Depth-Camera-Based Under-Blanket Sleep Posture Classification Using Anatomical Landmark-Guided Deep Learning Model
Abstract
:1. Introduction
- We developed a posture classification system that can be generalized to various blanket conditions.
- We proposed an integrative innovation for the deep learning model to improve the classification performance through anatomical landmark features generated using a pose estimator.
2. Materials and Methods
2.1. Participant Recruitment
2.2. Hardware Setup
2.3. Experimental Procedure
2.4. Data Processing
2.5. Model Architecture
2.6. Model Training
2.7. System Architecture (with Model Testing)
2.8. Evaluation
3. Results
3.1. Performance of Different Models with and without Pose Estimator
3.2. Influence of Blankets on Model Performance
4. Discussion
- ECA-Net50 produced the best classification results with an F1 score of 87.4%.
- The performance of ECA-Net50 was improved by the anatomical landmark feature from 87.4% to 92.2%.
- Classification performances of ECA-Net50 with anatomical landmark features were less affected by the interference of blanket conditions.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zielinski, M.R.; McKenna, J.T.; McCarley, R.W. Functions and mechanisms of sleep. AIMS Neurosci. 2016, 3, 67. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, D.; Devaraj, U.; Venkatnarayan, K.; Veluthat, C.; Ramachandran, P.; D’Souza, G.; Maheswari, K.U. Prevalence of sleep practices, circadian types and their effect on sleep beliefs in general population: Knowledge and Beliefs About Sleep and Sleep Practices (KNOBS Survey). Sleep Vigil. 2021, 5, 61–69. [Google Scholar] [CrossRef]
- Liu, Y.; Wheaton, A.G.; Chapman, D.P.; Cunningham, T.J.; Lu, H.; Croft, J.B. Prevalence of healthy sleep duration among adults—United States, 2014. Morb. Mortal. Wkly. Rep. 2016, 65, 137–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickwire, E.M. Value-based sleep and breathing: Health economic aspects of obstructive sleep apnea. Fac. Rev. 2021, 10, 40. [Google Scholar] [CrossRef] [PubMed]
- Cary, D.; Jacques, A.; Briffa, K. Examining relationships between sleep posture, waking spinal symptoms and quality of sleep: A cross sectional study. PLoS ONE 2021, 16, e0260582. [Google Scholar] [CrossRef]
- Lorrain, D.; Koninck, J.D. Sleep position and sleep stages: Evidence of their independence. Sleep 1998, 21, 335–340. [Google Scholar] [CrossRef]
- Wong, D.W.-C.; Wang, Y.; Lin, J.; Tan, Q.; Chen, T.L.-W.; Zhang, M. Sleeping mattress determinants and evaluation: A biomechanical review and critique. PeerJ 2019, 7, e6364. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Wong, D.W.-C.; Yang, H.; Zhou, Y.; Lin, J.; Zhang, M. Effect of pillow height on the biomechanics of the head-neck complex: Investigation of the cranio-cervical pressure and cervical spine alignment. PeerJ 2016, 4, e2397. [Google Scholar] [CrossRef] [Green Version]
- Hong, T.T.-H.; Wang, Y.; Wong, D.W.-C.; Zhang, G.; Tan, Q.; Chen, T.L.-W.; Zhang, M. The Influence of Mattress Stiffness on Spinal Curvature and Intervertebral Disc Stress—An Experimental and Computational Study. Biology 2022, 11, 1030. [Google Scholar] [CrossRef]
- Miyawaki, S.; Tanimoto, Y.; Araki, Y.; Katayama, A.; Imai, M.; Takano-Yamamoto, T. Relationships among nocturnal jaw muscle activities, decreased esophageal pH, and sleep positions. Am. J. Orthod. Dentofac. Orthop. 2004, 126, 615–619. [Google Scholar] [CrossRef]
- McCabe, S.J.; Uebele, A.L.; Pihur, V.; Rosales, R.S.; Atroshi, I. Epidemiologic associations of carpal tunnel syndrome and sleep position: Is there a case for causation? Hand 2007, 2, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pien, G.W.; Schwab, R.J. Sleep disorders during pregnancy. Sleep 2004, 27, 1405–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menon, A.; Kumar, M. Influence of body position on severity of obstructive sleep apnea: A systematic review. Int. Sch. Res. Not. 2013, 2013, 670381. [Google Scholar] [CrossRef] [Green Version]
- Tam, A.Y.-C.; So, B.P.-H.; Chan, T.T.-C.; Cheung, A.K.-Y.; Wong, D.W.-C.; Cheung, J.C.-W. A Blanket Accommodative Sleep Posture Classification System Using an Infrared Depth Camera: A Deep Learning Approach with Synthetic Augmentation of Blanket Conditions. Sensors 2021, 21, 5553. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Sheng, Q.Z.; Zhang, W.E.; Ortiz, J.; Pouriyeh, S. Non-invasive techniques for monitoring different aspects of sleep: A comprehensive review. ACM Trans. Comput. Healthc. (HEALTH) 2022, 3, 1–26. [Google Scholar] [CrossRef]
- Cary, D.; Briffa, K.; McKenna, L. Identifying relationships between sleep posture and non-specific spinal symptoms in adults: A scoping review. BMJ Open 2019, 9, e027633. [Google Scholar] [CrossRef] [Green Version]
- Kubota, T.; Ohshima, N.; Kunisawa, N.; Murayama, R.; Okano, S.; Mori-Okamoto, J. Characteristic features of the nocturnal sleeping posture of healthy men. Sleep Biol. Rhythm. 2003, 1, 183–185. [Google Scholar] [CrossRef]
- Yu, M.; Rhuma, A.; Naqvi, S.M.; Wang, L.; Chambers, J. A posture recognition based fall detection system for monitoring an elderly person in a smart home environment. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 1274–1286. [Google Scholar] [CrossRef] [Green Version]
- Masek, M.; Lam, C.P.; Tranthim-Fryer, C.; Jansen, B.; Baptist, K. Sleep monitor: A tool for monitoring and categorical scoring of lying position using 3D camera data. SoftwareX 2018, 7, 341–346. [Google Scholar] [CrossRef]
- Hoque, E.; Dickerson, R.; Stankovic, J. Monitoring Body Positions and Movements during Sleep Using WISPs. In Proceedings of the WH’10 Wireless Health Conference 2010, San Diego, CA, USA, 5–7 October 2010; pp. 44–53. [Google Scholar]
- Lin, F.; Zhuang, Y.; Song, C.; Wang, A.; Li, Y.; Gu, C.; Li, C.; Xu, W. SleepSense: A Noncontact and Cost-Effective Sleep Monitoring System. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 189–202. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Chen, S.; Liu, X.; Wang, Y.; Chen, L. TagSheet: Sleeping Posture Recognition with an Unobtrusive Passive Tag Matrix. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 874–882. [Google Scholar]
- Zhang, F.; Wu, C.; Wang, B.; Wu, M.; Bugos, D.; Zhang, H.; Liu, K.J.R. SMARS: Sleep Monitoring via Ambient Radio Signals. IEEE Trans. Mob. Comput. 2021, 20, 217–231. [Google Scholar] [CrossRef]
- Liu, J.J.; Xu, W.; Huang, M.-C.; Alshurafa, N.; Sarrafzadeh, M.; Raut, N.; Yadegar, B. A dense pressure sensitive bedsheet design for unobtrusive sleep posture monitoring. In Proceedings of the 2013 IEEE International Conference on Pervasive Computing and Communications (PerCom), San Deigo, CA, USA, 18–22 March 2013; pp. 207–215. [Google Scholar]
- Pino, E.J.; Dörner De la Paz, A.; Aqueveque, P.; Chávez, J.A.; Morán, A.A. Contact pressure monitoring device for sleep studies. In Proceedings of the Annu Int Conf IEEE Eng Med Biol Soc, Osaka, Japan, 3–7 July 2013; pp. 4160–4163. [Google Scholar]
- Lin, L.; Xie, Y.; Wang, S.; Wu, W.; Niu, S.; Wen, X.; Wang, Z.L. Triboelectric Active Sensor Array for Self-Powered Static and Dynamic Pressure Detection and Tactile Imaging. ACS Nano 2013, 7, 8266–8274. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Kumar, A.; Nadeem, M.; Maaz, I. CNN-Based Smart Sleep Posture Recognition System. IoT 2021, 2, 119–139. [Google Scholar] [CrossRef]
- Matar, G.; Lina, J.M.; Kaddoum, G. Artificial Neural Network for in-Bed Posture Classification Using Bed-Sheet Pressure Sensors. IEEE J. Biomed. Health Inform. 2020, 24, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, X.a.; Su, M.; Lu, K. A Method to Recognize Sleeping Position Using an CNN Model Based on Human Body Pressure Image. In Proceedings of the 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 12–24 July 2019; pp. 219–224. [Google Scholar]
- Zhao, A.; Dong, J.; Zhou, H. Self-Supervised Learning From Multi-Sensor Data for Sleep Recognition. IEEE Access 2020, 8, 93907–93921. [Google Scholar] [CrossRef]
- Byeon, Y.-H.; Lee, J.-Y.; Kim, D.-H.; Kwak, K.-C. Posture Recognition Using Ensemble Deep Models under Various Home Environments. Appl. Sci. 2020, 10, 1287. [Google Scholar] [CrossRef] [Green Version]
- Viriyavit, W.; Sornlertlamvanich, V. Bed Position Classification by a Neural Network and Bayesian Network Using Noninvasive Sensors for Fall Prevention. J. Sens. 2020, 2020, 5689860. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-W.; Wang, S.-K.; Wan, B.-T.; Song, W.W. A novel multi-label classification algorithm based on K-nearest neighbor and random walk. Int. J. Distrib. Sens. Netw. 2020, 16, 1550147720911892. [Google Scholar] [CrossRef] [Green Version]
- Cheung, J.C.-W.; Tam, E.W.-C.; Mak, A.H.-Y.; Chan, T.T.-C.; Lai, W.P.-Y.; Zheng, Y.-P. Night-time monitoring system (eNightLog) for elderly wandering behavior. Sensors 2021, 21, 704. [Google Scholar] [CrossRef]
- Grimm, T.; Martinez, M.; Benz, A.; Stiefelhagen, R. Sleep position classification from a depth camera using bed aligned maps. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 319–324. [Google Scholar]
- Ren, A.; Dong, B.; Lv, X.; Zhu, T.; Hu, F.; Yang, X. A non-contact sleep posture sensing strategy considering three dimensional human body models. In Proceedings of the 2016 2nd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 14–17 October 2016; pp. 414–417. [Google Scholar]
- Fallmann, S.; Chen, L. Computational sleep behavior analysis: A survey. IEEE Access 2019, 7, 142421–142440. [Google Scholar] [CrossRef]
- Fallmann, S.; Veen, R.v.; Chen, L.L.; Walker, D.; Chen, F.; Pan, C. Wearable accelerometer based extended sleep position recognition. In Proceedings of the 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom), Dalian, China, 12–15 October 2017; pp. 1–6. [Google Scholar]
- Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.E.; Sheikh, Y. OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 172–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 6105–6114. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11531–11539. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8024–8035. [Google Scholar]
- Mao, Y.-J.; Lim, H.-J.; Ni, M.; Yan, W.-H.; Wong, D.W.-C.; Cheung, J.C.-W. Breast Tumour Classification Using Ultrasound Elastography with Machine Learning: A Systematic Scoping Review. Cancers 2022, 14, 367. [Google Scholar] [CrossRef]
- Ostadabbas, S.; Pouyan, M.B.; Nourani, M.; Kehtarnavaz, N. In-bed posture classification and limb identification. In Proceedings of the 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS), Lausanne, Switzerland, 22–24 October 2014; pp. 133–136. [Google Scholar]
- Cheung, J.C.-W.; Tam, E.W.-C.; Mak, A.H.-Y.; Chan, T.T.-C.; Zheng, Y.-P. A night-time monitoring system (eNightLog) to prevent elderly wandering in hostels: A three-month field study. Int. J. Environ. Res. Public Health 2022, 19, 2103. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.M.; Alnowami, M.; Khan, S.; Dijk, D.J.; Hilton, A.; Wells, K. Sleep Posture Classification using a Convolutional Neural Network. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 28–21 July 2018; pp. 3501–3504. [Google Scholar]
- Shinar, Z.; Baharav, A.; Akselrod, S. Detection of different recumbent body positions from the electrocardiogram. Med. Biol. Eng. Comput. 2003, 41, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Li, K.; Zheng, L.; Chen, W.-H.; Zhou, G.; Jiang, Q. A respiration-derived posture method based on dual-channel respiration impedance signals. IEEE Access 2017, 5, 17514–17524. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, G.-Z. Monitoring cardio-respiratory and posture movements during sleep: What can be achieved by a single motion sensor. In Proceedings of the 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Cambridge, MA, USA, 9–12 June 2015; pp. 1–6. [Google Scholar]
- Enayati, M.; Skubic, M.; Keller, J.M.; Popescu, M.; Farahani, N.Z. Sleep posture classification using bed sensor data and neural networks. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 461–465. [Google Scholar]
- Pinna, G.D.; Robbi, E.; La Rovere, M.T.; Taurino, A.E.; Bruschi, C.; Guazzotti, G.; Maestri, R. Differential impact of body position on the severity of disordered breathing in heart failure patients with obstructive vs. central sleep apnoea. Eur. J. Heart Fail. 2015, 17, 1302–1309. [Google Scholar] [CrossRef] [Green Version]
- Pouyan, M.B.; Birjandtalab, J.; Heydarzadeh, M.; Nourani, M.; Ostadabbas, S. A pressure map dataset for posture and subject analytics. In Proceedings of the 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Orlando, FL, USA, 16–19 February 2017; pp. 65–68. [Google Scholar]
- Hsia, C.-C.; Hung, Y.-W.; Chiu, Y.-H.; Kang, C.-H. Bayesian classification for bed posture detection based on kurtosis and skewness estimation. In Proceedings of the HealthCom 2008-10th International Conference on e-health Networking, Applications and Services, Biopolis, Singapore, 7–9 July 2008; pp. 165–168. [Google Scholar]
- Viriyavit, W.; Sornlertlamvanich, V.; Kongprawechnon, W.; Pongpaibool, P.; Isshiki, T. Neural network based bed posture classification enhanced by Bayesian approach. In Proceedings of the 2017 8th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES), Chonburi, Thailand, 7–9 May 2017; pp. 1–5. [Google Scholar]
- Liu, S.; Yin, Y.; Ostadabbas, S. In-bed pose estimation: Deep learning with shallow dataset. IEEE J. Transl. Eng. Health Med. 2019, 7, 1–12. [Google Scholar] [CrossRef]
- Wang, M.; Liu, P.; Gao, W. Automatic sleeping posture detection in ballistocardiography. In International Conference in Communications, Signal Processing, and Systems; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1785–1792. [Google Scholar]
- Matar, G.; Lina, J.-M.; Carrier, J.; Riley, A.; Kaddoum, G. Internet of Things in sleep monitoring: An application for posture recognition using supervised learning. In Proceedings of the 2016 IEEE 18th International conference on e-Health networking, applications and services (Healthcom), Munich, Germany, 14–16 September 2016; pp. 1–6. [Google Scholar]
- Yousefi, R.; Ostadabbas, S.; Faezipour, M.; Farshbaf, M.; Nourani, M.; Tamil, L.; Pompeo, M. Bed posture classification for pressure ulcer prevention. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–1 September 2011; pp. 7175–7178. [Google Scholar]
- Liu, J.J.; Xu, W.; Huang, M.-C.; Alshurafa, N.; Sarrafzadeh, M.; Raut, N.; Yadegar, B. Sleep posture analysis using a dense pressure sensitive bedsheet. Pervasive Mob. Comput. 2014, 10, 34–50. [Google Scholar] [CrossRef]
- Pouyan, M.B.; Ostadabbas, S.; Farshbaf, M.; Yousefi, R.; Nourani, M.; Pompeo, M. Continuous eight-posture classification for bed-bound patients. In Proceedings of the 2013 6th International Conference on Biomedical Engineering and Informatics, Hangzhou, China, 16–18 September 2013; pp. 121–126. [Google Scholar]
- Kwasnicki, R.M.; Cross, G.W.; Geoghegan, L.; Zhang, Z.; Reilly, P.; Darzi, A.; Yang, G.Z.; Emery, R. A lightweight sensing platform for monitoring sleep quality and posture: A simulated validation study. Eur. J. Med. Res. 2018, 23, 28. [Google Scholar] [CrossRef]
- Barsocchi, P. Position recognition to support bedsores prevention. IEEE J. Biomed. Health Inform. 2012, 17, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Hong, M.; Ryu, S. Sleep monitoring system using kinect sensor. Int. J. Distrib. Sens. Netw. 2015, 11, 875371. [Google Scholar] [CrossRef]
- Larracy, R.; Phinyomark, A.; Scheme, E. Machine learning model validation for early stage studies with small sample sizes. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021; pp. 2314–2319. [Google Scholar]
- Keshari, R.; Ghosh, S.; Chhabra, S.; Vatsa, M.; Singh, R. Unravelling small sample size problems in the deep learning world. In Proceedings of the 2020 IEEE Sixth International Conference on Multimedia Big Data (BigMM), New Delhi, India, 24–26 September 2020; pp. 134–143. [Google Scholar]
- Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf (accessed on 5 September 2022).
- Cabitza, F.; Rasoini, R.; Gensini, G.F. Unintended consequences of machine learning in medicine. JAMA 2017, 318, 517–518. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Number of Participants (n = 120) | Proportion (%) | |
---|---|---|---|
Gender | Male | 61 | 50.8 |
Female | 59 | 49.2 | |
Age Group | 18–19 | 10 | 8.3 |
20–29 | 35 | 29.2 | |
30–39 | 11 | 9.2 | |
40–49 | 3 | 2.5 | |
50–59 | 11 | 9.2 | |
60–69 | 37 | 30.8 | |
70–79 | 13 | 10.8 |
Outcome | Channel | Pose Estimator | Deep Learning Models | ||
---|---|---|---|---|---|
EfficientNetB4 | ResNet50 | ECA-Net50 | |||
Accuracy | A + B | Yes | 89.7% | 91.1% | 91.5% |
B | No | 87.4% | 83.6% | 88.7% | |
F1-score | A + B | Yes | 90.8% | 91.3% | 92.2% |
B | No | 87.3% | 83.6% | 87.4% |
Outcome | Dataset | Deep Learning Models with Pose Estimator | ||
---|---|---|---|---|
EfficientNetB4 | ResNet50 | ECA-Net50 | ||
Accuracy | No blanket data | 91.1% | 91.7% | 92.3% |
All blanket data | 91.4% | 89.3% | 90.9% | |
Augmented data | 89.7% | 91.1% | 91.5% | |
F1-score | No blanket data | 91.1% | 91.6% | 92.2% |
All blanket data | 91.9% | 88.9% | 91.7% | |
Augmented data | 90.8% | 91.3% | 92.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tam, A.Y.-C.; Zha, L.-W.; So, B.P.-H.; Lai, D.K.-H.; Mao, Y.-J.; Lim, H.-J.; Wong, D.W.-C.; Cheung, J.C.-W. Depth-Camera-Based Under-Blanket Sleep Posture Classification Using Anatomical Landmark-Guided Deep Learning Model. Int. J. Environ. Res. Public Health 2022, 19, 13491. https://doi.org/10.3390/ijerph192013491
Tam AY-C, Zha L-W, So BP-H, Lai DK-H, Mao Y-J, Lim H-J, Wong DW-C, Cheung JC-W. Depth-Camera-Based Under-Blanket Sleep Posture Classification Using Anatomical Landmark-Guided Deep Learning Model. International Journal of Environmental Research and Public Health. 2022; 19(20):13491. https://doi.org/10.3390/ijerph192013491
Chicago/Turabian StyleTam, Andy Yiu-Chau, Li-Wen Zha, Bryan Pak-Hei So, Derek Ka-Hei Lai, Ye-Jiao Mao, Hyo-Jung Lim, Duo Wai-Chi Wong, and James Chung-Wai Cheung. 2022. "Depth-Camera-Based Under-Blanket Sleep Posture Classification Using Anatomical Landmark-Guided Deep Learning Model" International Journal of Environmental Research and Public Health 19, no. 20: 13491. https://doi.org/10.3390/ijerph192013491
APA StyleTam, A. Y.-C., Zha, L.-W., So, B. P.-H., Lai, D. K.-H., Mao, Y.-J., Lim, H.-J., Wong, D. W.-C., & Cheung, J. C.-W. (2022). Depth-Camera-Based Under-Blanket Sleep Posture Classification Using Anatomical Landmark-Guided Deep Learning Model. International Journal of Environmental Research and Public Health, 19(20), 13491. https://doi.org/10.3390/ijerph192013491