Predicting Transmission Suitability of Mosquito-Borne Diseases under Climate Change to Underpin Decision Making
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identifying Areas with Suitable Conditions for Transmission
2.2. Selection of Thermal Limits
2.3. Climate Data and Projections
2.4. Aridity Mask
2.5. Evaluating Transmission Suitability
2.6. Statistical Analysis
3. Results
3.1. Malaria Transmission Suitability
3.2. Zika Virus Transmission Suitability
3.3. Dengue Fever Transmission Suitability
3.4. Combined Disease Transmission Suitability
4. Discussion
4.1. Transmission Suitability Risk and Implications
4.2. Limitations and Recommendations for Future Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palraj, R. Vector-Borne Infections. In A Rational Approach to Clinical Infectious Diseases; Temesgen, Z., Ed.; Elsevier: Philadelphia, PA, USA, 2022; pp. 200–219. [Google Scholar]
- World Health Organisation. Vector Borne Diseases. 2020. Available online: www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (accessed on 20 January 2022).
- World Health Organisation. Global Strategy for Dengue Prevention and Control 2012–2020. 2012. Available online: https://www.who.int/publications/i/item/9789241504034 (accessed on 17 June 2022).
- World Health Organisation. Zika Virus: Key Facts. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/zika-virus (accessed on 20 January 2022).
- The Malaria Atlas Project. Introducing MAP. 2022. Available online: https://malariaatlas.org/introducing-map/ (accessed on 20 January 2022).
- Messina, J.P.; Brady, O.J.; Golding, N.; Kraemer, M.U.G.; Wint, G.R.W.; Ray, S.E.; Pigott, D.M.; Shearer, F.M.; Johnson, K.; Earl, L.; et al. The current and future global distribution and population at risk of dengue. Nat. Microbiol. 2019, 4, 1508–1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, S.J.; Carlson, C.J.; Tesla, B.; Bonds, M.H.; Ngonghala, C.N.; Mordecai, E.; Johnson, L.R.; Murdock, C.C. Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050. Glob. Chang. Biol. 2021, 27, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.J.; Lippi, C.A.; Zermoglio, F. Shifting transmission risk for malaria in Africa with climate change: A framework for planning and intervention. Malar. J. 2020, 19, 170. [Google Scholar] [CrossRef] [PubMed]
- Buckley, L.B.; Urban, M.C.; Angilletta, M.J.; Crozier, L.G.; Rissler, L.J.; Sears, M.W. Can mechanism inform species’ distribution models? Ecol. Lett. 2010, 13, 1041–1054. [Google Scholar] [CrossRef]
- Mordecai, E.A.; Caldwell, J.M.; Grossman, M.K.; Lippi, C.; Johnson, L.; Neira, M.; Rohr, J.R.; Ryan, S.J.; Savage, V.; Shocket, M.S.; et al. Thermal biology of mosquito-borne disease. Ecol. Lett. 2019, 22, 1690–1708. [Google Scholar] [CrossRef] [Green Version]
- Helmuth, B.; Kingsolver, J.G.; Carrington, E. Biophysics, physiological ecology, and climate change: Does mechanism matter? Annu. Rev. Physiol. 2005, 67, 177–201. [Google Scholar] [CrossRef]
- Kearney, M.; Porter, W. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 2009, 12, 334–350. [Google Scholar] [CrossRef]
- Eikenberry, S.E.; Gumel, A.B. Mathematical modeling of climate change and malaria transmission dynamics: A historical review. J. Math. Biol. 2018, 77, 857–933. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge UK; New York, NY, USA, 2021. [Google Scholar]
- United Nations Children’s Fund (UNICEF). The Climate Crisis Is a Child Rights Crisis: Introducing the Children’s Climate Risk Index; UNICEF: New York, NY, USA, 2021. [Google Scholar]
- Ryan, S.J.; Carlson, C.J.; Mordecai, E.A.; Johnson, L.R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 2019, 13, e0007213. [Google Scholar] [CrossRef] [Green Version]
- Ryan, S.J.; McNally, A.; Johnson, L.R.; Mordecai, E.A.; Ben-Horin, T.; Paaijmans, K.; Lafferty, K.D. Mapping Physiological Suitability Limits for Malaria in Africa Under Climate Change. Vector-Borne Zoonotic Dis. 2015, 15, 718–725. [Google Scholar] [CrossRef]
- Cowtan, K.; National Center for Atmospheric Research Staff (Eds.) The Climate Data Guide: Global Surface Temperatures: BEST: Berkeley Earth Surface Temperatures; UCAR: Boulder, CO, USA, 2020. [Google Scholar]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Reisen, W.K. Landscape Epidemiology of Vector-Borne Diseases. Annu. Rev. Èntomol. 2010, 55, 461–483. [Google Scholar] [CrossRef] [Green Version]
- Pettorelli, N.; Ryan, S.; Mueller, T.; Bunnefeld, N.; Jedrzejewska, B.; Lima, M.; Kausrud, K. The Normalized Difference Vegetation Index (NDVI): Unforeseen successes in animal ecology. Clim. Res. 2011, 46, 15–27. [Google Scholar] [CrossRef]
- Richman, R.; Diallo, D.; Diallo, M.; Sall, A.A.; Faye, O.; Diagne, C.T.; Dia, I.; Weaver, S.C.; Hanley, K.A.; Buenemann, M. Ecological niche modeling of Aedes mosquito vectors of chikungunya virus in southeastern Senegal. Parasites Vectors 2018, 11, 255. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.; Xu, J.; Motoya, K. Global analyses of satellite-derived vegetation index related to climatological wetness and warmth. Int. J. Clim. 2006, 26, 425–438. [Google Scholar] [CrossRef]
- Nasa Earth Observations. Vegetation Index [NDVI] (1 Month Terra/Modis). 2020. Available online: https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD_NDVI_M&year=2020 (accessed on 31 August 2021).
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. A J. R. Meteorol. Soc. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Berkeley Earth. High Integrity Scientific Research. 2021. Available online: http://berkeleyearth.org/our-impact/ (accessed on 5 September 2022).
- Berkeley Earth. Gridded Data, Average Temperature (TAVG; 1753–Recent), 1 × 1 Latitude–Longitude Grid. 2021. Available online: http://berkeleyearth.org/data/ (accessed on 11 June 2021).
- Centers for Disease Control and Prevention. Where Malaria Occurs. 2020. Available online: https://www.cdc.gov/malaria/about/distribution.html (accessed on 28 April 2022).
- Lucey, D.R.; Gostin, L.O. The Emerging Zika Pandemic: Enhancing Preparedness. JAMA J. Am. Med. Assoc. 2016, 315, 865–866. [Google Scholar] [CrossRef]
- Dutra, H.L.C.; Rocha, M.N.; Dias, F.B.S.; Mansur, S.B.; Caragata, E.P.; Moreira, L.A. Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes. Cell Host Microbe 2016, 19, 771–774. [Google Scholar] [CrossRef] [Green Version]
- Utarini, A.; Indriani, C.; Ahmad, R.A.; Tantowijoyo, W.; Arguni, E.; Ansari, M.R.; Supriyati, E.; Wardana, D.S.; Meitika, Y.; Ernesia, I.; et al. Efficacy of Wolbachia-Infected Mosquito Deployments for the Control of Dengue. N. Engl. J. Med. 2021, 384, 2177–2186. [Google Scholar] [CrossRef]
- The Lancet Respiratory Medicine. Future pandemics: Failing to prepare means preparing to fail. Lancet Respir. Med. 2022, 10, 221. [Google Scholar] [CrossRef]
- Atwoli, L.; Baqui, A.H.; Benfield, T.; Bosurgi, R.; Godlee, F.; Hancocks, S.; Horton, R.; Laybourn-Langton, L.; Monteiro, C.A.; Norman, I.; et al. Call for emergency action to limit global temperature increases, restore biodiversity, and protect health. BMJ 2021, 374, n1734. [Google Scholar] [CrossRef] [PubMed]
- Haines, A.; Ebi, K. The Imperative for Climate Action to Protect Health. N. Engl. J. Med. 2019, 380, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Zouache, K.; Fontaine, A.; Vega-Rua, A.; Mousson, L.; Thiberge, J.-M.; Lourenco-De-Oliveira, R.; Caro, V.; Lambrechts, L.; Failloux, A.-B. Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential. Proc. R. Soc. B Boil. Sci. 2014, 281, 20141078. [Google Scholar] [CrossRef] [PubMed]
System | Minimum Temperature (°C) | Maximum Temperature (°C) | Method | Source |
---|---|---|---|---|
Plasmodium|Anopheles | 22.9 | 27.8 | Upper quantile (25%) of the curve R0. | [8] |
ZIKV|A. aegypti | 23.9 | 34 | Thermal boundaries for which R0 > 0 with a posterior probability >0.975 | [7] |
DENV|A. aegypti | 19.9 | 29.4 | Thermal boundaries for which R0 > 0 with a posterior probability >0.975 | [16] |
DENV|A. albopictus | 21.3 | 34 | Thermal boundaries for which R0 > 0 with a posterior probability >0.975 | [16] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sargent, K.; Mollard, J.; Henley, S.F.; Bollasina, M.A. Predicting Transmission Suitability of Mosquito-Borne Diseases under Climate Change to Underpin Decision Making. Int. J. Environ. Res. Public Health 2022, 19, 13656. https://doi.org/10.3390/ijerph192013656
Sargent K, Mollard J, Henley SF, Bollasina MA. Predicting Transmission Suitability of Mosquito-Borne Diseases under Climate Change to Underpin Decision Making. International Journal of Environmental Research and Public Health. 2022; 19(20):13656. https://doi.org/10.3390/ijerph192013656
Chicago/Turabian StyleSargent, Kate, James Mollard, Sian F. Henley, and Massimo A. Bollasina. 2022. "Predicting Transmission Suitability of Mosquito-Borne Diseases under Climate Change to Underpin Decision Making" International Journal of Environmental Research and Public Health 19, no. 20: 13656. https://doi.org/10.3390/ijerph192013656
APA StyleSargent, K., Mollard, J., Henley, S. F., & Bollasina, M. A. (2022). Predicting Transmission Suitability of Mosquito-Borne Diseases under Climate Change to Underpin Decision Making. International Journal of Environmental Research and Public Health, 19(20), 13656. https://doi.org/10.3390/ijerph192013656