Additives in Children’s Nutrition—A Review of Current Events
Abstract
:1. Introduction
2. Methodology
3. Indirect Additives in Children’s Nutrition
3.1. Bisphenols
3.2. Phthalates
3.3. Perfluoroalkyl Chemicals
3.4. Perchlorate
3.5. Pesticides
4. Direct Additives in Children’s Nutrition
4.1. Nitrates and Nitrites
4.2. Artificial Food Colorants
4.3. Monosodium Glutamate—A Flavor Enhancer
4.4. Aspartame—Sweetener
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Food Additives. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/food-additives (accessed on 30 July 2022).
- U.S. Food and Drug Administration; Center for Food Safety; Applied Nutrition. Overview of Food Ingredients, Additives & Colors. 2010. Available online: https://www.fda.gov/food/food-ingredients-packaging/overview-food-ingredients-additives-colors (accessed on 30 July 2022).
- Paragraf.rs. Pravilnik o Prehrambenim Aditivima. 2018. Available online: https://www.paragraf.rs/propisi/pravilnik-o-prehrambenim-aditivima-republike-srbije.html (accessed on 30 July 2022).
- Andreozzi, L.; Giannetti, A.; Cipriani, F.; Caffarelli, C.; Mastrorilli, C.; Ricci, G. Hypersensitivity Reactions to Food and Drug Additives: Problem or Myth? Acta Biomed. 2019, 90, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Trasande, L.; Shaffer, R.M.; Sathyanarayana, S.; Council on Environmental Health. Food Additives and Child Health. Pediatrics 2018, 142, e20181410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Renzo, G.C.; Conry, J.A.; Blake, J.; DeFrancesco, M.S.; DeNicola, N.; Martin, J.N.; McCue, K.A.; Richmond, D.; Shah, A.; Sutton, P.; et al. International Federation of Gynecology and Obstetrics Opinion on Reproductive Health Impacts of Exposure to Toxic Environmental Chemicals. Int. J. Gynaecol. Obstet. Off. Organ. Int. Fed. Gynaecol. Obstet. 2015, 131, 219–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. Executive Summary to EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, 593–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergman, Å. (Ed.) State of the Science of Endocrine Disrupting Chemicals—2012 an Assessment of the State of the Science of Endocrine Disruptors; WHO: Geneva, Switzerland; UNEP: Geneva, Switzerland, 2013.
- Stojanoska, M.M.; Milosevic, N.; Milic, N.; Abenavoli, L. The Influence of Phthalates and Bisphenol A on the Obesity Development and Glucose Metabolism Disorders. Endocrine 2017, 55, 666–681. [Google Scholar] [CrossRef] [PubMed]
- vom Saal, F.S.; Vandenberg, L.N. Update on the Health Effects of Bisphenol A: Overwhelming Evidence of Harm. Endocrinology 2020, 162, bqaa171. [Google Scholar] [CrossRef]
- Akgül, S.; Sur, Ü.; Düzçeker, Y.; Balcı, A.; Kızılkan, M.P.; Kanbur, N.; Bozdağ, G.; Erkekoğlu, P.; Gümüş, E.; Kocer-Gumusel, B.; et al. Bisphenol A and Phthalate Levels in Adolescents with Polycystic Ovary Syndrome. Gynecol. Endocrinol. 2019, 35, 1084–1087. [Google Scholar] [CrossRef]
- Longo, M.; Zatterale, F.; Naderi, J.; Nigro, C.; Oriente, F.; Formisano, P.; Miele, C.; Beguinot, F. Low-Dose Bisphenol-A Promotes Epigenetic Changes at Pparγ Promoter in Adipose Precursor Cells. Nutrients 2020, 12, 3498. [Google Scholar] [CrossRef]
- Trasande, L.; Attina, T.M.; Blustein, J. Association between Urinary Bisphenol A Concentration and Obesity Prevalence in Children and Adolescents. JAMA 2012, 308, 1113–1121. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.M.; Ebrahim, K.; Hashemi, M.; Shoshtari-Yeganeh, B.; Rafiei, N.; Mansourian, M.; Kelishadi, R. Association of Exposure to Bisphenol A with Obesity and Cardiometabolic Risk Factors in Children and Adolescents. Int. J. Environ. Health Res. 2019, 29, 94–106. [Google Scholar] [CrossRef]
- Murphy, A. Are Bisphenol A (BPA) Plastic Products Safe for Infants and Children? National Center for Health Research. Available online: https://www.center4research.org/bisphenol-bpa-plastic-products-safe-infants-children/ (accessed on 30 July 2022).
- Encarnação, T.; Pais, A.A.; Campos, M.G.; Burrows, H.D. Endocrine Disrupting Chemicals: Impact on Human Health, Wildlife and the Environment. Sci. Prog. 2019, 102, 3–42. [Google Scholar] [CrossRef] [PubMed]
- Eldor, R.; DeFronzo, R.A.; Abdul-Ghani, M. In Vivo Actions of Peroxisome Proliferator-Activated Receptors: Glycemic Control, Insulin Sensitivity, and Insulin Secretion. Diabetes Care 2013, 36 (Suppl. 2), S162–S174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attina, T.M.; Trasande, L. Association of Exposure to Di-2-Ethylhexylphthalate Replacements with Increased Insulin Resistance in Adolescents from NHANES 2009–2012. J. Clin. Endocrinol. Metab. 2015, 100, 2640–2650. [Google Scholar] [CrossRef] [Green Version]
- Trasande, L.; Attina, T.M.; Sathyanarayana, S.; Spanier, A.J.; Blustein, J. Race/Ethnicity-Specific Associations of Urinary Phthalates with Childhood Body Mass in a Nationally Representative Sample. Environ. Health Perspect. 2013, 121, 501–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swan, S.H.; Sathyanarayana, S.; Barrett, E.S.; Janssen, S.; Liu, F.; Nguyen, R.H.N.; Redmon, J.B.; TIDES Study Team. First Trimester Phthalate Exposure and Anogenital Distance in Newborns. Hum. Reprod. 2015, 30, 963–972. [Google Scholar] [CrossRef] [Green Version]
- Kahn, L.G.; Philippat, C.; Nakayama, S.F.; Slama, R.; Trasande, L. Endocrine-Disrupting Chemicals: Implications for Human Health. Lancet Diabetes Endocrinol. 2020, 8, 703–718. [Google Scholar] [CrossRef]
- Gao, H.; Wang, Y.-F.; Huang, K.; Han, Y.; Zhu, Y.-D.; Zhang, Q.-F.; Xiang, H.-Y.; Qi, J.; Feng, L.-L.; Zhu, P.; et al. Prenatal Phthalate Exposure in Relation to Gestational Age and Preterm Birth in a Prospective Cohort Study. Environ. Res. 2019, 176, 108530. [Google Scholar] [CrossRef]
- Ferguson, K.K.; Rosen, E.M.; Rosario, Z.; Feric, Z.; Calafat, A.M.; McElrath, T.F.; Vélez Vega, C.; Cordero, J.F.; Alshawabkeh, A.; Meeker, J.D. Environmental Phthalate Exposure and Preterm Birth in the PROTECT Birth Cohort. Environ. Int. 2019, 132, 105099. [Google Scholar] [CrossRef]
- Posnack, N.G.; Swift, L.M.; Kay, M.W.; Lee, N.H.; Sarvazyan, N. Phthalate Exposure Changes the Metabolic Profile of Cardiac Muscle Cells. Environ. Health Perspect. 2012, 120, 1243–1251. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, P.; Lu, Y.; Lu, X.; Zhang, A.; Liu, Z.; Zhang, Y.; Khan, K.; Sarvajayakesavalu, S. Bioaccumulation and Human Exposure of Perfluoroalkyl Acids (PFAAs) in Vegetables from the Largest Vegetable Production Base of China. Environ. Int. 2020, 135, 105347. [Google Scholar] [CrossRef]
- Zhang, R.; Wei, Q.; Li, M.; Li, Z.; Lin, W.; Ma, A.; Zhou, Z. Exposure of Children Aged 0–7 Years to Perfluorinated Compounds in Foshan, China. Environ. Sci. Pollut. Res. Int. 2017, 24, 23299–23308. [Google Scholar] [CrossRef] [PubMed]
- Ode, A.; Källén, K.; Gustafsson, P.; Rylander, L.; Jönsson, B.A.G.; Olofsson, P.; Ivarsson, S.A.; Lindh, C.H.; Rignell-Hydbom, A. Fetal Exposure to Perfluorinated Compounds and Attention Deficit Hyperactivity Disorder in Childhood. PLoS ONE 2014, 9, e95891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pops.int. Governments Unite to Step-up Reduction on Global DDT Reliance and Add Nine New Chemicals under International Treaty. 2009. Available online: http://chm.pops.int/Convention/Pressrelease/COP4Geneva9May2009/tabid/542/language/en-US/Default.aspx (accessed on 30 July 2022).
- BRSMeas. Information on the 16 Chemicals Added to the Stockholm Convention. 2019. Available online: http://www.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx (accessed on 30 July 2022).
- Motas Guzmàn, M.; Clementini, C.; Pérez-Cárceles, M.D.; Jiménez Rejón, S.; Cascone, A.; Martellini, T.; Guerranti, C.; Cincinelli, A. Perfluorinated Carboxylic Acids in Human Breast Milk from Spain and Estimation of Infant’s Daily Intake. Sci. Total Environ. 2016, 544, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, C.; D’Hollander, W.; Roosens, L.; Covaci, A.; Smolders, R.; Van Den Heuvel, R.; Govarts, E.; Van Campenhout, K.; Reynders, H.; Bervoets, L. First Assessment of Population Exposure to Perfluorinated Compounds in Flanders, Belgium. Chemosphere 2012, 86, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Bennett, D.H.; Calafat, A.M.; Kato, K.; Strynar, M.; Andersen, E.; Moran, R.E.; Tancredi, D.J.; Tulve, N.S.; Hertz-Picciotto, I. Serum Concentrations of Perfluorinated Compounds (PFC) among Selected Populations of Children and Adults in California. Environ. Res. 2015, 136, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Alomirah, H.F.; Al-Zenki, S.F.; Alaswad, M.C.; Alruwaih, N.A.; Wu, Q.; Kannan, K. Widespread Occurrence of Perchlorate in Water, Foodstuffs and Human Urine Collected from Kuwait and Its Contribution to Human Exposure. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2016, 33, 1016–1025. [Google Scholar] [CrossRef]
- Panseri, S.; Nobile, M.; Arioli, F.; Biolatti, C.; Pavlovic, R.; Chiesa, L.M. Occurrence of Perchlorate, Chlorate and Polar Herbicides in Different Baby Food Commodities. Food Chem. 2020, 330, 127205. [Google Scholar] [CrossRef]
- Li, M.; Xiao, M.; Xiao, Q.; Chen, Y.; Guo, Y.; Sun, J.; Li, R.; Li, C.; Zhu, Z.; Qiu, H.; et al. Perchlorate and Chlorate in Breast Milk, Infant Formulas, Baby Supplementary Food and the Implications for Infant Exposure. Environ. Int. 2022, 158, 106939. [Google Scholar] [CrossRef]
- Management Board members; Executive Director; Operational Management. Dietary Exposure Assessment to Perchlorate in the European Population. European Food Safety Authority. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/5043 (accessed on 30 July 2022).
- Vejdovszky, K.; Grossgut, R.; Unterluggauer, H.; Inreiter, N.; Steinwider, J. Risk Assessment of Dietary Exposure to Perchlorate for the Austrian Population. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018, 35, 623–631. [Google Scholar] [CrossRef]
- Wang, Z.; Sparling, M.; Tague, B. Analysis of Perchlorate in Baby Food on Canadian (Ottawa) Markets in 2009 and Estimated Dietary Exposure. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018, 35, 2022–2031. [Google Scholar] [CrossRef]
- Valentín-Blasini, L.; Blount, B.C.; Otero-Santos, S.; Cao, Y.; Bernbaum, J.C.; Rogan, W.J. Perchlorate Exposure and Dose Estimates in Infants. Environ. Sci. Technol. 2011, 45, 4127–4132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, F.; Jaunat, J.; Sturchio, N.; Cancès, B.; Morvan, X.; Devos, A.; Barbin, V.; Ollivier, P. Worldwide Occurrence and Origin of Perchlorate Ion in Waters: A Review. Sci. Total Environ. 2019, 661, 737–749. [Google Scholar] [CrossRef] [PubMed]
- Vigreux-Besret, C.; Mahé, A.; Ledoux, G.; Garnier, A.; Rosin, C.; Baert, A.; Joyeux, M.; Badot, P.-M.; Panetier, P.; Rivière, G. Perchlorate: Water and Infant Formulae Contamination in France and Risk Assessment in Infants. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2015, 32, 1148–1155. [Google Scholar] [CrossRef] [PubMed]
- Lau, F.K.; deCastro, B.R.; Mills-Herring, L.; Tao, L.; Valentin-Blasini, L.; Alwis, K.U.; Blount, B.C. Urinary Perchlorate as a Measure of Dietary and Drinking Water Exposure in a Representative Sample of the United States Population 2001–2008. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Hyland, C.; Laribi, O. Review of Take-Home Pesticide Exposure Pathway in Children Living in Agricultural Areas. Environ. Res. 2017, 156, 559–570. [Google Scholar] [CrossRef]
- Suhartono, S.; Kartini, A.; Subagio, H.W.; Budiyono, B.; Utari, A.; Suratman, S.; Sakundarno, M. Pesticide Exposure and Thyroid Function in Elementary School Children Living in an Agricultural Area, Brebes District, Indonesia. Int. J. Occup. Environ. Med. 2018, 9, 137–144. [Google Scholar] [CrossRef]
- Berman, T.; Barnett-Itzhaki, Z.; Göen, T.; Hamama, Z.; Axelrod, R.; Keinan-Boker, L.; Shimony, T.; Goldsmith, R. Organophosphate Pesticide Exposure in Children in Israel: Dietary Associations and Implications for Risk Assessment. Environ. Res. 2020, 182, 108739. [Google Scholar] [CrossRef]
- Utyasheva, L.; Bhullar, L. Human Rights Perspective on Pesticide Exposure and Poisoning in Children: A Case Study of India. Health Hum. Rights 2021, 23, 49–61. [Google Scholar]
- Raanan, R.; Balmes, J.R.; Harley, K.G.; Gunier, R.B.; Magzamen, S.; Bradman, A.; Eskenazi, B. Decreased Lung Function in 7-Year-Old Children with Early-Life Organophosphate Exposure. Thorax 2016, 71, 148–153. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.R.; Dawley, E.H.; Reigart, J.R. Children’s Low-Level Pesticide Exposure and Associations with Autism and ADHD: A Review. Pediatr. Res. 2019, 85, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Sakali, A.K.; Bargiota, A.; Fatouros, I.G.; Jamurtas, A.; Macut, D.; Mastorakos, G.; Papagianni, M. Effects on Puberty of Nutrition-Mediated Endocrine Disruptors Employed in Agriculture. Nutrients 2021, 13, 4184. [Google Scholar] [CrossRef] [PubMed]
- Kartini, A.; Subagio, H.W.; Hadisaputro, S.; Kartasurya, M.I.; Suhartono, S.; Budiyono, B. Pesticide Exposure and Stunting among Children in Agricultural Areas. Int. J. Occup. Environ. Med. 2019, 10, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, L.J.; Xue, J.; Brown, G.G.; McCombs, M.; Nishioka, M.; Michael, L.C. Dietary Intakes of Pesticides Based on Community Duplicate Diet Samples. Sci. Total Environ. 2014, 468–469, 785–790. [Google Scholar] [CrossRef]
- Cequier, E.; Sakhi, A.K.; Haug, L.S.; Thomsen, C. Exposure to Organophosphorus Pesticides in Norwegian Mothers and Their Children: Diurnal Variability in Concentrations of Their Biomarkers and Associations with Food Consumption. Sci. Total Environ. 2017, 590–591, 655–662. [Google Scholar] [CrossRef]
- Holme, F.; Thompson, B.; Holte, S.; Vigoren, E.M.; Espinoza, N.; Ulrich, A.; Griffith, W.; Faustman, E.M. The Role of Diet in Children’s Exposure to Organophosphate Pesticides. Environ. Res. 2016, 147, 133–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nougadère, A.; Sirot, V.; Cravedi, J.-P.; Vasseur, P.; Feidt, C.; Fussell, R.J.; Hu, R.; Leblanc, J.-C.; Jean, J.; Rivière, G.; et al. Dietary Exposure to Pesticide Residues and Associated Health Risks in Infants and Young Children–Results of the French Infant Total Diet Study. Environ. Int. 2020, 137, 105529. [Google Scholar] [CrossRef]
- Cequier, E.; Sakhi, A.K.; Haug, L.S.; Thomsen, C. Development of an Ion-Pair Liquid Chromatography-High Resolution Mass Spectrometry Method for Determination of Organophosphate Pesticide Metabolites in Large-Scale Biomonitoring Studies. J. Chromatogr. A 2016, 1454, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.K.; Jones, P.A. Dietary Predictors of Young Children’s Exposure to Current-Use Pesticides Using Urinary Biomonitoring. Food Chem. Toxicol. 2013, 62, 131–141. [Google Scholar] [CrossRef]
- Fernández, S.F.; Pardo, O.; Corpas-Burgos, F.; Yusà, V. BIOVAL task force. Exposure and Cumulative Risk Assessment to Non-Persistent Pesticides in Spanish Children Using Biomonitoring. Sci. Total Environ. 2020, 746, 140983. [Google Scholar] [CrossRef]
- Liu, H.; Campana, A.M.; Wang, Y.; Kannan, K.; Liu, M.; Zhu, H.; Mehta-Lee, S.; Brubaker, S.G.; Kahn, L.G.; Trasande, L.; et al. Organophosphate Pesticide Exposure: Demographic and Dietary Predictors in an Urban Pregnancy Cohort. Environ. Pollut. 2021, 283, 116920. [Google Scholar] [CrossRef]
- Mehta, R.V.; Sreenivasa, M.A.; Mathew, M.; Girard, A.W.; Taneja, S.; Ranjan, S.; Ramakrishnan, U.; Martorell, R.; Ryan, P.B.; Young, M.F. A Mixed-Methods Study of Pesticide Exposures in Breastmilk and Community & Lactating Women’s Perspectives from Haryana, India. BMC Public Health 2020, 20, 1877. [Google Scholar] [CrossRef]
- Jeong, Y.; Lee, S.; Kim, S.; Choi, S.-D.; Park, J.; Kim, H.-J.; Lee, J.J.; Choi, G.; Choi, S.; Kim, S.; et al. Occurrence and Exposure Assessment of Polychlorinated Biphenyls and Organochlorine Pesticides from Homemade Baby Food in Korea. Sci. Total Environ. 2014, 470–471, 1370–1375. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, U.; Srivastava, M.K.; Srivastava, A.K.; Patel, D.K.; Garg, V.; Srivastava, L.P. Analysis of Imidacloprid Residues in Fruits, Vegetables, Cereals, Fruit Juices, and Baby Foods, and Daily Intake Estimation in and around Lucknow, India. Environ. Toxicol. Chem. 2013, 32, 723–727. [Google Scholar] [CrossRef]
- Torović, L.; Vuković, G.; Dimitrov, N. Pesticide Active Substances in Infant Food in Serbia and Risk Assessment. Food Addit. Contam. Part B Surveill. 2021, 14, 30–39. [Google Scholar] [CrossRef]
- Ling, M.-P.; Hsiao, H.-A.; Chen, S.-C.; Chen, W.-Y.; Chou, W.-C.; Lin, Y.-J.; You, S.-H.; Yang, Y.-F.; Lin, H.-C.; Chen, C.-Y.; et al. Assessing Dietary Exposure Risk to Neonicotinoid Residues among Preschool Children in Regions of Taiwan. Environ. Sci. Pollut. Res. Int. 2020, 27, 12112–12121. [Google Scholar] [CrossRef] [PubMed]
- Makris, K.C.; Konstantinou, C.; Andrianou, X.D.; Charisiadis, P.; Kyriacou, A.; Gribble, M.O.; Christophi, C.A. A Cluster-Randomized Crossover Trial of Organic Diet Impact on Biomarkers of Exposure to Pesticides and Biomarkers of Oxidative Stress/Inflammation in Primary School Children. PLoS ONE 2019, 14, e0219420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benbrook, C.M.; Davis, D.R. The Dietary Risk Index System: A Tool to Track Pesticide Dietary Risks. Environ. Health 2020, 19, 103. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.A.; Hopper, A.O.; Power, G.G.; Blood, A.B. Dietary Intake and Bio-Activation of Nitrite and Nitrate in Newborn Infants. Pediatr. Res. 2015, 77, 173–181. [Google Scholar] [CrossRef]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; Ghissassi, F.E.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K.; International Agency for Research on Cancer Monograph Working Group. Carcinogenicity of Consumption of Red and Processed Meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef] [Green Version]
- Neuman, W. What’s inside the Bun? The New York Times, 1 July 2011. [Google Scholar]
- Karwowska, M.; Kononiuk, A. Nitrates/Nitrites in Food-Risk for Nitrosative Stress and Benefits. Antioxidants 2020, 9, 241. [Google Scholar] [CrossRef] [Green Version]
- Knežević, K. Methemoglobinemija. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2021. [Google Scholar]
- Ludlow, J.T.; Wilkerson, R.G.; Nappe, T.M. Methemoglobinemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Ward, M.H.; Jones, R.R.; Brender, J.D.; de Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; van Breda, S.G. Drinking Water Nitrate and Human Health: An Updated Review. Int. J. Environ. Res. Public. Health 2018, 15, 1557. [Google Scholar] [CrossRef] [PubMed]
- Basaran, B.; Oral, Z.F.Y.; Anlar, P.; Kaban, G. Comparison and Risk Assessment of Nitrate and Nitrite Levels in Infant Formula and Biscuits for Small Children in Turkey. J. Food Compost. Anal. 2022, 109, 104522. [Google Scholar] [CrossRef]
- Larsson, K.; Darnerud, P.O.; Ilbäck, N.-G.; Merino, L. Estimated Dietary Intake of Nitrite and Nitrate in Swedish Children. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2011, 28, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Cortesi, M.L.; Vollano, L.; Peruzy, M.F.; Marrone, R.; Mercogliano, R. Determination of Nitrate and Nitrite Levels in Infant Foods Marketed in Southern Italy. CyTA—J. Food 2015, 13, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Berens, P.D.; Bryan, N.S. Nitrite and Nitrate in Human Breast Milk: Implications for Development. In Nitrite and Nitrate in Human Health and Disease; Humana Press: Totowa, NJ, USA, 2011; pp. 139–153. [Google Scholar]
- Kobayashi, J. Nitrite in Breast Milk: Roles in Neonatal Pathophysiology. Pediatr. Res. 2021, 90, 30–36. [Google Scholar] [CrossRef]
- Sherris, A.R.; Baiocchi, M.; Fendorf, S.; Luby, S.P.; Yang, W.; Shaw, G.M. Nitrate in Drinking Water during Pregnancy and Spontaneous Preterm Birth: A Retrospective within-Mother Analysis in California. Environ. Health Perspect. 2021, 129, 57001. [Google Scholar] [CrossRef]
- Zumel-Marne, A.; Castaño-Vinyals, G.; Alguacil, J.; Villanueva, C.M.; Maule, M.; Gracia-Lavedan, E.; Momoli, F.; Krewski, D.; Mohipp, C.; Petridou, E.; et al. Exposure to Drinking Water Trihalomethanes and Nitrate and the Risk of Brain Tumours in Young People. Environ. Res. 2021, 200, 111392. [Google Scholar] [CrossRef]
- Drozd, V.M.; Branovan, I.; Shiglik, N.; Biko, J.; Reiners, C. Thyroid Cancer Induction: Nitrates as Independent Risk Factors or Risk Modulators after Radiation Exposure, with a Focus on the Chernobyl Accident. Eur. Thyroid J. 2018, 7, 67–74. [Google Scholar] [CrossRef]
- Yao, L.; Fu, H.; Bai, L.; Deng, W.; Xie, F.; Li, Y.; Zhang, R.; Xu, X.; Wang, T.; Lai, S.; et al. Saliva Nitrite Is Higher in Male Children with Autism Spectrum Disorder and Positively Correlated with Serum Nitrate. Redox. Rep. 2021, 26, 124–133. [Google Scholar] [CrossRef]
- Arnold, L.E.; Lofthouse, N.; Hurt, E. Artificial Food Colors and Attention-Deficit/Hyperactivity Symptoms: Conclusions to Dye For. Neurotherapeutics 2012, 9, 599–609. [Google Scholar] [CrossRef] [Green Version]
- Stevens, L.J.; Burgess, J.R.; Stochelski, M.A.; Kuczek, T. Amounts of Artificial Food Dyes and Added Sugars in Foods and Sweets Commonly Consumed by Children. Clin. Pediatr. 2015, 54, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Asif Ahmed, M.; Al-Khalifa, A.S.; Al-Nouri, D.M.; El-Din, M.F.S. Dietary Intake of Artificial Food Color Additives Containing Food Products by School-Going Children. Saudi J. Biol. Sci. 2021, 28, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Batada, A.; Jacobson, M.F. Prevalence of Artificial Food Colors in Grocery Store Products Marketed to Children. Clin. Pediatr. 2016, 55, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.C. A Comparison of Daily Consumption of Artificial Dye-Containing Foods by American Children and Adults. Master’s Thesis, Eastern Michigan University, Ypsilanti, MI, USA, 2013. [Google Scholar]
- Miller, M.D.; Steinmaus, C.; Golub, M.S.; Castorina, R.; Thilakartne, R.; Bradman, A.; Marty, M.A. Potential Impacts of Synthetic Food Dyes on Activity and Attention in Children: A Review of the Human and Animal Evidence. Environ. Health 2022, 21, 45. [Google Scholar] [CrossRef] [PubMed]
- Pestana, S.; Moreira, M.; Olej, B. Safety of Ingestion of Yellow Tartrazine by Double-Blind Placebo Controlled Challenge in 26 Atopic Adults. Allergol. Immunopathol. 2010, 38, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Kobylewski, S.; Jacobson, M.F. Toxicology of Food Dyes. Int. J. Occup. Environ. Health 2012, 18, 220–246. [Google Scholar] [CrossRef]
- Doguc, D.K.; Deniz, F.; İlhan, İ.; Ergonul, E.; Gultekin, F. Prenatal Exposure to Artificial Food Colorings Alters NMDA Receptor Subunit Concentrations in Rat Hippocampus. Nutr. Neurosci. 2021, 24, 784–794. [Google Scholar] [CrossRef]
- Reis Rocha, R.A.; Reis Rocha, L.C.; Ribeiro, M.N.; Lima Ribeiro, A.P.; Alves da Rocha, R.; de Deus Souza Carneiro, J. Effect of the Food Matrix on the Capacity of Flavor Enhancers in Intensifying Salty Taste. J. Food Sci. 2021, 86, 1022–1032. [Google Scholar] [CrossRef]
- Morita, R.; Ohta, M.; Umeki, Y.; Nanri, A.; Tsuchihashi, T.; Hayabuchi, H. Effect of Monosodium Glutamate on Saltiness and Palatability Ratings of Low-Salt Solutions in Japanese Adults According to Their Early Salt Exposure or Salty Taste Preference. Nutrients 2021, 13, 577. [Google Scholar] [CrossRef]
- Hartman-Petrycka, M.; Klimacka-Nawrot, E.; Ziora, K.; Suchecka, W.; Gorczyca, P.; Rojewska, K.; Błońska-Fajfrowska, B. Sweet, Salty, and Umami Taste Sensitivity and the Hedonic Perception of Taste Sensations in Adolescent Females with Anorexia Nervosa. Nutrients 2022, 14, 1042. [Google Scholar] [CrossRef]
- Jalil Mozhdehi, F.; Abeywickrema, S.; Bremer, P.J.; Peng, M. Comparing Taste Detection Thresholds across Individuals Following Vegan, Vegetarian, or Omnivore Diets. Foods 2021, 10, 2704. [Google Scholar] [CrossRef] [PubMed]
- Elsevier. Haschek and Rousseaux’s Handbook of Toxicologic Pathology, 3rd ed.; Elsevier: San Diego, CA, USA, 2013. [Google Scholar]
- Bawaskar, H.S.; Bawaskar, P.H.; Bawaskar, P.H. Chinese Restaurant Syndrome. Indian J. Crit. Care Med. 2017, 21, 49–50. [Google Scholar] [CrossRef] [PubMed]
- Jovicic-Bata, J.; Grujicic, M.; Radjen, S.; Novakovic, B. Sodium Intake and Dietary Sources of Sodium in Undergraduate Students from Novi Sad, Serbia. Vojnosanit. Pregl. 2016, 73, 651–656. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Vital Signs: Food Categories Contributing the Most to Sodium Consumption —United States, 2007–2008. MMWR Morb. Mortal. Wkly. Rep. 2012, 61, 92–98. [Google Scholar]
- Rusmevichientong, P.; Morales, C.; Castorena, G.; Sapbamrer, R.; Seesen, M.; Siviroj, P. Dietary Salt-Related Determinants of Hypertension in Rural Northern Thailand. Int. J. Environ. Res. Public Health 2021, 18, 377. [Google Scholar] [CrossRef] [PubMed]
- Obayashi, Y.; Nagamura, Y. Does Monosodium Glutamate Really Cause Headache? A Systematic Review of Human Studies. J. Headache Pain 2016, 17, 54. [Google Scholar] [CrossRef] [Green Version]
- Zanfirescu, A.; Ungurianu, A.; Tsatsakis, A.M.; Nițulescu, G.M.; Kouretas, D.; Veskoukis, A.; Tsoukalas, D.; Engin, A.B.; Aschner, M.; Margină, D. A Review of the Alleged Health Hazards of Monosodium Glutamate. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1111–1134. [Google Scholar] [CrossRef] [Green Version]
- Hafner, E.; Hribar, M.; Hristov, H.; Kušar, A.; Žmitek, K.; Roe, M.; Pravst, I. Trends in the Use of Low and No-Calorie Sweeteners in Non-Alcoholic Beverages in Slovenia. Foods 2021, 10, 387. [Google Scholar] [CrossRef]
- Mahajan, A.; Haines, J.; Carriero, A.; Hogan, J.L.; Yu, J.; Buchholz, A.C.; Duncan, A.M.; Darlington, G.; Ma, D.W.L.; On Behalf of The Guelph Family Health Study. Non-Nutritive Sweetener Intake Is Low in Preschool-Aged Children in the Guelph Family Health Pilot Study. Nutrients 2022, 14, 2091. [Google Scholar] [CrossRef]
- Mateo-Fernández, M.; González-Jiménez, M.J.; Celestino, M.D.R.; Font, R.; Alonso-Moraga, Á.; Merinas-Amo, T. Toxicological and Nutraceutical Screening Assays of Some Artificial Sweeteners. Processes 2022, 10, 410. [Google Scholar] [CrossRef]
- van Vliet, K.; Melis, E.S.; de Blaauw, P.; van Dam, E.; Maatman, R.G.H.J.; Abeln, D.; van Spronsen, F.J.; Heiner-Fokkema, M.R. Aspartame and Phe-Containing Degradation Products in Soft Drinks across Europe. Nutrients 2020, 12, 1887. [Google Scholar] [CrossRef] [PubMed]
- Fowler, S.P.G. Low-Calorie Sweetener Use and Energy Balance: Results from Experimental Studies in Animals, and Large-Scale Prospective Studies in Humans. Physiol. Behav. 2016, 164, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Czarnecka, K.; Pilarz, A.; Rogut, A.; Maj, P.; Szymańska, J.; Olejnik, Ł.; Szymański, P. Aspartame—True or False? Narrative Review of Safety Analysis of General Use in Products. Nutrients 2021, 13, 1957. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.K.; Pretorius, E. Revisiting the safety of aspartame. Nutr. Rev. 2017, 75, 718–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pase, M.P.; Himali, J.J.; Beiser, A.S.; Aparicio, H.J.; Satizabal, C.L.; Vasan, R.S.; Seshadri, S.; Jacques, P.F. Sugar- and Artificially Sweetened Beverages and the Risks of Incident Stroke and Dementia: A Prospective Cohort Study: A Prospective Cohort Study. Stroke 2017, 48, 1139–1146. [Google Scholar] [CrossRef] [Green Version]
- Taheri, S. Effect of Exclusion of Frequently Consumed Dietary Triggers in a Cohort of Children with Chronic Primary Headache. Nutr. Health 2017, 23, 47–50. [Google Scholar] [CrossRef]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial Sweeteners Induce Glucose Intolerance by Altering the Gut Microbiota. Nature 2014, 514, 181–186. [Google Scholar] [CrossRef]
- Mueller, N.T.; Jacobs, D.R., Jr.; MacLehose, R.F.; Demerath, E.W.; Kelly, S.P.; Dreyfus, J.G.; Pereira, M.A. Consumption of Caffeinated and Artificially Sweetened Soft Drinks Is Associated with Risk of Early Menarche. Am. J. Clin. Nutr. 2015, 102, 648–654. [Google Scholar] [CrossRef] [Green Version]
- Matiz, C.; Jacob, S.E. Systemic Contact Dermatitis in Children: How an Avoidance Diet Can Make a Difference: Systemic Contact Dermatitis. Pediatr. Dermatol. 2011, 28, 368–374. [Google Scholar] [CrossRef]
Additive | Use | Proposed Mechanism of Action | Intake Risk | |
---|---|---|---|---|
Indirect | Bisphenols | Coating of primary packaging, cans, and bottles | Endocrine disruptors (interfere with the synthesis, secretion, transport, metabolism, site of action, or elimination of hormones) | Polycystic ovary syndrome, obesity, and increase in cardiometabolic risk factors |
Phthalates | Lubricants, adhesives, and plasticizers used during the packaging manufacturing process | Metabolism of phthalates produces products that affect the expression of peroxisome proliferator-activated receptors (PPARs), which play a significant role in the metabolism of lipids and carbohydrates | Insulin resistance, disorders in the development of the male genital system, premature birth, metabolic disorders, and cardiac disorders | |
Perfluoroalkyl chemicals | They are used for coating and waxing various materials in the industry, as an ingredient in items of general use (textiles, paper, leather, fire extinguishing foam, and cosmetics), as part of food packaging, and persistent organic pollutants that bioaccumulate in fruits and vegetables | An agonistic effect on the peroxisome proliferator-activated receptor, alteration of the immune response, and alteration in thyroid hormone signaling | Developmental neurotoxicity, immune system disorder, hyperuricemia, and attention-deficit/hyperactivity disorder | |
Perchlorate | Naturally present in the environment (atmosphere, soil, and drinking water) thus gets into food of plant origin, and is a breakdown product of chlorine disinfectants used in the process of purifying drinking water | It disrupts the homeostasis of the hypothalamic–pituitary–thyroid axis by competitive inhibition of iodide uptake (endocrine disruptor) | Hypothyroidism; negative effects on growth and cognitive development of fetuses, infants, and young children | |
Pesticides | Exposure to pesticide residues from dust that settles on the floor; a diet based on fruit, milk, and grains that may contain significant amounts of pesticides | Interfering with the synthesis, kinetics, or function of hormones (endocrine disruptors); organophosphate pesticides can interfere with the synthesis of insulin-like growth factor 1 | It can slow down the development of the nervous system and lead to neurobehavioral deficits, impaired cognitive abilities (lower IQ), attention deficit disorder, altered growth, the appearance of some types of carcinomas, and respiratory problems (rhinitis, cough, chronic bronchitis, and asthma) | |
Direct | Nitrates and nitrites | Preservatives in dried and processed meat, fish and cheese, milk formula, biscuits and other snacks; contaminated water | By reaction with secondary amines or amides, carcinogenic N-nitroso compounds can be formed, nitrosated stress damage to cell structures, lipids, cell membrane, proteins, Na-I symporter disruptor | Increased risk of colon cancer, brain tumors in children, thyroid gland dysfunction, methemoglobinemia, premature birth of a child, and disorders of the autistic spectrum |
Artificial food colorants (AFC) | Added to food and drinks for aesthetic reasons | Individuals with polymorphisms in genes for histamine degradation have more severe adverse reactions to AFC | Hypersensitivity reactions, behavioral and attention disorders in children | |
Monosodium glutamate | It can be found naturally in tomatoes and cheese, and as an additive, it is added to soup cubes, soy sauces, stews, spices, salty snacks… | Sodium overdose due to excessive consumption, and neurotoxicity caused by excessive activation of glutamate receptors | Increased risk of acute and chronic neurodegenerative diseases (amyotrophic lateral sclerosis, Alzheimer’s disease, drug addiction, and schizophrenia), hypertension, bronchospasm, and Chinese restaurant syndrome | |
Aspartame | Artificial sweeteners present in several sugar-free products (beverages), as well as in some medications and vitamin supplements | Deficiency of the phenylalanine hydroxylase enzyme leads to the accumulation of phenylalanine and the manifestation of toxic effects | Negative consequences on the child’s neurological development due to the toxic effect of phenylalanine, increased frequency of mood disorders, and frequent headaches |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savin, M.; Vrkatić, A.; Dedić, D.; Vlaški, T.; Vorgučin, I.; Bjelanović, J.; Jevtic, M. Additives in Children’s Nutrition—A Review of Current Events. Int. J. Environ. Res. Public Health 2022, 19, 13452. https://doi.org/10.3390/ijerph192013452
Savin M, Vrkatić A, Dedić D, Vlaški T, Vorgučin I, Bjelanović J, Jevtic M. Additives in Children’s Nutrition—A Review of Current Events. International Journal of Environmental Research and Public Health. 2022; 19(20):13452. https://doi.org/10.3390/ijerph192013452
Chicago/Turabian StyleSavin, Marijana, Aleksandra Vrkatić, Danijela Dedić, Tomislav Vlaški, Ivana Vorgučin, Jelena Bjelanović, and Marija Jevtic. 2022. "Additives in Children’s Nutrition—A Review of Current Events" International Journal of Environmental Research and Public Health 19, no. 20: 13452. https://doi.org/10.3390/ijerph192013452
APA StyleSavin, M., Vrkatić, A., Dedić, D., Vlaški, T., Vorgučin, I., Bjelanović, J., & Jevtic, M. (2022). Additives in Children’s Nutrition—A Review of Current Events. International Journal of Environmental Research and Public Health, 19(20), 13452. https://doi.org/10.3390/ijerph192013452