cunha, E.; Sassaroli, E.; Nuzzolese, E.; Ferrante, L. Age estimation by pulp/tooth area ratio in canines: Study of a Portuguese sample to test Cameriere’s method. Forensic Sci. Int. 2009, 193, 128e1–128e6. [Google Scholar] [CrossRef]
- Cameriere, R.; De Luca, S.; Aleman, I.; Ferrante, L.; Cingolani, M. Age estimation by pulp/tooth ratio in lower premolars by orthopantomography. Forensic Sci. Int. 2012, 214, 105–112. [Google Scholar] [CrossRef]
Age Groups | Mean 1 | Min. | Max. | F | p * | |
---|---|---|---|---|---|---|
sce_TW | ≤30 | 7.26 ± 0.61 a | 5.52 | 8.80 | 4.479 | 0.002 * |
31–40 | 7.24 ± 0.50 b | 6.00 | 8.25 | |||
41–50 | 7.27 ± 0.44 c | 6.00 | 8.25 | |||
51–60 | 7.11 ± 0.50 | 5.75 | 8.25 | |||
>60 | 6.93 ± 0.48 a,b,c | 6.00 | 8.70 | |||
Total | 7.17 ± 0.53 | 5.52 | 8.80 | |||
sce_PW | ≤30 | 1.78 ± 0.38 a | 1.00 | 3.00 | 19.613 | <0.001 * |
31–40 | 1.62 ± 0.38 b | 1.00 | 3.30 | |||
41–50 | 1.67 ± 0.37 c | 1.00 | 2.75 | |||
51–60 | 1.43 ± 0.30 a,b,c | 0.50 | 2.00 | |||
>60 | 1.28 ± 0.30 a,b,c | 0.75 | 2.00 | |||
Total | 1.57 ± 0.39 | 0.50 | 3.30 | |||
sph_CW | ≤30 | 6.09 ± 0.94 a | 4.50 | 8.75 | 12.335 | <0.001 * |
31–40 | 6.49 ± 0.76 b | 5.10 | 8.50 | |||
41–50 | 6.58 ± 0.83 a | 4.75 | 8.10 | |||
51–60 | 6.92 ± 0.72 a,b | 5.50 | 8.75 | |||
>60 | 6.94 ± 0.78 a,b | 5.00 | 8.70 | |||
Total | 6.58 ± 0.87 | 4.50 | 8.75 | |||
s_RL | ≤30 | 12.71 ± 1.75 | 8.54 | 16.64 | 1.607 | 0.172 |
31–40 | 13.16 ± 2.09 | 6.00 | 17.44 | |||
41–50 | 13.22 ± 2.03 | 7.84 | 17.25 | |||
51–60 | 13.39 ± 1.33 | 10.03 | 16.61 | |||
>60 | 13.43 ± 2.10 | 7.51 | 18.06 | |||
Total | 13.16 ± 1.87 | 6.00 | 18.06 | |||
s_PCL | ≤30 | 3.87 ± 0.95 a | 1.82 | 5.75 | 32.099 | <0.001 * |
31–40 | 3.57 ± 0.85 b | 1.27 | 5.41 | |||
41–50 | 3.25 ± 1.15 a,c | 0.60 | 6.02 | |||
51–60 | 2.57 ± 1.02 a,b,c | 0.90 | 6.50 | |||
>60 | 2.09 ± 1.06 a,b,c | 0.25 | 5.75 | |||
Total | 3.12 ± 1.19 | 0.25 | 6.50 | |||
s_IL | ≤30 | 6.26 ± 1.00 | 3.06 | 8.49 | 2.043 | 0.088 |
31–40 | 6.55 ± 1.16 | 0.93 | 8.92 | |||
41–50 | 6.79 ± 1.37 | 3.75 | 10.61 | |||
51–60 | 6.78 ± 1.36 | 3.51 | 10.00 | |||
>60 | 6.75 ± 1.59 | 1.25 | 10.01 | |||
Total | 6.61 ± 1.30 | 0.93 | 10.61 | |||
s_TTL | ≤30 | 22.90 ± 2.23 | 17.52 | 27.80 | 2.206 | 0.068 |
31–40 | 23.28 ± 2.23 | 15.08 | 28.21 | |||
41–50 | 23.26 ± 2.37 | 15.84 | 27.71 | |||
51–60 | 22.70 ± 2.14 | 18.14 | 31.34 | |||
>60 | 22.20 ± 2.32 | 16.76 | 27.20 | |||
Total | 22.87 ± 2.27 | 15.08 | 31.34 | |||
sce_PW/sce_TW | <30 | 0.25 ± 0.05 a | 0,14 | 0.41 | 16.439 | <0.001 * |
31–40 | 0.22 ± 0.05 b | 0.14 | 0.44 | |||
41–50 | 0.23 ± 0.05 c | 0.14 | 0.33 | |||
51–60 | 0.20 ± 0.04 a,c | 0.07 | 0.30 | |||
>60 | 0.19 ± 0.04 a,b,c | 0.10 | 0.27 | |||
Total | 0.22 ± 0.05 | 0.07 | 0.44 | |||
s_IL/s_TTL | <30 | 0.27 ± 0.04 a | 0.15 | 0.38 | 2.932 | 0.021 * |
31–40 | 0.28 ± 0.05 | 0.04 | 0.41 | |||
41–50 | 0.29 ± 0.06 | 0.18 | 0.46 | |||
51–60 | 0.30 ± 0.05 | 0.16 | 0.40 | |||
>60 | 0.31 ± 0.08 a | 0.06 | 0.48 | |||
Total | 0.29 ± 0.06 | 0.04 | 0.48 | |||
s_PCL/s_TTL | <30 | 0.17 ± 0.04 a | 0.08 | 0.25 | 29.477 | <0.001 * |
31–40 | 0.15 ± 0.04 b | 0.05 | 0.24 | |||
41–50 | 0.14 ± 0.05 a,c | 0.03 | 0.26 | |||
51–60 | 0.11 ± 0.04 a,b,c | 0.04 | 0.21 | |||
>60 | 0.10 ± 0.05 a,b,c | 0.01 | 0.29 | |||
Total | 0.14 ± 0.05 | 0.01 | 0.29 | |||
s_RL/s_TTL | <30 | 0.56 ± 0.05 a | 0.42 | 0.69 | 11.183 | <0.001 * |
31–40 | 0.56 ± 0.05 b | 0.40 | 0.79 | |||
41–50 | 0.57 ± 0.05 c | 0.47 | 0.68 | |||
51–60 | 0.59 ± 0.04 a,b | 0.49 | 0.72 | |||
>60 | 0.60 ± 0.05 a,b,c | 0.45 | 0.75 | |||
Total | 0.57 ± 0.05 | 0.40 | 0.79 | |||
(s_PCL plus s_IL)/s_TTL | <30 | 4.15 ± 0.94 a | 2.15 | 5.96 | 33.172 | <0.001 * |
31–40 | 3.85 ± 0.83 b | 1.62 | 5.63 | |||
41–50 | 3.54 ± 1.10 a,c | 1.06 | 6.20 | |||
51–60 | 2.87 ± 0.98 a,b,c | 1.29 | 6.81 | |||
>60 | 2.40 ± 1.01 a,b,c | 0.57 | 5.81 | |||
Total | 3.40 ± 1.16 | 0.57 | 6.81 |
Age Groups | Mean 1 | Min. | Max. | F | p * | |
---|---|---|---|---|---|---|
cce_MDTL | ≤30 | 6.37 ± 0.68 | 4.75 | 7.80 | 1.218 | 0.303 |
31–40 | 6.36 ± 0.61 | 4.50 | 7.50 | |||
41–50 | 6.47 ± 0.49 | 5.50 | 7.50 | |||
51–60 | 6.40 ± 0.56 | 5.10 | 7.80 | |||
>60 | 6.23 ± 0.51 | 5.00 | 7.20 | |||
Total | 6.36 ± 0.58 | 4.50 | 7.80 | |||
cce_MDPL | ≤30 | 1.97 ± 0.36 a | 1.50 | 2.80 | 15.110 | <0.001 * |
31–40 | 1.98 ± 0.44 b | 1.20 | 3.00 | |||
41–50 | 1.95 ± 0.39 c | 1.00 | 3.00 | |||
51–60 | 1.75 ± 0.36 a,b,c,d | 1.00 | 2.80 | |||
>60 | 1.54 ± 0.30 a,b,c,d | 0.75 | 2.40 | |||
Total | 1.85 ± 0.41 | 0.75 | 3.00 | |||
cph_MDTL | ≤30 | 8.06 ± 0.72 a | 6.00 | 9.50 | 21.773 | <0.001 * |
31–40 | 7.81 ± 0.73 b | 6.25 | 9.60 | |||
41–50 | 7.74 ± 0.95 c | 4.50 | 10.25 | |||
51–60 | 7.26 ± 0.77 a,b,c | 6.00 | 9.00 | |||
>60 | 6.89 ± 0.78 a,b,c | 5.25 | 8.75 | |||
Total | 7.57 ± 0.89 | 4.50 | 10.25 | |||
cph_MDPL | ≤30 | 2.43 ± 0.56 a | 1.50 | 3.60 | 33.935 | <0.001 * |
31–40 | 2.26 ± 0.52 b | 1.50 | 3.75 | |||
41–50 | 2.18 ± 0.44 a,c | 1.25 | 3.50 | |||
51–60 | 1.82 ± 0.48 a,b,c,d | 0.75 | 3.25 | |||
>60 | 1.49 ± 0.41 a,b,c,d | 0.75 | 2.50 | |||
Total | 2.07 ± 0.59 | 0.75 | 3.75 | |||
cce_MDPL/cce_MDTL | <30 | 0.31 ± 0.04 a | 0.23 | 0.42 | 16.38 | <0.001 * |
31–40 | 0.31 ± 0.06 b | 0.19 | 0.43 | |||
41–50 | 0.30 ± 0.05 c | 0.18 | 0.46 | |||
51–60 | 0.27 ± 0.06 a,b,d | 0.14 | 0.44 | |||
>60 | 0.25 ± 0.05 a,b,c,d | 0.13 | 0.33 | |||
Total | 0.29 ± 0.06 | 0.13 | 0.46 | |||
cph_MDPL/cph_MDTL | <30 | 0.30 ± 0.06 a | 0.17 | 0.42 | 18.30 | <0.001 * |
31–40 | 0.29 ± 0.06 b, | 0.19 | 0.43 | |||
41–50 | 0.29 ± 0.06 c | 0.15 | 0.44 | |||
51–60 | 0.25 ± 0.07 a,b,d | 0.11 | 0.48 | |||
>60 | 0.22 ± 0.06 a,b,c,d | 0.11 | 0.33 | |||
Total | 0.27 ± 0.07 | 0.11 | 0.48 |
Age Groups | Mean 1 | Min. | Max. | F | p * | |
---|---|---|---|---|---|---|
ace_MDTL | ≤30 | 6.57 ± 0.63 | 4.82 | 7.90 | 1.246 | 0.292 |
31–40 | 6.55 ± 0.66 | 4.44 | 8.14 | |||
41–50 | 6.72 ± 0.62 | 5.39 | 8.25 | |||
51–60 | 6.59 ± 0.54 | 5.44 | 8.12 | |||
>60 | 6.47 ± 0.58 | 5.19 | 7.95 | |||
Total | 6.58 ± 0.61 | 4.44 | 8.25 | |||
ace_MDPL | ≤30 | 2.21 ± 0.45 a | 1.25 | 3.22 | 10.695 | <0.001 * |
31–40 | 2.23 ± 0.49 b | 1.25 | 3.35 | |||
41–50 | 2.23 ± 0.51 c | 1.00 | 3.25 | |||
51–60 | 2.02 ± 0.51 d | 0.75 | 3.30 | |||
>60 | 1.75 ± 0.44 a,b,c,d | 0.79 | 2.85 | |||
Total | 2.10 ± 0.51 | 0,75 | 3.35 | |||
ace_PVTL | ≤30 | 7.59 ± 0.60 a | 6.25 | 9.20 | 3.180 | 0.014 * |
31–40 | 7.50 ± 0.46 | 6.60 | 8.71 | |||
41–50 | 7.58 ± 0.53 | 6.50 | 9.51 | |||
51–60 | 7.39 ± 0.52 | 6.25 | 8.51 | |||
>60 | 7.30 ± 0.54 a | 6.25 | 8.70 | |||
Total | 7.48 ± 0.54 | 6.25 | 9.51 | |||
ace_PVPL | ≤30 | 1.90 ± 0.36 a | 1.00 | 3.25 | 16.819 | <0.001 * |
31–40 | 1.78 ± 0.32 b | 1.00 | 2.72 | |||
41–50 | 1.71 ± 0.33 c | 1.25 | 2.50 | |||
51–60 | 1.61 ± 0.29 a,b | 1.00 | 2.40 | |||
>60 | 1.44 ± 0.34 a,b,c | 0.75 | 2.25 | |||
Total | 1.70 ± 0.36 | 0.75 | 3.25 | |||
aph_MDTL | ≤30 | 8.24 ± 0.64 a | 6.72 | 9.70 | 23.602 | <0.001 * |
31–40 | 7.94 ± 0.72 b | 6.18 | 9.19 | |||
41–50 | 7.85 ± 0.86 a,c | 6.02 | 10.36 | |||
51–60 | 7.43 ± 0.71 a,b,c | 5.95 | 8.83 | |||
>60 | 7.09 ± 0.74 a,b,c | 5.70 | 8.48 | |||
Total | 7.73 ± 0.83 | 5.70 | 10.36 | |||
aph_MDPL | ≤30 | 3.02 ± 0.56 a | 2.00 | 4.32 | 50.491 | <0.001 * |
31–40 | 2.70 ± 0.67 a,b | 1.20 | 3.91 | |||
41–50 | 2.28 ± 0.61 a,b,c | 0.75 | 3.40 | |||
51–60 | 1.99 ± 0.67 a,b,d | 0.50 | 3.40 | |||
>60 | 1.61 ± 0.49 a,b,c,d | 0.50 | 2.75 | |||
Total | 2.37 ± 0.79 | 0.50 | 4.32 | |||
aph_PVTL | ≤30 | 5.85 ± 1.03 a | 4.00 | 9.20 | 14.437 | <0.001 * |
31–40 | 6.25 ± 0.80 b | 4.50 | 7.81 | |||
41–50 | 6.39 ± 1.01 a,c | 3.00 | 8.00 | |||
51–60 | 6.78 ± 0.75 a,b, | 5.25 | 9.01 | |||
>60 | 6.88 ± 0.78 a,b,c | 4.76 | 8.50 | |||
Total | 6.41 ± 0.96 | 3.00 | 9.20 | |||
ace_MDPL/ace_MDTL | <30 | 0.34 ± 0.05 a | 0.19 | 0.42 | 12.269 | <0.001 * |
31–40 | 0.34 ± 0.06 b | 0.25 | 0.49 | |||
41–50 | 0.33 ± 0.06 c | 0.15 | 0.44 | |||
51–60 | 0.31 ± 0.07 b,d | 0.10 | 0.44 | |||
>60 | 0.27 ± 0.06 a,b,c,d | 0.12 | 0.43 | |||
Total | 0.32 ± 0.07 | 0.10 | 0.49 | |||
ace_PVPL/ace_PVTL | <30 | 0.25 ± 0.05 a | 0.15 | 0.48 | 13.323 | <0.001 * |
31–40 | 0.24 ± 0.04 b | 0.14 | 0.36 | |||
41–50 | 0.23 ± 0.04 a | 0.16 | 0.33 | |||
51–60 | 0.22 ± 0.04 a | 0.13 | 0.30 | |||
>60 | 0.20 ± 0.04 a,b,c | 0.10 | 0.29 | |||
Total | 0.23 ± 0.05 | 0.10 | 0.48 | |||
ace_PVPL/ace_MDTL | <30 | 0.29 ± 0.07 a | 0.14 | 0.60 | 12.464 | <0.001 * |
31–40 | 0.27 ± 0.05 b | 0.13 | 0.42 | |||
41–50 | 0.26 ± 0.05 a,c | 0.16 | 0.39 | |||
51–60 | 0.25 ± 0.05 a | 0.13 | 0.38 | |||
>60 | 0.23 ± 0.06 a,b,c | 0.13 | 0.37 | |||
Total | 0.26 ± 0.06 | 0.13 | 0.60 | |||
aph_MDPL/aph_MDTL | <30 | 0.37 ± 0.06 a | 0.23 | 0.48 | 37.342 | <0.001 * |
31–40 | 0.34 ± 0.07 b | 0.16 | 0.48 | |||
41–50 | 0.29 ± 0.07 a,b,c | 0.09 | 0.41 | |||
51–60 | 0.27 ± 0.08 a,b,d | 0.07 | 0.42 | |||
>60 | 0.23 ± 0.06 a,b,c,d | 0.08 | 0.36 | |||
Total | 0.30 ± 0.09 | 0.07 | 0.48 | |||
aph_PVTL/aph_MDTL | <30 | 0.71 ± 0.13 a | 0.48 | 1.05 | 33.246 | <0.001 * |
31–40 | 0.80 ± 0.15 a,b | 0.52 | 1.25 | |||
41–50 | 0.83 ± 0.16 a,c | 0.30 | 1.20 | |||
51–60 | 0.92 ± 0.14 a,b,c | 0.59 | 1.26 | |||
>60 | 0.98 ± 0.15 a,b,c | 0.60 | 1.26 | |||
Total | 0.84 ± 0.17 | 0.30 | 1.26 |
Adjusted R2 | SEE 1 (±year) | p * | |
---|---|---|---|
SAGITTAL | |||
Linear measurements | |||
0.364 | 12.495 | 0.011 * | |
Ratios | |||
0.372 | 12.417 | 0.003 * | |
CORONAL | |||
Linear measurements | |||
0.373 | 12.320 | 0.001 * | |
Ratios | |||
0.225 | 13.701 | 0.000 * | |
AXIAL | |||
Linear measurements | |||
0.498 | 10.957 | 0.001 * | |
Ratios | |||
0.509 | 10.839 | 0.003 * | |
MULTIPLANAR MEASUREMENTS (homonyms excluded) | |||
Linear measurements | |||
0.520 | 10.717 | 0.000 * | |
Ratios | |||
0.517 | 10.757 | 0.000 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, M.A.; Muinelo-Lorenzo, J.; Fernández-Alonso, A.; Cruz-Landeira, A.; Aroso, C.; Suárez-Cunqueiro, M.M. Age Estimation Using Maxillary Central Incisor Analysis on Cone Beam Computed Tomography Human Images. Int. J. Environ. Res. Public Health 2022, 19, 13370. https://doi.org/10.3390/ijerph192013370
Santos MA, Muinelo-Lorenzo J, Fernández-Alonso A, Cruz-Landeira A, Aroso C, Suárez-Cunqueiro MM. Age Estimation Using Maxillary Central Incisor Analysis on Cone Beam Computed Tomography Human Images. International Journal of Environmental Research and Public Health. 2022; 19(20):13370. https://doi.org/10.3390/ijerph192013370
Chicago/Turabian StyleSantos, María Arminda, Juan Muinelo-Lorenzo, Ana Fernández-Alonso, Angelines Cruz-Landeira, Carlos Aroso, and María Mercedes Suárez-Cunqueiro. 2022. "Age Estimation Using Maxillary Central Incisor Analysis on Cone Beam Computed Tomography Human Images" International Journal of Environmental Research and Public Health 19, no. 20: 13370. https://doi.org/10.3390/ijerph192013370
APA StyleSantos, M. A., Muinelo-Lorenzo, J., Fernández-Alonso, A., Cruz-Landeira, A., Aroso, C., & Suárez-Cunqueiro, M. M. (2022). Age Estimation Using Maxillary Central Incisor Analysis on Cone Beam Computed Tomography Human Images. International Journal of Environmental Research and Public Health, 19(20), 13370. https://doi.org/10.3390/ijerph192013370